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Sets of admissible initial data for porous-medium

equations with absorption ∗

Emmanuel Chasseigne & Juan Luis Vazquez

Abstract

In this article, we study a porous-medium equation with absorption in
RN × (0, T ) or in Ω× (0, T ):

ut −∆um + up = 0 .

We give a rather complete qualitative picture of the initial trace problem
in all the range m > 1, p > 0. We consider nonnegative Borel measures
as initial data (not necessarily locally bounded) and discuss whether or
not the Cauchy problem admits a solution. In the case of non-admissible
data we prove the existence of some projection operators which map any
Borel measure to an admissible measure for this equation.

1 Introduction

In this paper, we consider the equation

ut −∆um + up = 0, (1.1)

where m > 1 and p > 0. In particular, we look for nonnegative weak solutions
u = u(x, t) defined in QT = RN × (0, T ) for some T ∈ (0,∞]. We aim at
describing the sets of nonnegative initial data for which there exists a solution
of the Cauchy problem. We call these sets admissible sets; they can be quite
different depending on the value of the exponents. For convenience we think of
m as fixed and p as a variable parameter, hence we denote the admissible set
by A+(p).

1.1 Measures in pure diffusion

Our equation can be seen as a perturbation of the heat equation ut = ∆u, and
it will be convenient to review the situation for this equation in order to present
the main ideas. It is well-known [1] that any nonnegative distributional solution
u in RN × (0, T ) of the heat equation has an initial trace µ which is a Radon
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54 Sets of admissible initial data

measure (i.e., a locally finite measure). This means that for any ϕ ∈ C0(RN ),
(i.e. continuous and compactly supported in RN ) we have∫

RN

u(x, t)ϕ(x)dx →
∫

RN

ϕ(x)dµ(x) as t → 0. (1.2)

Moreover, the initial trace satisfies the following growth property:∫
RN

e−|x|
2/4T dµ(x) < +∞. (1.3)

On the other hand, given a nonnegative measure µ which satisfies the above
condition, there exists a unique nonnegative solution, so that the nonnegative
admissible data are measures which are characterized by (1.3).

We have a similar result for the the porous-medium equation ut = ∆um,
m > 1 [2, 4], where the admissible non-negative data are non-negative Radon
measures which satisfy

sup
R>1

R− 2
m−1 −

∫
BR

dµ < +∞, (1.4)

where −
∫

E
f denotes the average of f on E: −

∫
E

f = |E|−1
∫

E
f(x)dx. On the

other hand, the case m < 1 usually called fast diffusion, leads to difficulties that
is better to postpone.

1.2 Complete equation and Borel measures

If we add an absorption term up, we get equation (1.1) and then there is a big
extension of the class of initial data. Namely, we may have Borel measures, i.e.,
not necessarily locally finite measures as initial data of standard weak solutions,
even locally bounded and continuous.

A significant example of such a situation is well-known and goes back to the
works of [5] and [13]. It concerns the heat equation with absorption

ut −∆u + up = 0, p > 1. (1.5)

For any c > 0, this equation admits a solution uc with initial data uc(0) = cδ0,
so-called fundamental solution with mass c > 0. Now, letting c → ∞, one
obtains a new kind of singular solution called Very Singular Solution (VSS for
short) which is continuous (and locally bounded in QT ), although it takes on
the initial data “+∞ · δ0”. Such a measure is of course not locally bounded
and is a basic example of Borel measure, that we briefly recall below. Later on,
Marcus and Véron [16] proved that any Borel measure is admissible as initial
data for this equation, under some capacity condition if p > 1 + 2/N .

We denote by B+(RN ) the set of Borel measures. Let us recall [16, 8] that
any ν ∈ B+(RN ) may be written as ν = (S, µ), where S is a closed subset of
RN and µ > 0 is a Radon measure on R = RN \ S. The set S is defined as
follows:

S = {x ∈ RN : ∀r > 0, ν(Br(x)) = +∞}.
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Thus, a Radon measure is a Borel measure with S = ∅. Let us now define what
kind of solutions we consider.

Definition. By a solution we mean a function u ∈ C0(QT ), u > 0 such that
(1.1) holds in the sense of distributions. We also consider u ≡ +∞ as a solution
to simplify the statements of our results.

It is important to notice that since u is continuous in QT , then it is bounded
on every compact subset of QT , and thus it is the uniquely determined on such
compact sets [8]. This proves that u can be viewed as a limit solution, i.e. as
the limit of a sequence of smooth solutions.

We prove that the solutions we consider will take on initial data in the set of
nonnegative Borel measures, B+(RN ). Now it means that there exists a measure
ν ∈ B+(RN ) such that for any ϕ ∈ C0(RN ), (i.e. continuous and compactly
supported in RN ), ϕ > 0, we have∫

RN

u(x, t)ϕ(x)dx →
∫

RN

ϕ(x)dν(x) as t → 0.

Since ν = (S, µ) may have nonempty singular set S, the right-hand may be
infinite (it is well-defined in R+ ∪ {+∞} since ϕ is nonnegative). The measure
ν will be called the initial trace of u at t = 0, and we note trRN (u) = ν.

Definition. Let ν ∈ B+(RN ). Then ν is said to be admissible and we note
ν ∈ A+(p) if there exists a solution u of (1.1) such that trRN (u) = ν. We will
consider that +∞ is allowed as initial data, associated to the special solution
u ≡ +∞.

For some values of p, the set of admissible initial data is known:

• The case p = 1 is easily reduced to the pure diffusion case ut = ∆um by
the transformation v(x, τ) = etu(x, t), dτ/dt = e−(m−1)t, τ(0) = 0 so that
A+(1) is given by (1.4) for m > 1, and (1.3) for m = 1, with +∞ allowed
for u ≡ +∞.

• By [8] (and [16] in the case m = 1), it is known that if m < p < m + 2/N ,
any Borel measure is admissible as initial data, so that

A+(p) = B+(RN ).

• The case p = m. It was shown in [9] the following exact condition

A+(m) = {+∞} ∪

{∫
RN

e−|x|

1 + |x|N−1
2

dµ(x) < +∞

}
,

and +∞ is associated with the flat solution u(x, t) = c∗(m)t−1/(m−1),
c∗ = (m− 1)−1/(m−1), and also with u ≡ +∞.
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2 Main Results

Our results can be grouped in two areas: admissibility and the study of the
projection operator.

Admissibility. In the case of very weak absorption, 0 6 p 6 1, we prove that
the admissible initial data are exactly the same as in the case of the purely
diffusive equation:

A+(p) =
{

µ ∈ B+(RN ) : sup
R>1

R− 2
m−1 −

∫
BR

dµ < +∞
}
∪ {+∞},

where the measure ν = +∞ is associated to the “special solution” u ≡ +∞.
Moreover, we prove uniqueness of continuous weak solutions.

The situation is different in the case of weak absorption 1 < p < m, because
for example the infinite initial data is associated to a nontrivial solution, the
flat solution

u(x, t) = c∗t
−1/(p−1), c∗ = (p− 1)−1/(p−1).

We do not have the exact description of the admissible initial traces in this
range, but we can prove that the mapping

p 7→ A+(p) (2.1)

is strictly increasing in [1,m]. At least, it is known that the following rate is
critical for functions [14]:

u0(x) v
+∞

c0|x|
2

m−p , c0(m, p,N).

Finally, in the case of super-critical absorption p > m + 2/N , we prove that the
mapping (2.1) is non-increasing with p. Here also, we do not have the exact
characterization of A+(p), which is a question of local regularity of the measure
(in terms of capacity - see [7]), however, we give some qualitative properties of
this set, and some examples of admissible data.
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Projections. Another important question that we investigate is what happens
to non-admissible initial data when we perform an approximation process and
we pass to the limit. We prove the following results:
(i) In the range 0 6 p 6 m, there exists a projection operator

Pp : B+(RN ) → A+(p),

which maps any Borel measure to an admissible initial data. For ν ∈ B+(RN ),
Pp(ν) is defined as the initial trace of the limit solution u[ν] obtained by ap-
proximation of ν with compactly supported data. It satisfies

Pp ◦ Pp = Pp, Pp(ν) > ν,

that is, Pp is a nondecreasing projection. More precisely, we have
Case 0 6 p 6 1 : if ν 6∈ A+(p), then Pp(ν) = +∞ and u[ν] ≡ +∞. Case

1 < p 6 m : if ν 6∈ A+(p), then Pp(ν) = +∞ and u[ν](x, t) = c∗t
−1/(p−1). We

can call the first case projection by complete blow-up and the second projection
by instantaneous blow-up.
(ii) In the case m < p < m + 2/N , Pp is the identity operator in B+(RN ) since
any Borel measure is admissible and the problem is well-posed.
(iii) In the case of super-critical absorption, we cannot prove that a projection
operator is well-defined. This comes from the fact that for 0 6 p 6 m, admissi-
bility is just a question of growth at infinity, hence it can be handled by mono-
tonicity techniques (although we do not know explicitly A+(p) for 1 < p < m),
whereas in the case p > m + 2/N , the local regularity of the initial data is in-
volved. However, we prove that given an approximation process of ν by smooth
function, the limit solution will have a trace ν′ 6 ν. Hence, this may be viewed
as a projection down towards an admissible initial data. We can say at least
that ν′ does not contain the part of ν which is singular with respect to the
capacity in the Besov space B

2/q
q/(q−m),q/(q−1). We refer to [7] for proofs of this

latter fact.

3 Preliminaries

In this section, we recall some results which will be useful in the sequel.

3.1 Some Known Results

Let us begin with the following basic existence and uniqueness result taken from
[8]:

Theorem 3.1 Let m > 1 and 6 p < m + 2/N and µ > 0 be a compactly
supported Radon measure in Ω. Then there exists a unique weak solution u with
initial trace µ such that u ∈ C0((0, T ) × Ω), with u = 0 on ∂Ω × (0, T ). The
same results holds when Ω = RN (with no boundary conditions).

The following local estimate is taken from [19].
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Lemma 3.2 Let u be a smooth solution of (1.1) such that

sup
0<t<T

∫
BR

u(x, t)dx 6 C(R),

then there exists a constant C(R,α) such that∫ T

0

∫
BR

u(x, t)m+2/N−αdxdt 6 C(R,α),

for every 0 < α < min{1/N ;m− p + 2/N}.

We will now study the limits of fundamental solutions when 0 6 p 6 m.
In fact, when p > m + 2/N , those solutions do not exist, and we know that in
the range m < p < m + 2/N , the limit of such solutions is the Very Singular
Solution v∞, which takes on the initial trace ν = +∞δ0. We thus note vc the
fundamental solution of (1.1) with initial data cδ0, in RN . We refer to [14] for
the following result:

Theorem 3.3 Let Ω = RN .

• If 0 6 p 6 1, then vc → +∞ uniformly in RN × (0, T ).

• If 1 < p 6 m, then vc → c(p)t−1/(p−1) uniformly in RN × (0, T ).

3.2 Initial Trace

We will now prove that we can define an initial trace for continuous weak solu-
tions of (1.1). In fact this result was proved in [8, 9] for the cases 1 < m < p
and 1 < m = p respectively, and we first give below a localization Lemma valid
for the range 0 6 p 6 m.

Lemma 3.4 Let 0 6 p 6 m and u > 0 be a solution of (1.1). Let U be a subset
of RN . Then the following alternative holds:

(i) If
∫

U
u(x, s)dx remains bounded when s decreases to zero, then um ∈

L1(U × (0, T )).

(ii) If um ∈ L1(U × (0, T )), then for every ζ ∈ C2
0(U), the following limit

exists:

lim
t→0

∫
U

u(x, t)ζ(x) dx = `(ζ).

Proof. Since u is the limit of smooth solutions un, (i) is a direct consequence
of Lemma 3.2. Indeed, we can assume with no restriction that the un satisfy∫

U

un(x, s)ds 6 2
∫

U

u(x, s)ds,
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which remains bounded when s → 0. Hence∫ T

0

∫
U

um+2/N−α
n 6 C(R,α),

and in the limit, the same holds for u, so that in particular∫ T

0

∫
U

um < ∞.

The proof of (ii) is done as in [9, lemma 4.1]. Indeed, we can show an integral
version of the equation with function test ζ :∫

U

u(t)ζ −
∫

U

u(s)ζ −
∫ t

s

∫
U

um∆ζ +
∫ t

s

∫
U

upζ = 0.

Moreover, there exists two constants c1 and c2 such that

|ζ| 6 c1,

|∆ζ| 6 c2,

and thus ∫ t

0

∫
U

um|∆ζ|,
∫ t

0

∫
U

um|ζ|,
∫ t

0

∫
U

upζ < ∞,

so that if we let s decrease to zero,

lim
s→0

∫
U

u(s)ζ = `(ζ) < ∞.

�
Thanks to this Lemma, we obtain the main initial trace result.

Theorem 3.5 Let m > 1, p > 0 and u > 0 be a solution of ut−∆um +up = 0.
Then u(t) has an initial trace when t decreases to zero which is a Borel measure
ν > 0 in RN , in the following sense: for any continuous, compactly supported
ϕ ∈ C0(RN ), ϕ > 0, ∫

RN

u(x, t)ϕ(x)dx −→
t→0

∫
RN

ϕ(x)dν(x), (3.1)

whether the last integral is finite or not.

Proof. As was said, we already know the result if 1 < p < m, so let us assume
that 0 6 p 6 m and for u as above, let us define

S = {x ∈ RN : ∀U neighborhood of x,

∫ T

0

∫
U

um = ∞}.
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Then S is a closed set, and for every x ∈ S, U neighborhood of x, it is clear
that ∫

U

u(x, t)dx −→
t→0

+∞,

because if the above integral remains bounded for some U , then by Lemma 3.4,∫ T

0

∫
K

um < ∞,

for every K ⊂ U , which leads to a contradiction. On the other hand, if x ∈
R = RN \ S, then there exists a neighborhood U of x such that∫ T

0

∫
U

um < ∞,

and again by Lemma 3.4, there exists a non negative linear functional `U defined
on C2

0(U).
As was done in [8], there exists a linear non negative functional ` on C0(R),

which can then be represented by a Radon measure µ on R. If we set for every
Borel subset E of RN ,

ν(E) =
{

µ(E) if E ⊂ R,
+∞ if E ∩ S 6= ∅,

then ν is a Borel measure in RN and u(t) → ν when t → 0 in the following
sense: for every ϕ ∈ C0(RN ), such that supp(ϕ) ⊂ R,∫

RN

u(t)ϕ −→
t→0

∫
RN

ϕdµ,

and for every U such that U ∩ S 6= ∅,∫
U

u(t) −→
t→0

+∞.

Then (3.1) follows for nonnegative continuous ϕ’s with compact support in RN .
�

By convention, we define the initial trace of the infinite solution by:

trRN (u ≡ +∞) = +∞.

Theorem 3.6 The following results hold:

i) If 0 6 p 6 1 the initial trace of any solution u 6≡ +∞ is a Radon measure
in RN

ii) If 1 < p 6 m the initial trace of any solution u 6≡ +∞ is either a Radon
measure in RN , or +∞, and in this latter case, we have

u(x, t) > c(p)t−1/(1−p).
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Proof. This result relies upon comparison with fundamental solution, by using
Theorem 3.3. Since such an argument was already used in [9], we only outline
the proof.

If the trace of u contains a nonempty singular set S, let y ∈ S and fix c > 0.
Then there exists sequences tn → 0 and rn → 0 such that

∀n ∈ N,

∫
Brn (y)

u(x, tn)dx = c,

otherwise the integrals of u would remain bounded near y, which could not be
a singular point. Now by comparison, this implies that u is not less than the
solution un in (tn, T )×RN with initial data un(tn) = u(tn)χn, where χn is the
characteristic function of Brn

(y). Then by concentration, un converges to the
fundamental solution vc,y with initial data cδy, so that u > vc,δy

. Since c is
arbitrary, we let c → ∞, thanks to Theorem 3.3, which yields that u is either
+∞ everywhere or the flat solution whether p is less or greater than 1. �

4 Very Weak Absorption: 0 6 p 6 1

We consider equation (1.1) in the range 0 6 p 6 1. We will see that in terms
of initial data, the admissiblity condition is the same as for the diffusive case
ut = ∆um (see [2, 4]). Recall that in this range, solutions are only local a priori,
as it is the case for the diffusive equation. A solution in QT is thus understood
to be defined up to t = T (see remark after Theorem 4.4).

4.1 Harnack Inequality and Admissibility

We prove now that when p < 1, A+(p) = A+(1), in other terms, in this case,
the absorption has no effect on admissibility of initial traces, compared with
the purely diffusive case ut = ∆um (we showed above that the case p = 1 can
be reduced to the diffusive equation with a suitable change of variables and
functions).

The following lemma reduces our study to the case p = 0.

Lemma 4.1 Let µ be a Radon measure. Then for every p ∈ [0, 1], the following
inclusion holds:

A+(1) ⊂ A+(p) ⊂ A+(0).

Proof. The first inclusion is obvious since A+(1) is related to equation E1 :
ut − ∆um + u = 0, and this equation has the same admissibility set than the
purely diffusive equation ut = ∆um. Indeed, there exists a change of time
variable which maps solutions of ut = ∆um to E1 and preserves the initial data.
So if a trace is admissible for E1, it is also for the diffusive equation, and then
it is admissible if we add any absorption term. We are left to prove the second
inclusion.
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Let p ∈ [0, 1], and µ ∈ A+(p). Then we have up 6 u + 1, and thus

ut −∆um + u + 1 > 0.

Now we use the same change of time variable (and of function) that maps E1

to ut = ∆um : we get a function w which has initial data µ and

wt −∆wm + 1 > 0,

that is w is a super-solution of E0. Now it is easy to construct a solution
with initial data µ : let µn be a sequence of bounded measures converging
monotonically to µ and vn the sequence of minimal solutions of E0 with initial
data µn. Then vn increases to some function v and since w is an upper bound
for v, we know that v has locally finite initial trace. Then by monotonicity, it
is obvious that trRN (v) = µ (we have already proved this thing in the previous
theorems). Thus µ ∈ A+(0) and the result is proved. �

We now consider the case p = 0, and more generally, we deal with nonnega-
tive solutions of the equation

ut = ∆(um)− aχ(u > 0), a > 0, (4.1)

defined in QT = RN × (0, T ). We obtain a Harnack inequality for this kind
of equations, which includes in particular the porous medium equation when
a = 0. In this case, it was already obtained by Aronson and Caffarelli [2], but
our method is new for a = 0 and quite simple.

Lemma 4.2 Let u ∈ C0(RN × [0, T ]) be a nonnegative solution of (4.1) in p1

with 0 6 a 6 A. Let

M =
∫

B1

u(x, 0) dx. (4.2)

There exist positive constants M0 = M0(N,m, A) and k = k(N,m, A) such that
for M > M0

u(0, 1) > k M2λ, λ = (N(m− 1) + 2)−1. (4.3)

Proof. It is the combination of several steps. The letter C will denote different
positive constants that depend only on N and m.
• By comparison we may assume that u0 is supported in the unit ball B1.
Indeed, for general u0, then u0 is greater than u0η, η being a suitable cut-off
function compactly supported in B1 and less than one. Thus if v is the solution
with initial data u0η (existence and uniqueness are well-known in this case), we
obtain ∫

B1

u(x, 0)dx >
∫

B1

u0η = M,

and if the lemma holds true for v, then

u(0, 1) > v(0, 1) > kM2λ.
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We may then take the domain of definition as p = RN × (0,∞).
• By comparison with the porous medium equation without absorption, we
know the a priori estimate for the solution [4, p. 54]

0 6 u(x, t) 6 C M2λ t−Nλ (4.4)

and the a priori estimate for the support at time t,

suppu(·, t) ⊂ BR(t), R(t) = C M (m−1)λ tλ. (4.5)

Hence, if M is large this radius is much larger than 1 at t = 1.
• The reflection argument of Aleksandrov used in Lemma 2.2 of [2] means that
for |x| > 2 we have

u(0, t) > u(x, t). (4.6)

• Let us now estimate the mass at time t∫
u(x, t) dx =

∫
u0(x) dx− a

∫ t

0

∫
χ(u > 0) dxdt. (4.7)

The last term is bounded above by C a t R(t)N , while the first member can be
split into the integrals∫

|x|>2

u(x, t) dx +
∫
|x|62

u(x, t) dx,

and the last term can be estimated by

C M2λ t−Nλ2N .

We conclude that

Cu(0, t) (R(t)N − 2N ) >
∫
|x|≥2

u(x, t) dx > M − C a t R(t)N − C M2λ t−Nλ2N ,

hence for t = 1,

C u(0, 1) (MN(m−1)λ − 2N ) > M − C aMN(m−1)λ − C M2λ,

so that there are three constants c1, c2, c3(m,N) such that

u(0, 1) > c1M
2λ − ac2 − c3M

γλ, γ = 2− (m− 1)N.

Since γ < 2, there exists some constants M0 and k such that

c1M
2λ − ac2 − c3M

γλ > kM2λ

holds for every M > M0, and this proves the Lemma. �
Now we give the Harnack-type inequality.

Lemma 4.3 The estimate of the form∫
Br(x0)

u(x, t) dx 6 C
(
r1/λ(m−1)T−1/(m−1) + TN/2u1/2λ(x0, T )

)
(4.8)

holds for all nonnegative solutions if r > Tm/2 and t 6 T .
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Proof. We can use the previous lemma on (t, T ) since u ∈ C0(QT ), perform
the transformation

u∗(x, t) = r−2/(m−1)T 1/(m−1)u(rx, T t) (4.9)

as in [2, p. 361], and look at the equation satisfied by u∗. Now it is the same
(4.1) but for the constant a which becomes

a′ = a r−2/(m−1) Tm/(m−1). (4.10)

Hence, in order to apply the previous lemma we need to impose the condition
r > Tm/2. �

Remark. The previous lemma gives a direct proof of the existence of the
initial trace for E0, which is a Radon measure.

Theorem 4.4 For every p ∈ [0, 1], we have that following characterization:

µ ∈ A+(p) ⇔ sup
R>1

R− 2
m−1−N

∫
BR

dµ(x) < ∞.

In other words, the admissibility condition is the same as in the purely diffusive
equation.

Proof. By Lemma 4.1, we have only to prove the converse inclusion

A+(0) ⊂ A+(1).

If µ is admissible for E0, there exists a minimal solution u. Hence by (4.8), we
get

r1/λ(m−1)

∫
Br(x0)

dµ 6 C
(
T−1/(m−1) + r−1/λ(m−1)TN/2u1/2λ(x0, T )

)
, (4.11)

and since (λ(m− 1))−1 = N + 2/(m− 1), this implies that

sup
R>1

R− 2
m−1 −

∫
BR

dµ < ∞,

thus µ is admissible for E1, and the theorem is proved. �

Remark. The existence of a solution of Ep with initial data µ is only valid up
a time Tp(µ) in this range. It is obvious that Tp(µ) is not less that the blow-up
time T (µ) in the case of the purely diffusive equation [4]:

Tp(µ) > T (µ) > C(m,N)/`(µ)m−1,

where
`(µ) = lim

r→∞
sup
R>r

R− 2
m−1 −

∫
BR

dµ.
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In fact, in the case p = 1, the blow-up time can be computed thanks to the
exponential change of time variable, and we find:

T1(µ) >
1

m− 1
exp

(
(m− 1)

C(m,N)
`(µ)

)
,

which is greater than T (µ).

4.2 Optimal Uniqueness

We have seen that in the case 0 6 p 6 1, the admissibility condition for Ep was
the same as for the case ut = ∆um, and since uniqueness holds for this diffusive
equation with no growth restriction [11], one can reasonably think that the same
holds for Ep. We prove here that it is indeed the case.

The following Lemma shows some a priori estimates for solutions of Ep,
similar to the one satisfied by the solutions of the diffusive equation. For every
α > 0, we note

ρα(x) = [1 + |x|2]α.

Lemma 4.5 Let u be a solution of Ep with initial data µ ∈ A+(p), i.e.

sup
R>1

R− 2
m−1 −

∫
BR

dµ < ∞.

Then the following bound holds:

u(x, t) 6 C(t)ρ 1
m−1

(x) in {|x| > 1} × (0, T ),

where C(·) ∈ L∞loc(0, T ). Moreover,∫
RN

u(x, t)ραdx −→
t→0

∫
RN

ρα(x)dµ(x), (4.12)

for every α > 1 + N
2 + 1

m−1 .

Proof. Let s > 0. Since u is a solution of Ep on (s, T ), necessarily,

sup
R>1

R− 2
m−1 −

∫
BR

u(s) < ∞,

and thus u(s) is also an admissible initial data for ut − ∆um = 0. We call vs

the solution associated with vs(0) = u(s) for the diffusive equation (vs is unique
by the results of [11]). Moreover, since u is the limit of a sequence of smooth
solutions on (s, T ), we can compare u with vs:

u(x, t) 6 vs(x, t) in RN × (s, t).

By the estimates on vs [4, Rem. 3], we know that

vs(x, t) 6
c(s)
tλ

[1 + |x|2]
1

m−1 in {|x| > 1} × (s, T ),
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where λ = N
N(m−1)+2 and

c(s) 6 c(N,m)
[

sup
R>1

R− 2
m−1 −

∫
BR

u(s)
]2λ/N

.

The function c(s) remains bounded when s decreases to zero (this is a conse-
quence of the Harnack inequality (4.8)), we find that for some function C(·) ∈
L∞loc(0, T ),

u(x, t) 6 C(t)[1 + |x|2]
1

m−1 in {|x| > 1} × (0, T ).

Moreover, these techniques show that

u(x, t) 6 v(x, t) in QT ,

where v is the unique solution of the diffusive equation ut = ∆um with initial
data µ. But the convergence property (4.12) holds for v (see [4, p. 81]), so that
it also holds for u. Indeed, (all integrals are taken over RN )∫

u(t)ρα −
∫

ρadµ =
∫

(u− v)︸ ︷︷ ︸
60

(t)ρa +
∫

v(t)ρα −
∫

ραdµ,

so that
sup lim

t→0

∫
u(t)ρα 6

∫
ρadµ,

and since u(t) → µ weakly in measure, clearly∫
u(t)ρα −→

t→0

∫
ρadµ.

�

Theorem 4.6 Let 0 6 p 6 1 and ν ∈ A+(p), i.e., ν satisfies

sup
R>1

R− 2
m−1 −

∫
BR

dν < ∞.

Then there exists a unique solution u to(1.1) such that trRN (u) = ν.

Proof. Thanks to the previous a priori estimate, we can use the same tech-
niques as in [4, Prop. 2.1], which consists in solving the dual problem. Before
this, we need to construct a minimal solution, which can be obtained as in [8,
Sec. 4.2]: if u is any solution, let uR,τ be the unique solution of the problem

∂tuR,τ −∆um
R,τ + up

R,τ = 0 in BR × (τ, T ),

uR,τ (x, t) = 0 on ∂BR × (τ, T ),
uR,τ (τ) = u(τ) in BR.
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By comparison in this set, since both solutions are bounded,

uR,τ (x, t) 6 u(x, t) in BR × (τ, T ).

Then if we let τ decrease to zero, we see that uR,τ converges locally uniformly
to a solution uR with initial data µ/BR

and zero lateral data on ∂BR × (0, T ).
Moreover, uR is uniquely determined, as was proved in [8, Theorem 6.2], so that
it can be constructed independently of any solution, and in the limit,

uR(x, t) 6 u(x, t) in BR × (0, T ).

Finally, when R increase to +∞, uR increases to some solution u with initial
data µ, which is the (unique) minimal solution since u(x, t) 6 u(x, t) in QT .

Now if u is any solution with initial data µ, we will prove that u ≡ u, hence
uniqueness since u can be constructed independently of any solution. Let us
first fix s > 0 and t ∈ (s, T ). Since u > u, we have

(u− u)t −∆(um − u) = up − up 6 0,

and thanks to the a priori estimate given by Lemma 4.5,

uρ 1
m−1

, uρ 1
m−1

∈ L∞(RN × (s, t)).

Then the techniques of [4, Prop. 2.1] apply verbatim and give∫
RN

(u− u)(t)θ 6
∫

RN

|u− uu|(s)ρβ ,

where θ ∈ C∞0 (RN ), 0 6 θ 6 1 is arbitrary and β > N−1
2 + m

m−1 can also be
chosen freely. In [4], since both solutions have the same value at s = 0 in L1

loc,
the conclusion is that the solutions coincide everywhere. But here we have to
let s decrease to zero, so we use that fact that u[ν] is minimal:∫

|u− u|(s)ρβ =
∫

u(s)ρβ −
∫

u(s)ρβ ,

which both converge to the same value when s goes to zero, thanks to (4.12)
with a suitable β. Hence in the limit,∫

RN

(u− u)(t)θ 6 0,

which proves that u ≡ u since θ > 0 and t > 0 are arbitrary. �

5 Weak Absorption: 1 6 p 6 m

5.1 The Projection Operator

We now construct a projection operator Pp : B+(Ω) → B+(Ω). Actually, the
construction remains valid in the range 0 6 p 6 1 previously studied, so that
we give it in its full generality below. It is based on the following Lemma:
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Lemma 5.1 Let 0 6 p 6 m, and ν ∈ B+(RN ). Let µn > 0 be a sequence of
compactly supported measures converging monotonically to ν and un the associ-
ated sequence of solutions. Then un converges locally uniformly to the minimal
solution u[ν] with initial data ν. Moreover, if trRN (u[ν]) is not locally finite,
then

0 6 p 6 1 ⇒ u[ν] ≡ +∞,

1 < p 6 m ⇒ u[ν] = c(p)t−1/(p−1).
(5.1)

Proof. Let ν ∈ B+(RN ). We will proceed in several steps:
Step 1 Let us assume that 1 < p 6 m. We construct a minimal solution u[ν]
by the following procedure: let {µn}n∈N be a sequence of bounded measures
converging monotonically to ν, and {un}n∈N the associated sequence of solutions
of (1.1). Then un also converges monotonically to some function u ∈ C0(RN ×
(0, T )). Indeed, we have the universal bound un 6 c(p)t−1/(p−1). We will prove
later the minimality of u, so that we are left to show that trRN (u) = ν. In fact,
we know that either trRN (u) = ν′ is locally finite, or trRN (u) = +∞.

We first assume that trRN (u) = ν′ is locally finite. For every ϕ ∈ C2
0(RN ),

we have both∫
RN

un(t)ϕ−
∫ t

0

∫
RN

um
n ∆ϕ +

∫ t

0

∫
RN

up
nϕ =

∫
RN

ϕdµn, (5.2)

and ∫
RN

u(t)ϕ−
∫ t

0

∫
RN

um∆ϕ +
∫ t

0

∫
RN

upϕ =
∫

RN

ϕdν′.

But since un 6 u and u ∈ Lm(0, T ;Lm
loc(RN )) (because ν′ is locally finite - see

Lemma 3.4), then passing to the limit in the first equation and using the second
leads to ∫

RN

ϕdν′ =
∫

RN

ϕdν,

which proves that ν′ = ν, hence u is a solution with initial data ν. Now if
trRN (u) = +∞, then un converges to a solution u which has initial trace +∞.
Indeed, if this were not true, then un would converge to a function u which has
a locally finite initial trace and it would thus enjoy the following property:

u ∈ Lm(0, T ;Lm
loc(RN )).

Then choosing ϕ ∈ C2
0(RN )+, and passing to the limit in equation (5.2) we

would get (recall that µn converges to +∞)∫
RN

u(t)ϕ−
∫ t

0

∫
RN

um∆ϕ +
∫ t

0

∫
RN

upϕ = +∞,

which contradicts the fact that the trace of u is locally finite.
Step 2. Let us assume now that 0 6 p 6 1. In this case, we prove that
u ≡ +∞. In fact, the limit u of the un cannot be locally bounded in QT
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otherwise we would obtain a solution with trace ν (same proof as Step 1).
Actually the exact condition for ν to be admissible is known and we can write
(4.11) for the un under the form:

r1/λ(m−1)

∫
Br(x0)

dµn 6 C
(
t
−1/(m−1)
0 + t

N/2
0 r−1/λ(m−1)u1/2λ

n (x0, t0)
)
.

Thus if we assume that there exists a point (x0, t0) such that u(x0, t0) < ∞, we
get a bound for r1/λ(m−1)

∫
Br(x0)

dµn as n → +∞, which says that ν satisfies
the same bound. Then it is admissible by Theorem 4.4, and there exists a local
solution u with trace ν. Thus we reach a contradiction, so that u ≡ +∞ in QT .
Step 3. The minimality of u follows from uniqueness for finite measures (by
Theorem 3.1). Thus, u > un follows from uniqueness of un and the fact that
µn 6 µ (this kind of argument was used extensively in [8, 9], so that we omit
the details). Passing to the limit in n gives the minimality of u. �

Note that the minimality of u[ν] guaranties that whatever the approxima-
tions µn are, we obtain always the same limit, so that the following definition
makes sense.

Theorem 5.2 For every 0 6 p 6 m, we define a mapping Pp : B+(RN ) →
B+(RN ) by

Pp(ν) = trRN (u[ν]),

with the convention that trRN (+∞) = +∞. Then Pp(B+(RN )) = A+(RN ), and
Pp is a projection, i.e., Pp ◦ Pp = Pp. Moreover, we have the characterization:

ν ∈ A+(p) ⇒ Pp(ν) = ν,

ν 6∈ A+(p) ⇒ Pp(ν) = +∞,

and in this latter case, (5.1) holds.

Proof. As we noticed, Pp is well-defined since the minimal solution does not
depend on the approximations used. By construction, it is clear that Pp(ν) is
an admissible measure for any ν ∈ B+(RN ).
Claim: ν ∈ A+(p) ⇒ Pp(ν) = ν.
Let us first assume that 1 < p 6 m and let µn be a sequence of nonnegative
compactly supported measures converging to ν. Let also un be the associ-
ated sequences of solutions. Then un converges to some function u′ with trace
Pp(ν) = ν′ 6 ν. Then arguing as in Lemma 5.1 (Step 1), yields

ν′ = ν, i.e., Pp(ν) = ν.

Now if 0 6 p 6 1, we use exactly the same argument if ν is locally finite. If
ν ≡ +∞, then for any compact set K,∫

K

dµn −→
n→∞

+∞,
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so that the Harnack Inequality (4.11) implies that un → +∞ everywhere. Here
also, the argument follows Lemma 5.1 (Step 2).

This result proves several things: first that Pp(B+(RN )) = A+(RN ), since
any admissible data ν may be written under the form ν = Pp(ν). Second, Pp is
a projector:

∀ν ∈ B+(RN ), Pp(Pp(ν)) = Pp(ν), since Pp(ν) ∈ A+(RN ).

Third, we have
Pp(ν) = ν ⇐⇒ ν ∈A+(RN ).

It remains to prove that if ν /∈ A+(RN ), then Pp(ν) = +∞. In the case 0 6
p 6 1, we have the exact characterization, so that clearly, if ν /∈ A+(RN ), when
we approximate it, the left-hand side of (4.11) goes to +∞, so that un → +∞
everywhere, x0 and T being arbitrary. Thus indeed, Pp(ν) = +∞ since u[ν] ≡
+∞. Now in the case 1 < p 6 m, un will always converge monotonically to
some solution u[ν]. And we saw that trRN (u) cannot be locally finite, otherwise
monotonicity would imply that trRN (u) = ν (see Lemma 5.1). Thus trRN (u) =
+∞, that is, Pp(ν) = +∞ and the Theorem is completed. �

5.2 Admissibility Sets

We have seen that when p ∈ [0, 1], the absorption term has no effect on admissi-
bility of measures. Moreover, when p = m, we know the exact characterization
of admissible data. Unfortunately, such a characterization is not known so far
for measures when 1 < p < m, but we have at least the following result which
proves that the set of admissible data is increasing with p in this range.

Theorem 5.3 For every p, p′ ∈ [1,m] such that p < p′, we have

A+(p)  A+(p′).

In other words, the function p 7→ A+(p) is increasing in [1,m].

Proof. Recall that thanks to Lemma 5.1, we can work with minimal solutions,
hence limit solutions. We can thus use smooth solutions, the passage to the limit
being automatic.

Let us assume that p′ > p and that µ ∈ A+(p). Then we shall show that
µ is also an admissible data for Ep′ , that is, µ ∈ A+(p′). In fact, we will first
construct a super-solution for equation Ep′ on some small interval (0, t0), with
initial data µ, and then we will easily show that there exists a solution with
initial data µ on (0, T ).

Let u be the minimal solution associated with µ, and let

v(x, t) = (1 + ct) · u(x, t), (x, t) ∈ RN × (0, t0),

for some parameters c, t0 > 0 which will be specified later on. Then a straight-
forward calculation gives

vt = (1 + ct)1−m∆vm + c(1 + ct)−1v − (1 + ct)1−pvp,
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and changing the time variable in τ ∈ (0, τ0(t0)) such that

dτ

dt
= (1 + ct)1−m,

we get, setting v(x, t) = w(x, τ),

wτ = ∆wm − wp(1 + ct)m−p + cw(1 + ct)m−2.

Note that if we work with classical solutions,

w(x, 0) = v(x, 0) = u(x, 0),

and this is again the case if the initial data is a measure, the above equality
being understood in the sense of initial traces. Moreover, for a good choice of
t0 and c, we show that w is a super-solution of equation Ep′ with initial data
µ : let c be a free parameter for the moment and put t0 = 1/c, then for every
t ∈ (0, t0),

min{1; 2m−2} < (1 + ct)m−p, (1 + ct)m−2 < 2m. (5.3)

Now since p′ > p, there exists a constant k(m, p, p′),such that for w > k,

wp′ > 2mwp,

and for w 6 k (fixed above), thanks to (5.3) there exists some c(m, p, p′) (maybe
big but finite), such that

cw(1 + ct)m−2 > wp(1 + ct)m−p.

Thus, we have obtained that whatever the value of w,

wp′ + cw(1 + ct)m−2 > (1 + ct)m−pwp, on (0, t0),

so that there exists some τ0 > 0 (only depending on m, p and p′ through c and
k) such that for τ ∈ (0, τ0)

wτ > ∆wm − wp′ ,

that is, w is a super-solution of Ep′ with initial data µ.
Now we can construct a solution of Ep′ with initial data µ : let µn be

a sequence of bounded measures converging to µ monotonically and un be the
associated sequence of minimal solutions. Then un also increases to some distri-
butional solution u ∈ C0(RN × (0, T )), and un has an initial trace ν ∈ B+(RN ).
We also construct the associated sequence of functions wn on (0, τ0) by the same
process as above, taking the initial data µn. By construction, we have on (0, τ0),

un(t) 6 wn(t) 6 w(t),

and since u ∈ Lm(0, T ;Lm
loc(RN )), then so is w, so that the {un} remain uni-

formly bounded by w which is in Lm(0, T ;Lm
loc(RN )), and in L1

loc(RN ) for every
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τ ∈ (0, τ0). As we already seen, this argument allows us to pass to the limit in
the following equation, where ϕ ∈ C2

0(RN ):∫
RN

un(t)ϕ−
∫ t

0

∫
RN

um
n ∆ϕ +

∫ t

0

∫
RN

up
nϕ =

∫
RN

ϕdµn,

and thus we get∫
RN

u(t)ϕ−
∫ t

0

∫
RN

um∆ϕ +
∫ t

0

∫
RN

upϕ =
∫

RN

ϕdµ,

hence initial trace of u is µ. Thus µ is an admissible data for Ep′ , and the
theorem is proved.
Finally, for p < p′ in (1,m), the inclusion A+(p) ⊂ A+(p′) is strict, this can be
easily seen on function initial data [15], and the limit cases p = 1 and p = m
where discussed above. �

6 Super-Critical Absorption: p > m + 2/N

We will now concentrate on the case when the absorption exponent is bigger
than the critical value pc = m + 2/N . The operator is defined differently from
the cases 0 6 p 6 m since we cannot use monotonicity properties here.

6.1 The Operator Pp

In this section, we will see that given an approximation process of the initial
data ν ∈ B+(Ω) by smooth functions, we obtain in the limit a solution which
may have a smaller initial trace ν′ 6 ν. As for the case 1 < p 6 m, we will
define Pp as follows: Pp(ν) = ν′, but are not able to prove that Pp is a projector
in B+(RN ). To fix ideas, we will use a sequence {ρn} of nonnegative functions
which approximate δ0, with support supp(ρn) = B1/n(0), but any other approx-
imation process would give the same property. We point out however, that the
value of Pp(ν) may depend on the approximation process.

The definition of Pp will relies on the two following Lemmas.

Lemma 6.1 Let p > m and {un}n∈N be a sequence of solution of (1.1) in
RN × (0, T ) with initial trace νn such that un is increasing and converges locally
uniformly to some u. Then u is a solution of (1.1) with initial trace

trΩ(u) = lim νn.

Proof. Let us first notice that νn = trΩ(un) is well-defined since un is a weak
solution, as well as {trΩ(u) = (S, µ). Let us call ν = lim νn, which is well-defined
by monotonicity. Now for any ϕ ∈ C0(R), and n big enough, we may write∫

RN

un(t)ϕ(t) +
∫ t

0

∫
RN

{−unϕt − um
n ∆ϕ + up

nϕ} =
∫

RN

ϕdνn < ∞. (6.1)
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Indeed, by monotonicity of un, the sequence of Borel measures νn = (Sn, µn)
is also monotone so that ϕ has compact support in RN \ Sn, for n sufficiently.
To get some bounds, let us take ϕ(x, t) = ϕ(x) ∈ C∞0 (RN ), 0 6 ϕ 6 1, with
support in some ball Br ⊂ R, and let us define

Xn(t) =
∫ t

0

∫
RN

unϕ, Yn(t) =
∫ t

0

∫
RN

up
nϕ.

Then for a good choice of ϕ (see [8]), we have∫ t

0

∫
RN

um
n |∆ϕ| 6 c(ϕ)Yn(t)m/p,

so that we arrive at the following differential inequality, where C = ν(Br) < ∞ :

dXn(t)
dt

− c(ϕ)Yn(t)m/p + Yn(t) 6 C.

Then clearly, we get a uniform bound for dXn/dt =
∫

RN un(t)ϕ(t), so that now
we can use Lemma 3.2: it yields that un is uniformly bounded in Lq(0, T ;Lq

loc(R)),
for any q < m + 2/N , so that∫ t

0

∫
RN

unϕt −→
n→∞

∫ t

0

∫
RN

uϕt,

∫ t

0

∫
RN

um
n ∆ϕ −→

n→∞

∫ t

0

∫
RN

um∆ϕ.

If m < p < m+2/N , we can use the same convergence for the absorption term,
but for p > m + 2/N , we use the monotonicity to pass to the limit:∫ t

0

∫
RN

up
nϕ −→

n→∞

∫ t

0

∫
RN

upϕ.

Passing to the limit in (6.1) yields∫
RN

u(t)ϕ(t) +
∫ t

0

∫
RN

{−uϕt − um∆ϕ + upϕ} =
∫

RN

ϕdν < ∞.

¿From this we deduce that on RN \ S, µ = ν. It remains to show that the
blow-up set of ν is exactly S, which is easy: for any y in the blow-up set of ν,
and any r > 0, ∫

Br(y)

u(x, t)dx >
∫

Br(y)

un(x, t)dx,

so that as t → 0,

lim
t→0

∫
Br(y)

u(x, t)dx > νn(Br(y)).

Thus when n →∞, we find

lim
t→0

∫
Br(y)

u(x, t)dx = +∞,
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which means that y ∈ S. On the other hand, if we assume that y ∈ S, there
exists some r > 0 such that ν(Br(y)) < ∞. This implies that for any n ∈ N,

νn(Br(y)) 6 ν(Br(y)) < ∞.

Thus by Lemma 3.2, we have a uniform bound for um
n in L1((0, T )×Br(y)), and

thus also for up
n (this derives from (6.1)), so that in the limit, um and up will be

locally integrable near y. This proves that y /∈ S, and we reach a contradiction.
�

Lemma 6.2 Let 1 < m < p. Then for any νn = ρn ? ν as above, there exists a
solution un of (1.1) which takes on the initial trace νn.

Proof. Let us decompose ν as (S, µ), where S ⊂ RN is closed and µ is a Radon
measure on R = RN \ S. Then νn = ρn ? ν has the decomposition (Sn, µn),
where µn is smooth in Rn = RN \ Sn, and

Sn = {x ∈ RN : dist(x,S) 6 1/n}.

This small expansion of S allows us to construct the following initial data:

un,c(0, x) =


min{c;µn(x)} on Rn,

c on Sn,

0 otherwise,

which clearly converges monotonically to (Sn, µn) as c increases to +∞. Then
the associated sequence of solutions un,c will also converge monotonically and
locally uniformly to some function u, and monotonicity insures that the initial
trace of u is exactly (Sn, µn). �

Now we can define Pp as follows: for any ν ∈ B+(RN ), and νn = ρn ? ν, the
sequence un of Lemma 6.2 converges locally uniformly to some weak solution
u[ν] in RN × (0, T ). Thus setting

Pp(ν) = trRN (u[ν]),

we have the following theorem:

Theorem 6.3 For any p > m + 2/N , the operator Pp defined above satisfies
Pp(B+(RN )) = A+(RN ), and for any ν ∈ B+(RN ),

Pp(ν) = ν′ 6 ν.

Proof. We note ν = (S, µ), ν′ = (S ′, µ′) and test functions ϕ > 0, with
compact support in R. Let also νn = ρnν. Since

∫
ϕdνn remains bounded

(for n big enough), we get a bound for u in Lq
loc((RN \ S) × (0, T )), for any

1 < q < m + 2/N . Thus, in (6.1), we have convergence of u in L1
loc and Lm

loc of



Emmanuel Chasseigne & Juan Luis Vazquez 75

the same set. This proves first that S ′ ⊂ S, and moreover using Fatou’s Lemma
for the term ∫ t

0

∫
RN

up
nϕ,

one gets in the limit∫
RN

u(t)ϕ(t) +
∫ t

0

∫
RN

{−uϕt − um∆ϕ + upϕ} 6
∫

RN

ϕdν,

which proves that on RN \ S, trΩ(u) 6 ν. If p < m + 2/N , then the absorption
term also converges, and thus we pass to the limit with equality. The same
happens if we assume monotonicity, by monotone convergence of the absorption
term. The case when ϕ is not assumed to be nonnegative easily follows. �

6.2 Admissibility Sets

As we said in the introduction, in the super-critical case, the operator Pp is not
well-defined. However, we prove here that the sets of admissible initial data do
not increase with p in this range, and we give some properties of A+(p) further.

Let us recall [8, Sec. 4.2] that uniqueness holds for locally finite measures
also in the super-critical case. The proof was made under the assumption 1 <
m < p < m + 2/N , but the same arguments remain true if p is super-critical
with no adaptations needed. In fact, this was stated in the introduction of [8].
Uniqueness is not known so far for general Borel measures, but we refer to [7]
for further results.

Here is now the monotonicity property of the sets A+(p).

Theorem 6.4 Let m + 2/N 6 p < p′. Then A+(p′) ⊂ A+(p).

Proof. Let ν ∈ A(p′), where p′ > p, and v be the solution associated with
equation Ep′ . We would like to show that there exists a solution u of equation
Ep.
Let us first remark that using the same technique as in Theorem 5.3, we can
easily show that there exist some constants t0, c > 0 such that the function

w(x, τ) = (1− ct) · v(x, t),
dτ

dt
= (1− ct)1−m,

satisfies
wτ −∆wm + wp 6 0 in RN × (0, τ0),

where τ0 > 0 depends on t0 by the change of variable. Hence w is a sub-solution
of equation Ep in RN × (0, τ0), and remembering that the constants t0 and c
depend only on m, p, p′, we take n big enough so that 1/n < τ0.
Now let un be the solution of the following problem:

∂tun −∆um
n + up

n = 0 in QT ,

un(1/n) = w(1/n) in RN .
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It is well-known that un exists and is unique since w(1/n) is continuous in RN

(see [18] or [8]). Using the same arguments as in the previous Subsection, it is
clear that the un will converge (up to extraction) to a solution u such that

trRN (u) 6 ν.

But both un and v (thus w) are limits of regular solutions in RN × (1/n, T ),
and thus they can be compared in RN × (1/n, τ0), which gives that

un(x, τ) > w(x, τ) in RN × (1/n, τ0).

Thus in the limit,

u(x, τ) > w(x, τ) in RN × (0, τ0),

and this proves that the initial trace of u is controlled (from below) by w. Hence
we have necessarily

trRN (u) = ν,

so that ν ∈ A+(p), and the result is proved. �
We now give some qualitative properties for the sets A+(p) in the super-

critical range. The first result is a consequence Lemma 6.1, concerning monotone
convergence.

Lemma 6.5 Let p > m + 2/N , and νn be an increasing sequence of admissible
Borel measures such that µn converges in the sense of Borel measures to a
measure ν ∈ B+(RN ). Then ν ∈ A+(p), i.e., ν is also admissible.

Proof. Let ν = (S, µ) and un be the sequence associated with νn. Then un

converges monotonically and locally uniformly to a solution u of equation Ep.
By Lemma 6.1, we know that

trRN (u) 6 ν,

but here we can use monotone convergence instead of Fatou’s lemma in the
proof of Lemma 6.1, which gives that on RN \ S, the trace of u is exactly µ. It
remains to prove that u blows up on S. This is easy since for every open set U
such that U ∩ S 6= ∅, ∫

U

u(x, t)dx >
∫

U

un(x, t)dx,

and thus for every n ∈ N,

inf lim
t→0

∫
U

u(x, t)dx > νn(U ∩ S),

which blows up when n goes to infinity, because νn converges to +∞ on S. Thus
we have obtained that trRN (u) = ν, hence ν ∈ A+(p). �

Let us give now some basic examples of admissible measures, and admissible
singular sets (see definition just below).
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Definition. A closed set S ⊂ RN is said to be admissible as a singular set if
the measure ν = (S, 0) is admissible as initial data.

Proposition 6.6 Every closed ball of positive radius is admissible as a singular
set.

Proof. Let Br be such a ball, and χ be the characteristic function of this ball.
Let un be the unique solution of equation Ep with initial data

un(0) = n · χ.

Then un is not zero since χ is not zero almost everywhere, and it is increasing,
and by a direct application of Lemma 6.5, we obtain the result: un converges
to a solution u with initial trace +∞ · χ, which is thus an admissible data. Of
course, +∞ · χ is the Borel measure which is represented by

ν = (Br, 0),

hence the closed balls are admissible sets. �

Remarks. 1. If we want to do the same with a set of zero Lebesgue measure,
this method cannot work since un(0) = 0 almost everywhere, and then un ≡ 0.
In fact it is clear that in the super-critical case, the singular set has to be dense
enough to insure existence of a non trivial solution, since for instance a point is
not admissible as a singular set (non existence of the V.S.S.). Obviously, balls
are dense enough.
2. The same result holds true if we consider the Borel measure ν = (Br, µ),
where µ is an admissible Radon measure. The modification is the following: let
v be the solution of Ep with initial data µ. Then if we put

un(0) = n · χ + v(1/n),

it is obvious that un will converge locally uniformly to a solution u with initial
trace +∞ on Br, and to check that the initial trace is not lost on the complement
of Br, we use the fact that u > v (by construction), so that finally, trRN (u) = ν.
In the same spirit, one can easily prove the following results:

Proposition 6.7 Let S be a closed set in RN such that S is equal to the closure
of its interior. Then S is admissible as a singular set.

Proof. Let un be defined as in the case of a ball as the solution of Ep with
initial data

un(0) = n · χ,

where χ is the indicator function of int(S). In particular, for every y ∈ int(S),
there exists a ball By of positive Radius centered at y such that By ⊂ int(S),
and if χy is the indicator function of By,

un(0) > n · χy.
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Thus when n increases, un also increases to a limit solution u with initial trace
ν, and clearly for every y ∈ int(S),ν = +∞ on By. Then it is obvious that
the singular set of ν contains the closure of int(S), i.e. S itself. But on the
complement of S, it is also obvious that ν = 0, by using exactly the same
method as in Proposition 6.6 (or using directly Lemma 6.1). �

Theorem 6.8 Assume that ν = (S, µ), where µ ∈ A+(p) and S is admissible
as a singular set, i.e., there exists a solution VS of Ep such that

trRN (VS) = (S, 0).

Then ν ∈ A+(p).

Proof. Since µ is admissible, there exists a solution v with initial data µ, and
if we take the solution un of Ep with initial data

un(0) = VS(1/n) + v(1/n),

then obviously, un > max{VS ; v} on RN × (1/n, T ), so that un converges to a
limit solution u locally uniformly, and trRN (u) is exactly (S, µ). Indeed, it is
obvious that u will blow-up on S since it is greater than VS , and on the regular
set, there is no loss of initial trace because u > v, which takes on the initial
data µ. �

Remark. The Radon measure µ is defined on the complement of S, hence
it may not be a Radon measure in RN . Indeed, one may have µ(∂S) = +∞.
Hence in this result, we say that µ ∈ A+(p) if µ, extended by zero on S is a
Borel measure in RN which is admissible. Note also that by Lemma 6.5, we
know that if µ/K is admissible for every compact set K ⊂ RN \ S, then µ is
admissible.

Proposition 6.9 Let p > m + 2/N and µ ∈ A+(p), locally finite. Then for
every µ ∈ B+(RN ),

0 6 µ′ 6 µ ⇒ µ′ ∈ A+(p).

Proof. Let µ and µ′ as above (µ′ 6 µ implies that µ′ is also locally finite).
Since µ ∈ A+(p), here exists a solution u of Ep such that trRN (u) = µ, and by
the uniqueness result in [8, Sec. 4.2], recalled at the beginning of this section,
u is unique. Thus the solution u can be viewed as the limit of the un, where un

is the unique solution of Ep with initial data

µn = ρn ? µ,

ρn being a convolution kernel in RN . And if we call vn the solution with initial
data

µ′n = ρn ? µ′,
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then by construction, vn 6 un in QT , and vn will converge to a solution v of Ep.
The problem is to check that v takes on the initial data µ′, and to achieve this,
it is sufficient to prove that the sequence vn converges in Lp(0, T ;Lp

loc(RN )).
Indeed, in this case, we can pass to the limit in the following weak formulation:∫

RN

vn(t)ϕ−
∫ t

0

∫
RN

vm
n ∆ϕ +

∫ t

0

∫
RN

vp
nϕ =

∫
RN

ϕdµ′n,

which gives ∫
RN

v(t)ϕ−
∫ t

0

∫
RN

vm∆ϕ +
∫ t

0

∫
RN

vpϕ =
∫

RN

ϕdµ′,

hence trRN (v) = µ′. But since vn 6 un, it is sufficient to prove that the un

converge in Lp(0, T ;Lp
loc(RN )). So let us use the weak formulation for the un,

where ϕ ∈ C2(RN ), supp(ϕ(t)) ⊂ K fixed:∫
RN

un(t)ϕ−
∫ t

0

∫
RN

unϕt −
∫ t

0

∫
RN

um
n ∆ϕ +

∫ t

0

∫
RN

up
nϕ =

∫
RN

ϕdµn,

and in the limit, u is a solution with initial trace µ :∫
RN

u(t)ϕ−
∫ t

0

∫
RN

uϕt −
∫ t

0

∫
RN

um∆ϕ +
∫ t

0

∫
RN

upϕ =
∫

RN

ϕdµ.

Since un, um
n converge in L1(0, T ;L1

loc(RN )) (from equi-integrability given by
Lemma 3.2), then ∫ t

0

∫
RN

up
nϕ −→

n→∞

∫ t

0

∫
RN

upϕ. (6.2)

Then it is easy to see that un converges in Lp(0, T ;Lp
loc(RN )) : if we take ϕ > 0,∫ t

0

∫
RN

(up − up
n)+ϕ −→

n→∞
0

by dominated convergence, and combining this with (6.2), we obtain the same
for (up − up

n)−, which in turn implies the strong convergence:∫ t

0

∫
RN

|up − up
n|ϕ −→

n→∞
0.

Thus v is indeed a solution of Ep with initial data µ′ (and in fact it is unique),
hence µ′ ∈ A+(p). �

Remark. In this result, the restriction to Radon measures is essential. Indeed,
we have for instance (χ being the characteristic function of the ball B1(0)):

0 ∈ A+(p), δ0 6∈ A+(p), +∞ · χ ∈ A+(p),

although these measures are ordered.
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7 Adaptations to the Case Ω Bounded

We give below the adapations of our results to the case when equation (1.1) is
considered in QT = Ω × (0, T ), with Ω open, bounded and regular. Actually,
the main difference is the existence of the so-called Friendly Giant, which was
studied first by Dahlberg and Kenig [12] for the purely diffusive equation. We
will use the same definition of weak solution with zero boundary data: u ∈
C0(0, T ; C0(Ω)) ∩ L1

loc(0, T ;L1(Ω, δ)), where δ(x) = dist(x, ∂Ω), and for any
ϕ ∈ C0((0, T )× Ω), with compact support in some time interval I ⊂ (0, T ),∫∫

QT

{−uϕt − um∆ϕ + upϕ} = 0.

The limit of fundamental solutions in the range 0 6 p 6 m is thus the Friendly
Giant:

Theorem 7.1 Let Ω ⊂ RN be open, bounded, regular and 0 6 p 6 m. Then
the following limit holds:

vc → Vp locally uniformly in Ω× (0, T ),

where Vp is the so-called “Friendly Giant”, which has the following properties:
Vp takes on the initial trace ν = +∞ in Ω, Vp ∈ C0((0, T ) × Ω), Vp = 0 on
∂Ω× (0, T ).

Proof. It is clear by uniqueness of the vc’s we have comparison with the
Friendly Giant for ut = ∆um, that is:

vc(x, t) 6 t−
1

m−1 f(x),

where f satisfies −∆f − 1/(m − 1)f = 0 with zero boundary conditions on
∂Ω. This gives a universal bound up to the boundary, hence by equi-continuity
results [6], vc will converge in C0((0, T ) × Ω) to some Vp. Now, we are left
to show that the initial trace of Vp is +∞. We argue as in [9], with a little
modification. For k > 1, let Tk be the transformation

Tk(u)(x, t) = k1/(m−1)u(x, kt).

The set Ω is invariant under Tk, and Tk maps vc into a sub-solution with initial
data ck1/(m−1)δy. Indeed, since p 6 m and k > 1, we have

∂

∂t
Tk(vc)−∆Tk(vc)m + Tk(vc)p = km/(m−1)up − kp/(m−1)up 6 0.

By uniqueness results in Ω and zero lateral data, we know that vck1/(m−1) >
Tk(vc), and thus in the limit as c →∞, we obtain

Vp(x, t) > k1(m−1)Vp(x, kt).
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So taking k = t−1, which is greater than 1 for small t, it turns out that

Vp(x, t) > t−1/(m−1)Vp(x, 1).

In fact, it is clear by positivity properties that Vp(x, 1) > 0 at least on some
open set Bη(0) ⊂ Ω, which proves that the singular set of the initial trace of
Vp contains Bη(0). Now for any z ∈ Bη(0), we can easily prove by comparison
that for any c > 0,

Vp(x, t) > vc(x− y, t),

so that Vp(x, t) > Vp(x− y, t). Hence, the singular set of trΩ(Vp) contains also
B2η(0) ∩ Ω, and by induction, we deduce that finally trΩ(Vp) = Ω. �

The trace that we defined in RN is based on purely local arguments, so that
it is also valid in Ω bounded. Our solutions are clearly comparable with the
solutions of the diffusive equation ut = ∆um, so that by the results of [12], the
following result holds:

Theorem 7.2 If 0 6 p 6 m, the initial trace of any solution u 6≡ Vp in Ω is a
Radon measure µ in Ω which satisfies∫

Ω

dist(x, ∂Ω) dµ(x) < ∞

For 0 6 p 6 m, the operator Pp is constructed as in Ω = RN .

Theorem 7.3 Let 0 6 p 6 m. Then the operator Pp is a projection in B+(Ω),
i.e. Pp ◦ Pp = Pp. Moreover,

• Pp(ν) = ν if and only if ν is admissible, and then u[ν] is the unique solu-
tion with trace ν,

• Pp(ν) = +∞ if ν is not admissible and then u[ν] = Vp (the Friendly
Giant).

Therefore, for bounded Ω’s, we do not find any case of projection by complete
blow-up.

The situation for p > m is similar to the case Ω = RN . Actually, the
Friendly Giant gives a bound for t > 0, up to the boundary which allows to
pass to the limit up to the boundary. Thus the limits are still weak solutions
and the problem of the initial trace is exactly the same as for Ω = RN . Thus,
all the qualitative aspects of the sets A+(p) for p > m + 2/N remain valid in
Ω. It is important to notice that contrary to what happens in the fast diffusion
case (m < 1) [10], the initial Borel measure can have singular points at the
boundary.
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8 Some open problems and extensions

We list some of the questions that have not been solved in the preceding dis-
cussion.

• To characterize the admissibility set for 1 < p < m.

• The same in the super-critical case p > m + 2/N and to decide whether
there is a projection operator.

• To describe the domains for which there exists a friendly giant and the
results of the preceding section apply. For instance a domain bounded in
one direction behaves like a bounded domain.

• A more difficult question is to describe admissibility sets for solutions with
changing sign.

Concerning extensions to other equations, maybe the closest example is the
p-Laplacian equation with absorption

ut = ∇ · (|∇u|p−2∇u)− uq.

We refer to [3] for a partial study. The super-critical exponent is now qc =
p−1+p/N . Different types of nonlinear equations involving absorption, reaction
or convection terms come next to mind.
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