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A note on W 1,p estimates for quasilinear

parabolic equations ∗

Ireneo Peral & Fernando Soria

Abstract

This work deals with the study of the W 1,p regularity for the solutions
to parabolic equations in divergence form. An argument by perturbation
based in real analysis is used.

1 Introduction

In this paper we study interior W 1,p estimates for solutions to quasilinear
parabolic equations in divergence form, namely, solutions to the equation

ut − div a(x, t,∇u) = 0, x ∈ Ω, t > 0, (1.1)

where a : Ω× (0,∞)× RN → RN . We assume that a(x, t, ξ) is a Caratheodory
function (in the sense that it is measurable in (x, t) and continuous with respect
to ξ for each x) and that satisfies the following conditions:

(a1) a(x, t, 0) = 0

(a2) 〈a(x, t, ξ)− a(x, t, η), (ξ − η)〉 ≥ γ|ξ|2.

(a3) |a(x, t, η)| ≤ Γ|η|,

where γ and Γ are positive constants.
We will work under the following hypotheses.

(H1) (Reference operator.) For fixed a0 satisfying (a1)–(a3), we consider the
corresponding parabolic equation

wt − div(a0(∇w)) = 0 (1.2)

If u is a weak solution to (1.2) (see Definition 3.2 below) then there exists γ > 0
such that

sup
R′

|∇xu(x, t)|2 ≤ γ
1
|R|

∫
R

|∇xu(x, t)|2dx dt, (1.3)
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122 W 1,p estimates for quasilinear parabolic equations

for all parabolic rectangles

R =
{
(x, t) : |xi − x0

i | < ρ, i = 1, . . . N, t0 − ρ2 < t < t0
}
⊂ Ω,

where

R′ =
{
(x, t) : |xi − x0

i | <
ρ

2
, i = 1, . . . N, t0 − (

ρ

2
)2 < t < t0

}
.

(H2) (Approximation property.) The vector field a(x, t, ξ) is close to a0(ξ) in
the following sense:

|a(x, t, ξ)− a0(ξ)| ≤ ε |ξ|, (1.4)

uniformly in x and t.
The simplest example for a0(ξ) is just a0(ξ) = ξ, which corresponds to the

heat equation. A classical example for a is a(x, t, ξ) = A(x, t)ξ with A(x, t) a
bounded N ×N matrix such that

‖A(x, t)− IN×N‖∞ ≤ ε.

Even in the linear case, the results presented here seem to be new. We also
point out that more general situations can be considered by the method that
we develop. For simplicity, we restrict ourselves to the quadratic growth case.
With these hypotheses we will be able to show some sort of parabolic Meyers
type inequalities. More precisely we have the following main result.

Theorem 1.1 Let a be a vector field satisfying (a1)–(a3). Assume that (H1)
holds. Given p > 2 there exists ε0 > 0 such that if for some 0 < ε < ε0 (H2)
holds, then any weak solution to

ut − div(a(x, t,∇xu)) = 0,

satisfies that |∇xu| ∈ Lq
loc, 2 < q < p.

The idea is to estimate the level sets of ∇xu and obtain the required growth
of their measure to have the integrability property. To do that, we will use a
form of the Calderón-Zygmund covering result. For the elliptic case see [1].

2 Preliminary results

In this section we present some tools that will be used along the paper. First
of all we will prove the corresponding Calderón-Zygmund covering result and
explain the properties of the maximal operator which naturally arises in the
parabolic setting under study. To be systematic we will give a general Covering
Lemma that includes the particular case that we will need.
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The rectangle collection

For every k ∈ Z, let Bk denote a collection of rectangles satisfying the following
properties:

i) All the rectangles of Bk have the same side lengths.

ii) Any two distinct rectangles of Bk have disjoints interiors.

iii)
⋃
{R ∈ Bk} = RN

iv) If R ∈ Bk then R =
⋃
{R′ ∈ Bk−1|R′ ⊂ R}

v) If δk denotes the length of the diagonal of any R ∈ Bk then δk ≥ 2δk+1

Observe that given R ∈ Bk there exists a unique rectangle in Bk−1, its prede-
cessor which we denote by R∗ so that R ⊂ R∗.

With these properties in hand we have the following observations.

Lemma 2.1 Fix R0 ∈ Bk0 and 0 < δ < 1. Assume that A ⊂ R0 and that

0 < |A| < δ|R0|. Then, there exists a sequence {Rd} ⊂
∞⋃

k=k0

Bk such that:

1. |A \
⋃
d

Rd| = 0,

2. |A
⋂
Rd| ≥ δ|Rd|,

3. If Rd ⊂ R for some R ∈
∞⋃

k=k0

Bk, with R ⊂ R0, then |A
⋂
R| ≤ δ|R| (in

particular |A
⋂
R∗| ≤ δ|R∗|).

Proof. The proof goes via the usual stopping-time argument. Observe that
R0 does not satisfies 2) by hypothesis. We select all the rectangles in Bk0+1 for
which 2) holds.

If R′ ⊂ R0, R′ ∈ Bk0+1 has not been selected we consider the partition of
R′ by rectangles of Bk0+2 and we take those satisfying 2).

In this way and by induction, we obtain a maximal sequence {Rd} satisfying
2) and 3). We call BA =

⋃
Rd.

To see why {Rd} satisfies 1) too, we observe that if x ∈ R0\
⋃
{∂R : R ∈ BA}

then there exists a unique sequence {Rk(x)} so that

x ∈ Rk(x) ∈ Bk, ∀k ≥ k0.

Moreover, since diamRk(x) = δk ↓ 0 as k ↑ ∞, we obtain that from the Lebesgue
differentiation theorem,

lim
k→∞

|A
⋂
Rk(x)|

|Rk(x)|
= 1, a.e. x ∈ A.

In particular this says that A ⊂
⋃
Rd a.e. and, therefore, 1) holds. �
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Observe that the sequence {Rd} in Lemma 2.1, is given by maximal rectan-
gles in R0 for which property 2) holds. We will call this sequence the Calderón-
Zygmund covering of A. Note that given a rectangle Rk in a Calderón-Zygmund
covering of the set A, there exists a nested finite family of parabolic rectangles

R̃1
k ⊃ R̃2

k ⊃ · · · ⊃ R̃
r(k)
k ⊃ Rk,

for which
|R̃l

k ∩A| ≤ δ|R̃l
k|.

We say that R̃r(k)
k is the predecessor of Rk and for simplicity of notation we will

write R̃r(k)
k ≡ R̄k.

We give some applications of Lemma 2.1 that are relevant for this work.

Lemma 2.2 The maximal operator

Mf(x) = sup
x∈R∈

⋃
Bk

1
|R|

∫
R

|f |

is of weak type (1, 1).

The proof uses the Vitali covering lemma and the observation that if R,R′ ∈
B =

⋃
Bk and with their interiors with nonempty intersection, then either

R ⊂ R′ or R′ ⊂ R.

Lemma 2.3 Fix R0 ∈ B and 0 < δ < 1. Given A ⊂ B ⊂ R0 with the
properties,

a) |A| < δ|R0|,

b) If Rd is a rectangle in the Calderón-Zygmund decomposition of A (with
respect to R0 and δ), then R∗d ⊂ B,

we conclude that |A| ≤ δ|B|

Proof. Consider the sequence {R∗d} of predecessors of the C-Z covering of A
with respect to R0 and δ. Select a subsequence {R∗dl

} with disjoint interiors so
that ⋃

R∗dl
=

⋃
R∗d,

(a maximal subsequence). Then,

|A| =
∑

l

|A
⋂
R∗dl

| ≤ δ
∑

l

|R∗dl
| = δ|

⋃
R∗dl

| ≤ δ|B|.
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3 Approximations Results

Denote the open unit cube in RN+1 by Q0 = {(x, t) ∈ RN+1 ||xi| < 1, i =
1, 2, . . . , N, |t| < 1} and call Q+

0 = Q0 ∩ { t > 0 } and Q−0 = Q0 ∩ { t < 0 }. A
parabolic rectangle R is then the image of Q0 through any transformation in
RN+1 of the form

φα(x, t) = (x0 + αx, t0 + α2t), α > 0, (x0, t0) ∈ RN+1.

Let us consider the following dyadic subdivision: Given a parabolic rectangle R

i) Divide into 2 equal parts each spatial side.

ii) Divide into 22 equal parts the temporal side.

We call this procedure a parabolic subdivision. It is obvious that with this
procedure we obtain 2N+2 new parabolic subrectangles. Associated to this
subdivision we have the corresponding Calderón-Zygmund decomposition as in
the previous section.

Before we continue, some notation is in order. Given a parabolic rectangle

R = {(x, t) : |xi − x0
i | < ρ, i = 1, . . . N, t0 − ρ2 < t < t0}

we define the parabolic boundary of R as

∂pR = {(x, t) : |xi−x0
i | ≤ ρ, t0−ρ2 = t}∪{(x, t) : |xi−x0

i | = ρ, t0−ρ2 < t < t0}.

Example 3.1 In the case of the heat equation (the simplest model) we have
the following result by Moser [4]. Let w be a measurable function in Q0 such
that

(i) w(x, y) ≥ 0

(ii) wt,∇xw,w ∈ L2(Q0)

(iii) wt −∆w ≤ 0 in D′(Q0).

We call such w a positive subsolution of the heat equation.
According to the classical results by Moser in [4] we have that there exists a

positive constant γ such that if w is a positive subsolution to the heat equation
then

sup
R′

w2(x, t) ≤ γ
1
|R|

∫
R

w2(x, t)dx dt, (3.1)

where
R =

{
(x, t) : |xi − x0

i | < ρ, i = 1, . . . N, t0 − ρ2 < t < t0
}

and R′ = φ1/2(R), that is,

R′ =
{
(x, t) : |xi − x0

i | <
ρ

2
, i = 1, . . . N, t0 − (

ρ

2
)2 < t < t0

}
.
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We point out that if u is a solution to the heat equation then |∇xu|2 is also a
positive subsolution to the heat equation. Hence, by (2),

sup
R′

|∇xu(x, t)|2 ≤ γ
1
|R|

∫
R

|∇xu(x, t)|2dx dt, (3.2)

where R and R′ are parabolic rectangles related as above.

It is clear that hypothesis (H1) extends the previous Example.

Definition 3.2 We say that u ∈ L2(Q0), with ut,∇xu ∈ L2(Q0), is a weak
solution to the equation

ut − div
x

(a(x, t,∇xu)) = 0

if we have ∫
Q0

uψtdxdt+
∫

Q0

〈a(x, t,∇xu)∇ψ〉dx dt = 0,

for all ψ in W1,2
0 , the completion of C∞0 (Ω) with respect to the L2-norm of the

function and its gradient.

Lemma 3.3 Assume that (H1),(H2) hold. Let u be a weak solution to the
equation

ut − div x(A(x, t,∇xu) = 0, (3.3)

such that for R, a parabolic rectangle contained in Q0, u satisfies

1
|R|

∫
R

|∇xu|2dx dt ≤ µ.

If v is the solution to the problem

vt − div x(a0(∇v)) = 0, (x, t) ∈ R
v
∣∣
∂pR

= u,

then

1. 1
|R|

∫
R
|∇x(u− v)|2dx dt ≤ µε2

2. 1
|R|

∫
R
|∇xv|2dx dt ≤ µ(1 + ε)2
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Proof. Write R = Q× (T1, T2). Observe that

γ
1
|R|

∫
R

|∇(u− v)|2dx dt

≤ 1
|R|

∫
R

〈a0(∇u)− a0(∇v),∇(u− v)〉dx dt

≤ 1
|R|

∫
Q

|u(x, T2)− v(x, T2)|2dx

+
1
|R|

∫
R

〈a0(∇u)− a0(∇v),∇(u− v)〉dx dt

=
1
|R|

∫
R

[(u− v)t − (div xa0(∇u)− div xa0(∇v))] (u− v)dx dt

=
1
|R|

∫
R

(ut − div xa0(∇u))(u− v)dx dt

− 1
|R|

∫
R

(vt − div xa0(∇v))(u− v)dx dt

=
1
|R|

∫
R

[ut − div x(a(x, t,∇xu)](u− v)dx dt

+
1
|R|

∫
R

〈∇x(u− v), (a0(∇u)− a(x, t,∇xu))〉dx dt

≤ ε
1
|R|

( ∫
R

|∇x(u− v)|2dx dt
)1/2( ∫

R

|∇xu|2dx dt
)1/2

,

where we have used for the last inequality that u is a solution to equation (1.1),
condition (H2) and Cauchy-Schwarz inequality. We thus obtain (1). Now (2) is
an easy consequence of (1) since, in fact,( 1

|R|

∫
R

|∇xv|2dx dt
)1/2

=
( 1
|R|

∫
R

|∇x(u+ (v − u))|2dx dt
)1/2

≤
( 1
|R|

∫
R

[|∇xu|2dx dt
)1/2

+
( 1
|R|

∫
R

|∇x(v − u))|2dx dt
)1/2

≤ (1 + ε)µ1/2.

�
We will now introduce the (dyadic) parabolic maximal operator, defined for

f ∈ L1
loc by

Mf(x) = sup
x∈R

1
|R|

∫
R

|f(y)|dy,

where the supremum is taken over all parabolic rectangles R containing x ∈
RN+1. Taking into account that RN+1 is a homogeneous space with respect to
the seminorm

d(x, t) = max{|xi|, |t|1/2, i = 1, 2 . . . N},
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more precisely that
|φ2(R)| ≤ 2N+2|R|,

we have that M is of weak type (1, 1) as a consequence of the usual Besicovich
covering lemma. The following result is the main ingredient in Theorem 1.1
below.

Lemma 3.4 Assume that u is a weak solution to

ut − div x(a(x, t,∇xu)) = 0, in Q0.

Then, there exists a constant C > 1 so that for 0 < δ < 1 fixed, one can find
ε0 = ε0(δ) > 0 such that if (H2) holds with ε < ε0, for all parabolic rectangle Rk

in the Calderón-Zygmund δ-covering of

{(x, t) ∈ RN+1 : M(|∇xu|2)(x, t) > Cµ},

then its predecessor satisfies

R̄k ⊂ {(x, t) : M(|∇xu|2)(x, t) > µ}.

In particular, we have

|{(x, t) ∈ RN+1 : M(|∇xu|2)(x, t) > Cµ}| ≤ |{(x, t) : M(|∇xu|2)(x, t) > µ}|.

Proof. The proof is similar to Lemma 3 in [1] and we sketch it here for the
sake of completeness. Since we look for a local result, we can assume that a
parabolic dilation of Rk is contained in Q0, to be more precise, let us assume,
say, that Q = φ4(Rk) ⊂ Q0. We argue by contradiction. If Rk satisfies the
hypothesis, namely,

|Rk ∩ {x : M(|∇xu|2) > Cµ}| > δ|Rk|

and R̄k does not satisfy the conclusion, there exists (x0, t0) ∈ R̄k for which,

1
|R|

∫
R

|∇xu|2dx dt ≤ µ, for all parabolic rectangles Rwith (x0, t0) ∈ R.

We solve the problem

vt − div x(a0(∇v)) = 0, (x, t) ∈ Q0

v
∣∣
∂pQ0

= u.

Then, according to Lemma 3.3 we get:

1. 1
|Q|

∫
Q
|∇xv|2dx dt ≤ (1 + ε)2µ

2. 1
|Q|

∫
Q
|∇x(u− v)|2dx dt ≤ ε2µ
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Then the restricted maximal operator,

M∗(|∇xu|2)(x, t) = sup
x∈R, R⊂φ2(Rk)

1
|R|

∫
R

|∇xu|2dyds,

satisfies
M(|∇xu|2)(x, t) ≤ max{M∗(|∇xu|2)(x, t), 4N+2µ}.

Consider C = max{4N+2, 4(1 + ε)2}. Then

|{(x, t) ∈ Rk : M(|∇xu|2) > Cµ}|

≤ |{(x, t) ∈ Rk : M∗(|∇xu|2) > C
µ

2
}|

+|{(x, t) ∈ Rk : M∗(|∇x(u− v)|2) > C
µ

2
}|

≤ |{(x, t) ∈ Rk : M∗(|∇x(u− v)|2) > C
µ

2
}|.

By the (1,1) weak type estimate for the maximal operator we conclude

|{x ∈ Rk : M(|∇xu|2) > Cµ}| ≤ |{x ∈ Rk : M∗(|∇x(u− v)|2) > C
µ

2
}|

≤ A
2
Cµ

∫
Rk

|∇x(u− v)|2dx dt

≤ A
2
Cµ

ε2|Rk|.

Taking ε > 0 so that A 2
Cµε

2 < δ we reach a contradiction. �

4 Proof of the main result

As a consequence of the approximation Lemma 3.3 and the behavior of the
level sets of the maximal operator described in Lemma 3.4 we can formulate the
following regularity result.

Theorem 4.1 Assume that (H1) holds. Given p > 2 there exists ε0 > 0 such
that if for some 0 < ε < ε0, (H2) holds, then any weak solution to

ut − div(A(x, t)∇xu) = 0,

satisfies that |∇xu| ∈ Lq
loc, 2 < q < p.

Proof. For s > 0, call ω(s) = |{(x, t) : M(|∇xu|2(x, t) > s}|, the distribution
function of the maximal operator. Take δ ∈ (0, 1) in such a way that Cq/2δ < 1,
where C is as in Lemma 3.4. Now, there exists ε0, such that if 0 < ε < ε0 and
(H2) holds, then Lemmas 3.4 and 2.3 imply

ω(Cµ0) ≤ δω(µ0).
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Hence by recurrence
ω(Ckµ0) ≤ δkω(µ0). (4.1)

Now |∇xu|q ∈ L1 if, in particular, M(|∇xu|2) ∈ Lq/2, and this is equivalent to
the convergence of the series

∞∑
k=1

Ck(q/2)ω(Ckµ0).

But, Cq/2δ < 1 and from estimate (7) we obtain

∞∑
k=1

Ck(q/2)ω(Ckµ0) ≤
∞∑

k=1

(Cq/2δ)kω(µ0) <∞

�

Corollary 4.2 Assume A(x, t) a N ×N matrix which is continuous in Ω and
such that

〈A(x, t)ξ, ξ〉 ≥ γ|ξ|2.

Then if u is a weak solution to

ut − div x(A(x, t)∇xu) = 0,

we have u ∈W 1,p
loc for all 1 < p <∞.

Proof. As reference equation we take the heat equation. The hypothesis (H2)
is obtained easily by an orthogonal change of variables in RN and our assump-
tions on the continuity of A. �

By the same method we are able to get estimates for equations that are close
to the p-Laplacian. For estimates to ut − div(|∇u|p−2∇u) see [2].
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