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Singular p-harmonic functions and related

quasilinear equations on manifolds ∗

Laurent Véron

Abstract

We give here an overview of some recent developments in the study of
the description of singular solutions of

−∇.(|∇u|p−2∇u) + ε|u|q−1u = 0

in RN \ {0}, where p > 1, ε ∈ {0, 1,−1} and q ≥ p− 1.

1 Introduction

Let Ω be a domain in RN containing 0, N ≥ 2, and let

A : Ω× R× RN 7→ RN , and B : Ω× R× RN 7→ R,

be two Caratheodory functions. Then a classical problem is the study of the
behaviour near 0 of a solution u of

−∇.A(x, u,∇u) +B(x, u,∇u) = 0 (1.1)

in Ω∗ = Ω \ {0}. Besides the well known linear case, the first striking results
in the nonlinear case were obtained by Serrin in 1964 in a series of celebrated
articles [11, 12]. Under the assumptions

(i) A(x, r,Q).Q ≥ c1|Q|p

(ii) |A(x, r,Q)| ≤ c2|Q|p−1 + c3 (1.2)

(iii) |B(x, r,Q)| ≤ c4|Q|p−1 + c5|r|p−1 + c6

for any (x, r,Q) ∈ Ω × R × RN 7→ RN , where the ci are positive constants
and N ≥ p > 1. Serrin’s results assert that any nonnegative weak solution u
of (1.1) in Ω∗ belonging to W 1,p

loc (Ω∗) is either extendable by continuity as a
C(Ω) ∩W 1,p

loc (Ω)-solution of the same equation in whole Ω, or satisfies

θ ≤ u(x)
µp(x)

≤ θ−1, (1.3)
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134 Singularities and quasilinear equations on manifolds

near 0, for some positive θ, in which formula the functions µp are defined in
RN \ {0} by

µp(x) =

{
|x|(p−N)/(p−1) if 1 < p < N,

ln(1/|x|) if p = N.
(1.4)

A series of extensions were obtained in the eighties in the case

A(x, r,Q) = |Q|p−2
Q,

where the diffusion operator ∇.A(x, u,∇u) is called the p-Laplace: by Kichenas-
samy and Véron [9] in the case B(x, r,Q) ≡ 0; Vazquez and Véron [17], Friedman
and Véron [5] in the case B(x, r,Q) = |r|q−1

r with q > p−1; Guedda and Véron
[7], Bidaut-Véron [1], Serrin and Zou [13] in the case B(x, r,Q) = −|r|q−1

r, al-
ways in assuming q > p− 1. We shall present below an overview or the results
of these different authors, writing the equation (1.1) in the form

−∇.(|∇u|p−2∇u) + ε|u|q−1
u = 0, (1.5)

with ε = 1,−1 or 0. We put emphasis on separable solutions that are solutions
of the form

u(r, σ) = r−βω(σ), (r, σ) ∈ (0,∞)× SN−1.

Thus β = βq = p/(q + 1− p) and the relation

−∇σ.
(
(ω2 + |∇σω|2)p/2−1∇σω

)
+ ε|ω|q−1

ω

= βq((βq + 1)(p− 1) + 1−N)(ω2 + |∇σω|2)p/2−1ω,

holds on SN−1. This equation is not the usual Euler equation of a functional,
which makes it more difficult study. However, we give a few results of existence
and uniqueness of solutions.

2 Singular p-harmonic functions

By looking for radial solutions of the p-Laplace equation

−∇.(|∇u|p−2∇u) = 0, (2.1)

in RN \ {(0)}, we find that the only solutions are the functions

u = C1µp + C2

where the Ci are arbitrary constants.The first result obtained by Kichenassamy
and Véron in [9] pointed out that any nonnegative singular p-hamonic functions
is asymptotically radial near its singularities. They proved the following result.
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Theorem 2.1 Assume 1 < p ≤ N and u ∈ W 1,p
loc (Ω∗) is nonnegative and

satisfies (2.1) in Ω∗. Then there exists γ ∈ R+ such that

u− γµp ∈ L∞loc(Ω). (2.2)

Moreover
lim
x→0

|x|(N−1)/(p−1)∇(u− γµp)(x) = 0, (2.3)

and the following equation holds in the sense of distributions in Ω

−∇.(|∇u|p−2∇u) = cN,pγ
p−1δ0, (2.4)

for some positive constant cN,p.

The proof is based on the a priori estimate

u(x) ≤ Cµp(x)

for 0 < |x| ≤ R, for some C > 0 and R > 0 (this follows from Serrin’s result),
the scaling transformation

Tr(u)(ξ) = u(rξ)/µ(r)

and a version of the strong maximum principle which was first noticed by Tolks-
dorff [14]. Actually, the positivity assumption can be relaxed and replaced by

u/µp ∈ L∞(BR), (2.5)

since Serrin’s result asserts that any nonnegative singular p-harmonic function
does satisfy this estimate. As a consequence, existence and uniqueness of a
solution to the singular Dirichlet problem

−∇.(|∇u|p−2∇u) = cN,p|γ|p−2γδ0, in D′(Ω),
u = g, on ∂Ω,

(2.6)

can be proved.

Corollary 2.2 Assume 1 < p ≤ N , Ω is bounded with a C2 boundary, g ∈
L∞(∂Ω) ∩W 1−1/p,p(∂Ω) and γ ∈ R. Then there exists a unique u ∈ C1(Ω∗)
such that |∇u|p−1 ∈ L1(Ω) satisfying (2.6) and (2.5). Moreover (2.2) and (2.3)
hold.

Another consequence is the following singular Liouville type result.

Corollary 2.3 Assume 1 < p ≤ N , and u ∈ C1(RN \ {0}) is p-harmonic in
RN \ {0} and satisfies |u(x)| ≤ a|µp(x)| + b, for some positive constants a and
b. Then there exist two real numbers α and β such that

u = αµp + β.
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If we look for singular p-harmonic functions u in RN \ {0} under the form

u(x) = |x|−β
ω(x/|x|) = r−βω(σ), (2.7)

where (r, σ) ∈ (0,∞)× SN−1 are the spherical coordinates, then

−∇σ.
(
(β2ω2 + |∇σω|2)(p−2)/2∇σω

)
= λ(β2ω2 + |∇σω|2)(p−2)/2ω, (2.8)

where ∇σ. is the divergence operator acting on C1 vector fields on the unit (N-
1)-sphere SN−1 and ∇σ is the tangential gradient, identified with the covariant
derivative on SN−1 for the Riemannian structure induced by the imbedding of
SN−1 into RN , and

λ = β((β + 1)(p− 1) + 1−N).

When N = 2 and ω(x/|x|) = ω(ϕ) is a 2π- periodic function, equation (2.7)
becomes(

(β2ω2 +ω2
ϕ)(p−2)/2ωϕ

)
ϕ

+((β+1)(p−1)−1)β(β2ω2 +ω2
ϕ)(p−2)/2ω = 0. (2.9)

Putting Y = ωϕ/ω, and β0 = (2− p)/(p− 1) yields to( β

Y 2 + β2
− β + 1
Y 2 + β(β − β0)

)
Yϕ = 1.

This equation is completely integrable [9], and the following result is proved.

Theorem 2.4 Assume p > 1, then for each positive integer k there exist a βk

and ωk : R 7→ R with least period 2π/k, of class C∞ such that

u(x) = |x|−βkωk(x/|x|), (2.10)

is p-harmonic in R2 \ {0}; βk is the positive root of

(β + 1)2 = (1 + 1/k)2
(
β2 + β(p− 2)/(p− 1)

)
. (2.11)

The couple (βk, ωk) is unique, up to translation and homothety over ωk.

In the case of regular p-harmonic functions in the plane, which means that
the exponent β = −β̃ in (2.7) is negative, the stationary equation becomes(

(β̃2ω̃2+ω̃2
ϕ)(p−2)/2ω̃ϕ

)
ϕ

+((β̃−1)(p−1)−1)β̃(β̃2ω̃2+ω̃2
ϕ)(p−2)/2ω̃ = 0. (2.12)

Kroll and Mazja [8] obtained the complete set of solutions of (2.12):

Theorem 2.5 For each positive integer k there exists a couple (β̃k, ω̃k), unique
up to translation and homothety over ω̃k such that

x 7→ u(x) = |x|β̃k ω̃k(x/|x|), (2.13)

is p-harmonic in R2. The exponent β̃k is the root larger than 1 of the algebraic
equation

(β̃ − 1)2 = (1− 1/k)2
(
β̃2 − β̃(p− 2)/(p− 1)

)
. (2.14)
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The derivation of regular or singular p-harmonic functions follows in higher
dimension under a splitted form. For example, if N = 3 with (x1, x2, x3) the
canonical coordinates in R3, we put

x1 = r cosϕ sin θ, x2 = r sinϕ sin θ, x3 = r cos θ,

where r > 0, ϕ ∈ [0, 2π], θ ∈ [0, π]. Equation (2.8) takes the form

− ∂

∂θ

(
sin θ

(
β2ω2 + ω2

θ + sin−2 θ ω2
ϕ

)(p−2)/2
ωθ

)
− ∂

∂ϕ

(
sin−1 θ

(
β2ω2 + ω2

θ + sin−2 θ ω2
ϕ

)(p−2)/2
ωϕ

)
=β(β(p− 1) + p− 3) sin θ

(
β2ω2 + ω2

θ + sin−2 θ ω2
ϕ

)(p−2)/2
ω.

(2.15)

We set
ω(ϕ, θ) = sin−β θ v(ϕ) = sinβ̃ θ v(ϕ),

then v satisfies (2.12). Thanks to Theorem 2.5 the set of singular (resp. regular)
p-harmonic functions under the form

u(r, ϕ, θ) = r−β sin−β θ v(ϕ),

resp.
u(r, ϕ, θ) = rβ̃ sinβ̃ θ v(ϕ),

is explicitly known. Another way for constructing non-isotropic singular p-
harmonic functions is to use Tolksdorf’s shooting method [14].

Theorem 2.6 Let S ⊂ SN−1 be a connected and open, with a C2 relative
boundary ∂S. Then there exist a unique couple (β, ω), with β > 0, ω ∈ C1(S),
ω > 0 in S, vanishing on ∂S, with maximal value 1 such that the function u
defined by (2.7) is p-harmonic in RN \ {0}.

Proof Put KS(R,R′) = {(r, σ) : σ ∈ S, R < r < R′} and BS(R,R′) =
{(r, σ) : σ ∈ ∂S, R < r < R′}. Let g be defined by

g(x) =

{
2− |x| if |x| ≤ 2,
0 if |x| ≥ 2.

For n ≥ 2 we denote by un the unique solution of

−∇.(|∇un|p−2∇un) = 0 in KS(1, n),
un = g on BS(1, n).

Since Hopf maximum principle holds [14], un is positive in KS(1, n). The se-
quence {un} is increasing and locally bounded in the C1,α

loc topology of KS(1,∞).



138 Singularities and quasilinear equations on manifolds

Thus it converges in C1
loc(KS(1,∞) to some u which is positive and satisfies

−∇.(|∇u|p−2∇u) = 0 in KS(1,∞),
u = g on BS(1,∞),

lim
|x|→∞

u(x) = 0.
(2.16)

The function
R 7→ C(R) = sup

x∈KS(1,∞)

u(x)

is decreasing and the supremum is achieved for |x| = R. One of the key idea is
called the equivalence principle [14, Lemma 2.1], Lemma 2.1, which asserts that

u(Rx) ≤ (1− ε(R− 1))u(x), (2.17)

for some ε > 0 and any R ∈ (1, 2). Thus there exists k > 0 such that C(R) ≤
kC(2R) for any R ≥ 3. Then

|∇u(x)| ≤ C(|x|)|x|−1
, and |∇u(x)−∇u(x′)| ≤ C(|x|)|x|−1−α|x− x′|α,

for some C > 0 and 1 ≤ |x| ≤ |x′|. Putting

uR(x) = u(Rx)/C(R),

it follows that for any compact subset K ofKS(0,∞)\{0} there exists C(K) > 0
such that

‖uR‖C1,α(K) ≤ C(K).

Thus there exist a sequence Rn →∞ and a p-harmonic function u∗ in KS(0,∞)
such that uRn

→ u∗ in the C1
loc topology of KS(0,∞) \ {0}. Moreover u∗ > 0,

and ∇u∗ 6= 0 because of (2.17).
In order to prove that there exists β > 0 such that

u∗(r, σ) = r−βu∗(1, σ), (2.18)

we define

ΣR = sup
{
C > 0 : Cu∗(x) ≤ u∗(Rx), ∀x ∈ KS(0,∞) \ {0}

}
.

Note that ΣR exists because of (2.17). If we assume now that the equality

ΣRu
∗(x) = u∗(Rx), (2.19)

does not hold in KS(0,∞), then

ΣRu
∗(x) < u∗(Rx), (2.20)

from the strong maximum principle and Hopf lemma. Thus the function

θ(ρ) = min
|x|=ρ

u∗(Rx)/u∗(x),
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is strictly monotone and either (i) limρ→∞ θ(ρ) = ΣR, or
(ii) limρ→0 θ(ρ) = ΣR.

The treatment of the two cases is similar, then we assume (i). For any ρ,
there exists σρ ∈ S such that

θ(ρ) = u∗(Rρσρ)/u∗(ρσρ).

We can extract a sequence {Rnk
} such that lim

nk→∞
Rnk

/Rnk+1 = 0. Thus we set

ρnk
= Rnk

/Rnk+1 and assume that σρnk
→ σ0 ∈ S̄, by compactness. Because

lim
nk→∞

θ(ρnk
) = lim

nk→∞

C(Rnk+1)u(Rnk+1Rσnk
)

C(Rnk+1R)u(Rnk+1σnk
)
,

it implies
ΣR = u∗(R, σ0) < u∗(1, σ0), (2.21)

which contradicts (2.20).
The last point is to prove that

ΣR = R−β (2.22)

for some β > 0. Clearly R 7→ ΣR is C1 (as u∗) and decreases. For k ∈ N∗ there
holds

ΣRku∗(x) = u∗(Rkx) = (ΣR)ku∗(x).

Then ΣRk = (ΣR)k. Consequently, for any m ∈ N∗, ΣRk/m = (ΣR)k/m, and
finally

ΣRα = (ΣR)α,

for any positive α. A straightforward consequence is that (2.22) holds for some
β > 0. If we set

ω(σ) = u∗(1, σ), (2.23)

then ω satisfies (2.8) in S, where it is positive, and vanishes on ∂S.
Uniqueness of the couple (β, ω) with supS ω = 1 follows from the equivalence

principle.

Remark Although the extension is far from being obvious, the regularity re-
quirement on the domain S can be relaxed. It is possible to replace it by the
assumption that ∂S is piecewise smooth. In dimension 3, Hopf lemma at a cor-
ner is replaced by an expansion in terms of conical functions as in Theorem 2.6.
In higher dimension the proof goes by induction. However, uniqueness of the
couple (β, ω) is not clear. From this observation, we can construct p-harmonic
functions in RN \ {0} under the form (2.7) with a finite symmetry group G
generated by reflections through hyperplanes. Taking S to be a fundamental
simplicial domain of G, we construct (β, ω) in S and then extend ω to the whole
sphere by reflections through the edges.

It is natural to imbed this problem in a more general setting, by replac-
ing (SN−1, g0) by a compact and complete d-dimensional Riemannian manifold
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(M, g). Let ∇g. and ∇g be respectively the divergence operator acting on vector
fields on M and the gradient operator. For β ∈ R consider the equation

−∇g.
(
(β2ψ2 + |∇gψ|2)(p−2)/2∇gψ

)
= β((β + 1)(p− 1)− d)(β2ψ2 + |∇gψ|2)(p−2)/2ψ. (2.24)

Definition We denote by Sp(M) the set of couples (β, ψ) ∈ R × C1(M)
satisfying (2.24) and call it the p-quasi-spectrum of M .

Theorem 2.7 If (β, ψ) ∈ Sp(M), then either β((β + 1)(p− 1)− d) = 0 and ψ
is any constant, or β((β + 1)(p− 1)− d) > 0 and∫

M

(β2ψ2 + |∇gψ|2)(p−2)/2ψdvg = 0. (2.25)

Proof From (2.24),

β((β + 1)(p− 1)− d)
∫

M

(β2ψ2 + |∇gψ|2)(p−2)/2ψdvg = 0. (2.26)

Thus if the integral term is not zero β((β+ 1)(p− 1)− d) = 0. Clearly if β = 0,
ψ is a constant. If β 6= 0, (β + 1)(p− 1) = d and from (2.24) there holds

−∇g.
(
(β2ψ2 + |∇gψ|2)(p−2)/2∇gψ

)
= 0,

which implies ∫
M

(
β2ψ2 + |∇gψ|2

)(p−2)/2 |∇gψ|2dvg = 0.

Thus ψ is constant. Moreover if β((β+ 1)(p− 1)− d) = 0 any constant satisfies
(2.24). Assume now that β((β+1)(p−1)−d) 6= 0. Then (2.25) holds. Moreover∫

M

(
β2ψ2 + |∇gψ|2

)(p−2)/2 |∇gψ|2dvg

= β((β + 1)(p− 1)− d)
∫

M

(β2ψ2 + |∇gψ|2)(p−2)/2ψ2dvg, (2.27)

and the inequality β((β + 1)(p− 1)− d) > 0 follows.

Remark It should be interesting to study the links between Sp(M) and the
geometry of M , in particular the infimum of the β((β + 1)(p − 1 − d). Since
we conjectured that the set of such β is unbounded, as on the sphere, their
asymptotic distribution could be of interest. In the particular case where p =
d+ 1, the (d+ 1)-quasi-spectrum of M is the set of couples (β, ψ) such that ψ
is a solution of

−∇g.
(
(β2ψ2 + |∇gψ|2)(d−1)/2∇gψ

)
= dβ2(β2ψ2 + |∇gψ|2)(d−1)/2ψ. (2.28)

As in the case p = 2, it should be interesting to study the invariance properties
of Sd+1(M) with respect to the conformal transformations of M .
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3 Equations with strong absorption

In this section we assume N ≥ p > 1 and q > p−1. If we look for solutions u of
(1.5) with ε = 1 under the form (2.7) then β = p/(q + 1− p) = βq and ω solves

−∇σ.
(
(β2

qω
2 + |∇σω|2)(p−2)/2∇σω

)
+ |ω|q−1

ω = λq(β2
qω

2 + |∇σω|2)(p−2)/2ω,

(3.1)
in SN−1, where

λq = βq((βq + 1)(p− 1) + 1−N) =
( p

q + 1− p

)( pq

q + 1− p
−N

)
. (3.2)

Since ∫
SN−1

(
(β2

qω
2 + |∇σω|2)(p−2)/2

(
|∇σω|2 − λqω

2
)

+ |ω|q+1
)
dσ = 0,

there is no solution if λq ≤ 0 or equivalently if q ≥ N(p− 1)/(N − p). This fact
corresponds to a removability result which was proved by Vazquez and Véron
[17].

Theorem 3.1 Let Ω be an open subset of RNcontaining 0, Ω∗ = Ω \ {0},
N > p > 1, q ≥ N(p− 1)/(N − p) = p# and g a continuous real valued function
satisfying

lim inf
r→∞

r−p#
g(r) > 0, and lim sup

r→−∞
|r|−p#

g(r) < 0. (3.3)

If u ∈ C(Ω∗) ∩W 1,p
loc (Ω∗) is a weak solution of

−∇.
(
|∇u|p−2∇u

)
+ g(u) = 0, in Ω∗, (3.4)

it can be extended to Ω as a continuous solution of the same equation in whole
Ω.

On the contrary, if p− 1 < q < p#, the function

x 7→ us(x) = γN,p,q|x|−βq , (3.5)

with

γN,p,q =
(( p

q + 1− p

)p−1( pq

q + 1− p
−N

))1/(q+1−p)

, (3.6)

is a singular solution of

−∇.(|∇u|p−2∇u) + |u|q−1
u = 0. (3.7)

in RN \ {0}. Friedman and Véron provided in [5] a full classification of singular
nonnegative solutions of this equation.
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Theorem 3.2 Let Ω be an open subset of RNcontaining 0, Ω∗ = Ω \ {0},
N ≥ p > 1, and p − 1 < q < p#, p − 1 < q if p = N . If u ∈ C1(Ω∗) is a
nonnegative solution of (3.7) in Ω∗, the following dichotomy occurs.

(i) Either lim
x→0

|x|βqu(x) = γN,p,q.

(ii) Either there exists γ > 0 such that lim
x→0

u(x)/µp(x) = γ, and u satisfies

−∇.(|∇u|p−2∇u) + |u|q−1
u = cN,p|γ|p−2γδ0, in D′(Ω). (3.8)

(iii) Or u can be extended to whole Ω as a C1 solution of (3.7) in Ω.

Proof By scaling we can always assume that B1 ⊂ Ω. The starting point is
an a priori estimate of Keller-Osserman type due to Vazquez [16]: if u is any
solution of (3.7) in B∗1 = {x ∈ RN : 0 < |x| < 1}, there exists a positive
constant K = KN,p,q such that

|u(x)| ≤ K|x|−βq , (3.9)

for any 0 < |x| ≤ 1/2. By writting (3.7) under the form

−∇.(|∇u|p−2∇u) + d(x)up−1 = 0,

with d(x) = uq+1−p, and using the Trudinger’s estimate [15] in Harnack in-
equality, it follows that there exists some A = A(N, p, q) > 0 such that

max
|x|=r

u(x) ≤ A min
|x|=r

u(x),

for any 0 < r ≤ 1/4.

Step 1 Assume that u(x)/µp(x) is not bounded in a neighborhood of 0. The
previous estimate implies that there exists a sequence rn → 0 such that

lim
rn→0

min
|x|=rn

u(x)/µp(rn) = ∞.

Consequently, for any k > 0 there exists some nk such that for n ≥ nk the
function u is bounded from below in B̄1 \Brn

by the solution vn of the Dirichlet
problem

−∇.(|∇vn|p−2∇vn) + |v|nq−1
vn = 0, in B1 \ B̄rn

,

vn(x) = 0 if |x| = 1,
vn(x) = kµp(rn) if |x| = rn.

(3.10)

Note that vn is positive, radial and bounded from above by kµp(x). Since q < p#

the absorption term vq
n satisfies∫ 1

rn

vq
nr

N−1dr ≤ kq

∫ 1

0

µq
p(r)

qrN−1dr,
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independently of n. This is sufficient to derive that there exists

lim
rn→0

vn = v,

where v = v(k) is a radial solution of

−∇.(|∇v|p−2∇v) + |v|q−1
v = 0, in B1 \ {0},

v(x) = 0 if |x| = 1,
v(x) ≈ kµp(x) if |x| → 0.

(3.11)

Actually, v is nonnegative, radial, bounded from above by u and solves

−∇.(|∇v|p−2∇v) + vq = cN,pk
p−1δ0, in D′(B1). (3.12)

When k → ∞, v(k) increases and converges to some v(∞) which is a positive
and radial solution of (3.7) in B∗1 such that

lim
r→0

v(∞)(r)/µp(r) = ∞. (3.13)

Moreover
v(∞)(|x|) ≤ u(x) ≤ us(x) = γN,p,q|x|−βq in B∗1 . (3.14)

The analysis of the behavior of v(∞) near r = 0 is done either by a technical
O.D.E. analysis, or a scaling invariance method based on uniqueness of the
radial solution of (3.11) (see [4] for a proof in the case p = 2). From this
analysis follows

lim
r→0

rβqv(∞)(r) = γN,p,q. (3.15)

Consequently
lim
x→0

|x|βqu(x) = γN,p,q. (3.16)

Step 2 Assume that u(x)/µp(x) is bounded near 0 (in this case, we need
not impose the positivity of u). In such a case the absorption term |u|q−1

u
is dominated by Cµq

p for some C > 0. By using the same scaling methods,
estimates on ∇u, and the strict comparison principle as in the proof of Theorem
2.1, it can be proved that there exists a real number γ such that

lim
x→0

u(x)/µp(x) = γ, (3.17)

and
lim
x→0

(|x|)(N−1)/(p−1)∇ (u(x)− γµp(x)) = 0. (3.18)

Thus u satisfies (3.8). If γ = 0, then

|u(x)| ≤ max
|y|=1

|u(y)|, ∀x ∈ B1,

by the maximum principle. Thus u is C1,α by the regularity theory of quasilinear
equations. �

The construction of nodal singular solutions of (3.7) under the form (2.7) is
done by a shooting technique, as for the p-Laplace equation.
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Theorem 3.3 Let 0 < p − 1 < q < p# and S ⊂ SN−1 be a domain with a C2

relative boundary ∂S. Let β = βS > 0 be the exponent defined in Theorem 2.6.
If βq > βS there exists a positive solution ω of (3.1) in S which vanishes on ∂S.

Proof: Step 1 Construction of an approximate solution. For ε > 0 small
enough denote by u = uε the unique solution of

−∇.
(
|∇u|p−2∇u

)
+ |u|q−1

u = 0, in KS(1,∞),

u = εgβq , on ∂KS(1,∞),

lim sup
|x|→∞

|x|βqu(x) <∞.

(3.19)

By the monotone operator theory, u is unique and satisfies 0 ≤ u < us.

Step 2 Construction of a minorant subsolution. Let ω = ωS be the corre-
sponding second element of the couple (β, ω) = (βS , ωS) obtained in Theorem
2.6. Put θ = βq/βS . We claim that for δ > 0 small enough, the function

(r, σ) 7→ wδ(x) = wδ(r, σ) = r−βqδωθ
S(σ) (3.20)

satisfies

−∇.
(
|∇wδ|p−2∇wδ

)
+ |wδ|q−1

wδ ≤ 0, in KS(1,∞),

wδ = 0, on BS(1,∞).
(3.21)

Set
Lwδ = −∇.

(
|∇wδ|p−2∇wδ

)
+ |wδ|q−1

wδ.

Then L(wδ) = r−qβqT (δωθ
S), where

T (η) = −∇σ.
(
(β2

qη
2 + |∇ση|2)(p−2)/2∇ση

)
−λq(β2

qη
2+|∇ση|2)(p−2)/2η+|η|q−1

η.

Putting η = δωθ
S ,

(β2
qη

2 + |∇ση|2)(p−2)/2 = δp−2θp−2ω
(θ−1)(p−2)
S (β2

Sω
2 + |∇σω|2)(p−2)/2,

and

∇σ.
(
(β2

qη
2 + |∇ση|2)(p−2)/2∇ση

)
=δp−1θp−1∇σ.

(
ω

(θ−1)(p−1)
S (β2

Sω
2
S + |∇σωS |2)(p−2)/2∇σωS

)
=δp−1θp−1ω

(θ−1)(p−1)
S ∇σ.

(
(β2

Sω
2
S + |∇σωS |2)(p−2)/2∇σωS

)
+ (θ − 1)(p− 1)δp−1θp−1ω

(θ−1)(p−1)−1
S (β2

Sω
2
S + |∇σωS |2)(p−2)/2|∇σωS |2

But

−∇σ.
(
(β2

Sω
2
S + |∇σωS |2)(p−2)/2∇σωS

)
= λS(β2

Sω
2
S + |∇σωS |2)(p−2)/2ωS ,
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with λS = (βS + 1)(p− 1) + 1−N). Thus,

δ1−pT (η) = δq+1−pωθq
S + ω

(θ−1)(p−1)−1
S θp−2(β2

Sω
2
S + |∇σωS |2)(p−2)/2

×
(
(θλS − λq)ω2

S − θ(θ − 1)(p− 1)|∇σωS |2
)
.

Since θλS − λq = βq(βS − βq)(p− 1) = −β2
Sθ(θ − 1)(p− 1),

δ1−pT (η)

= δq+1−pωθq
S − (p− 1)(θ − 1)θp−1ω

(θ−1)(p−1)−1
S (β2

Sω
2
S + |∇σωS |2)p/2

≤ δq+1−pωθq
S − (p− 1)(θ − 1)θp−1ω

θ(p−1)
S .

by assumption θ > 1, therefore there exists δ > 0 such that T (η) ≤ 0. Moreover
it can also be assumed that δωθ

S ≤ ε. Then wδ(x) ≤ u(x) if |x| = 1 and wδ ≤ u
in KS(1,∞) by the maximum principle. Henceforth

δωθ
S(x/|x|) ≤ |x|βqu(x) ≤ γN,p,q in KS(1,∞). (3.22)

Step 3 For R > 0, define the function uR by uR = Rβqu(Rx). The function
uR satisfies (3.7) in KS(1/R,∞). By the degenerate elliptic equation regular-
ity theory, the set of functions {uR} remains bounded in the C1,α

loc -topology of
KS(0,∞)\{0}. Let 0 < R < R′, in order to compare uR and uR′ in KS(1/R,∞)
we recall that g(x) = (2− |x|)+. The relation

R′βq (2−R′|x|)βq

+ ≤ Rβq (2−R|x|)βq

+ for |x| ≥ 1/R,

implies
d

dR

(
Rβq (2−R|x|)βq

+

)
≤ 0 for |x| ≥ 1/R,

If and only if

βqR(2−R|x|)βq−1
+ (2− 2R|x|) ≤ 0 for |x| ≥ 1/R,

which holds true. By the maximum pinciple

R′ ≥ R =⇒ uR′ ≤ uR ∈ KS(1/R,∞). (3.23)

Thus there exists a function u∗ such that uR decreases and converges to u∗

as R → ∞ in C1
loc(KS(0,∞) \ {0}). The function u∗ is a solution of (3.7) in

KS(0,∞) which vanishes on BS(0,∞). Because of (3.22), u∗ satisfies

δωθ
S(x/|x|) ≤ |x|βqu∗(x) ≤ γN,p,q in KS(0,∞). (3.24)

Finally,

lim
R→∞

Rβqu(Rr, σ) = u∗(r, σ) = r−βq lim
R→∞

(Rr)βqu(Rr, σ) = r−βqu∗(1, σ).

Putting ω = u∗(1, σ) completes the proof. �

In the next theorem we prove that the condition βq > βS is sharp.

Theorem 3.4 Let 0 < p − 1 < q < p# and S ⊂ SN−1 be a domain with a C2

relative boundary ∂S. If βq ≤ βS there exists no solution ω of (3.1) in S which
vanishes on ∂S.
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Proof Assume ω is a solution of (3.1). If θ = βq/βS , then 0 < θ ≤ 1. If we
denote again η = δωθ

S , for some δ > 0, it follows from the proof of Theorem
3.3-Step 2 that, for any δ > 0,

δ1−pT (η) = δq+1−pωθq
S

+(p− 1)(1− θ)θp−1ω
(θ−1)(p−1)−1
S (β2

Sω
2
S + |∇σωS |2)p/2 > 0.

We take δ = δ0 as the smallest parameter such that η = ηδ ≥ ω. Notice that
such a choice is always possible since ω ∈ C1(S̄), the normal derivative of ωS

on the relative boundary ∂S is negative from the Hopf boundary lemma and
therefore ωθ

S(σ) ≥ c(dist(σ, ∂S)θ for some c > 0. We shall distinguish according
there exists σ0 ∈ S such that

η(σ) ≥ ω(σ), ∀σ ∈ S̄, and η(σ0) = ω(σ0), (3.25)

or not. If (3.25) holds true, which is always the case if βS > βq, the function
ψ = η − ω is nonnegative in S̄, not identically 0 and achieves its minimal value
0 in an interior point σ0. Let g = (gij) be the metric tensor on SN−1. We write
in local coordinates σj around σ0,

|∇ϕ|2 =
∑
j,k

gjk ∂ϕ

∂σj

∂ϕ

∂σk
,

∇.X =
1√
|g|

∑
`

∂

∂σ`

(√
|g|X`

)
=

1√
|g|

∑
`,i

∂

∂σ`

(√
|g|g`iXi

)
,

if we lower the indices by setting X` =
∑

i

g`iXi. From the Mean Value Theo-

rem, we obtain

(β2
qη

2 + |∇ση|2)(p−2)/2 ∂η

∂σi
− (β2

qω
2 + |∇σω|2)(p−2)/2 ∂ω

∂σi

=
∑

j

αi
j

∂(η − ω)
∂σj

+ bi(η − ω),

where

bi = (p− 2)
(
β2

q (ω + t(η − ω))2 + |∇σ(ω + t(η − ω))|2
)(p−4)/2

×(ω + t(η − ω))
∂(ω + t(η − ω))

∂σi
,

and

αi
j = (p− 2)

(
β2

q (ω + t(η − ω))2 + |∇σ(ω + t(η − ω))|2
)(p−4)/2

×∂(ω + t(η − ω))
∂σi

∑
k

gjk ∂(ω + t(η − ω))
∂σk

+δj
i

(
β2

q (ω + t(η − ω))2 + |∇σ(ω + t(η − ω))|2
)(p−2)/2

.
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Since the graph of η and ω are tangent at σ0,

η(σ0) = ω(σ0) = P0 > 0 and ∇η(σ0) = ∇ω(σ0) = Q.

Thus

bi(σ0) = (p− 2)
(
β2

qP
2
0 + |Q|2

)(p−4)/2

P0Qi,

and

αi
j(σ0) =

(
β2

qP
2
0 + |Q|2

)(p−4)/2
(
δj
i (β

2
qP

2
0 + |Q|2) + (p− 2)Qi

∑
k

gjkQk

)
.

Now

T (η)− T (ω)

=
−1√
|g|

∑
`,i

∂

∂σ`

[√
|g|g`i

(
(β2

qη
2 + |∇ση|2)

p
2−1 ∂η

∂σi
− (β2

qω
2 + |∇σω|2)

p
2−1 ∂ω

∂σi

)]
− λq

(
(β2

qη
2 + |∇ση|2)

p
2−1η − (β2

qω
2 + |∇σω|2)

p
2−1ω

)
+ ηq − |ω|q−1

ω),

=− 1√
|g|

∑
`,i

∂

∂σ`

[√
|g|g`i

( ∑
j

αi
j

∂(η − ω)
∂σj

+ bi(η − ω)
)]

+
∑

i

Ci
∂(η − ω)
∂σi

+ C(η − ω)

=− 1√
|g|

∑
`,j

∂

∂σ`

[
a`

j

∂(η − ω)
∂σj

]
+

∑
i

Ci
∂(η − ω)
∂σi

+ C(η − ω),

where the Ci and C are continuous functions and

a`
j =

√
|g|

∑
i

g`iαi
j .

The matrix
(
αi

j(σ0)
)

is symmetric, definite and positive since it is the Hessian
of the strictly convex function

X = (X1, . . . , Xn−1) 7→
1
p

(
P 2

0 + |X|2
)p/2

=
1
p

(
P 2

0 +
∑
j,k

gjkXjXk

)p/2

.

Therefore,
(
αi

j

)
has the same property in some neighborhood of σ0, and the

same holds true with
(
a`

j

)
. Finally the function ψ = η − ω is nonnegative,

vanishes at σ0 and satisfies

− 1√
|g|

∑
`,j

∂

∂σ`

[
a`

j

∂ψ

∂σj

]
+

∑
i

Ci
∂ψ

∂σi
+ C+ψ ≥ 0. (3.26)

Then ψ = 0 in a neighborhood of S. Since S is connected, ψ is identically 0,
which a contradiction.
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If (3.25) does not hold, then θ = 1 and that the graphs of η and ω are tangent
at some point σ0 of the relative boundary ∂S. Proceeding as above and using
the fact that ∂η/∂ν exists and never vanishes on the boundary, we see that
ψ = η − ω satisfies (3.26) with a strongly elliptic operator in a neighborhood
N of σ0. Moreover ψ > 0 in N , ψ(σ0) = 0 and ∂ψ/∂ν(σ0) = 0. This is a
contradiction, which ends the proof.

Remark The existence result of Theorem 3.3 is valid if S is no longer a C2

domain but a domain with a piecewise regular boundary since only the exis-
tence of (βS , ωS) is needed. We conjecture that the condition βq > βS is still
necessary. As is section 2, we can construct nodal solutions of (3.1) with a finite
symmetry group G generated by reflections through hyperplanes. Taking S to
be a fundamental simplicial domain of G, we construct (β, ω) in S and then
extend ω to the whole sphere by reflections through the edges. It follows that
there exists nodal singular solutions of (3.7) in RN \ {0}.

Remark Under the assumptions of Theorem 3.3, we conjecture that unique-
ness of the positive solution ω of (3.1) which vanishes on ∂S holds. If S = SN−1

and p−1 < q < p#, an application of the maximum principle (or a consequence
of Theorem 3.2) implies that the only positive solution of (3.1) on SN−1 is the
constant function γN,p,q.

4 Equations with a source term

If we look for solutions of

∇.
(
|∇u|p−2∇u

)
+ |u|q−1

u = 0 (4.1)

under the form (2.7), then β = p/(q + 1− p) = βq and ω solves

∇σ.
(
(β2

qω
2 + |∇σω|2)(p−2)/2∇σω

)
+ |ω|q−1

ω+λq(β2
qω

2 + |∇σω|2)(p−2)/2ω = 0,
(4.2)

on SN−1 with λq defined by (3.2). By integrating (4.2) we get

λq

∫
SN−1

(β2
qω

2 + |∇σω|2)(p−2)/2ωdσ +
∫

SN−1
|ω|q−1

ωdσ = 0.

Therefore, there exists no positive solution if λq ≥ 0, or equivalently q ≤ N(p−
1)/(N − p) (it is always assumed that q > p− 1). In the range 1 < p < N and
q > N(p− 1)/(N − p) the constant function

ω0 = (βp−1
q (N − qβq)1/(q+1−p)

is a solution of (4.2), and a natural question is to look for nonconstant solutions.
As in Section 2, we imbed this problem in the more general setting of a compact
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d-dimensional Riemannian manifold (M, g) without boundary. For β and λ ∈ R
consider the equation

−∇g.
(
(β2ω2 + |∇gω|2)(p−2)/2∇gω

)
+ λ(β2ω2 + |∇gω|2)(p−2)/2ω = |ω|q−1ω.

(4.3)
We shall assume λ > 0 in order for the constant solution

ω∗ = (βp−2λ)1/(q+1−p)

to exist. We assume also that the starting equation is super-quasilinear in the
sense that β > 0 and q > q+ 1− p. We can linearize (4.3) in a neighborhood of
ω∗, and we obtain
d

dt
∇g.

(
(β2(ω∗ + tϕ)2 + |∇g(ω∗ + tϕ)|2)(p−2)/2∇g(ω∗ + tϕ)

)∣∣∣
t=0

= βp−2ωp−2
∗ ∆gϕ.

d

dt

(
(β2(ω∗ + tϕ)2 + |∇g(ω∗ + tϕ)|2)(p−2)/2(ω∗ + tϕ)

) ∣∣∣
t=0

= (p− 1)βp−2ωp−2
∗ ϕ.

d

dt
(ω∗ + tϕ)q

∣∣∣
t=0

= qωq−1
∗ ϕ.

Since ω∗ = (βp−2λ)1/(q+1−p), the linearized equation is

−∆gϕ = (q + 1− p)λϕ. (4.4)

where ∆g = ∇i∇i is the laplacian on M .

Theorem 4.1 Let µ1 be the first nonzero eigenvalue of ∆g, and assume it is
simple. Then for any λ > µ1/(q + 1 − p) equation (4.3) admits a nonconstant
positive solution ωλ.

Proof The existence of a global and unbounded branch of bifurcation B =
{(λ, ωλ)} ⊂ R × C1(M) issued from (µ1/(q + 1 − p), ω∗) follows from the ap-
plication in the space C1(M) of the classical bifurcation theorem from a simple
eigenvalue. �

Remark The condition on the simplicity of µ1 can be avoided in many cases
where symmetries occur. When (M, g) = (SN−1, g0), we have the parametric
representation

SN−1 = {σ = (cosϕ, sinϕσ′) : ϕ ∈ [0, π], σ′ ∈ SN−2},
and

∆SN−1ω = sin2−N ϕ
∂

∂ϕ

(
sinN−2 ϕ

∂ω

∂ϕ

)
+ sin−2 ϕ∆SN−2ω.

If we only consider function depending on ϕ (they are called zonal functions),
µ1 = N − 1 is a simple eigenvalue. Moreover any eigenspace of SN−1 contains
a 1-dimensional sub-eigenspace of functions depending only on ϕ. Therefore
all the corresponding eigenvalues are simple. Thus from each of the couples
(µk/(q + 1 − p), ω∗) is issued a C1 curve of positive solutions (λ, ωλ) with λ >
µk/(q + 1− p).
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Open question An interesting problem is to find sufficient conditions besides
λ ≤ µ1/(q + 1 − p) and probably q ≤ dp/(d − p) − 1, in order the constant ω∗
be the only positive solution of (4.3). We believe additional conditions linked
to the curvature should be found (see [6], [2], [10] in the case p = 2).

We define the critical Sobolev exponent qc by

qc =
Np

N − p
− 1 =

N(p− 1) + p

N − p
. (4.5)

A particular case of equation (4.1) is when q = qc. Then

qc + 1− p =
p2

N − p
, βqc

=
N − p

p
and λqc

= −β2
qc
.

The critical equation is therefore

∇σ.
(
(β2

qc
ω2 + |∇σω|2)p/2−1∇σω

)
+ |ω|qc−1ω− β2

qc
(β2

qc
ω2 + |∇σω|2)p/2−1ω = 0,

(4.6)
on SN−1. A natural question is to explore the connection between the positive
solutions of (4.6) and the positive solutions of

−∇.
(
|∇u|p−2∇u

)
v = vqc in RN . (4.7)

Notice that the radial solutions of this equation, depending of a parameter a > 0,
are known:

va(x) =
(
Na

(N − p

p− 1
)p−1

)(N−p)/p2 (
a+ |x|p/(p−1)

)(p−N)/p

. (4.8)

The solutions of (4.6) are the critical points of the functional

Jqc(ψ) =
∫

SN−1

(1
p
(β2

qc
ψ2 + |∇σψ|2)p/2 − 1

qc + 1
|ψ|qc+1

)
dσ, (4.9)

where ψ ∈W 1,p(SN−1).

Remark Let 0 < p − 1 < q < qc and S ⊂ SN−1, it would be interesting to
construct positive solutions ω of (4.2) in S which vanish on ∂S. In the case
p = 2, the equation becomes

−∆σω = βq(βq + 2−N)ω + ωq, in S,
ω = 0, on ∂S,

(4.10)

where ∆σ is the Laplace-Beltrami operator on the sphere and βq = 2/(q −
1). The solutions are constructed by a standard minimization process with a
constraint. If 1 < q < (N + 1)/(N − 3), a necessary and sufficient condition for
the existence of such a solution is

βq < βS ,
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and in that case βS = λ1(S) is the first eigenvalue of ∆σ in W 1,2
0 (S). When

p 6= 2, this method no longer works. However under the same condition

βq < βS and q < qc,

(adapted to the case of a general p) we have been able to prove the existence of
positive super and subsolutions to equation (4.2). Unfortunately we do not know
if they are ordered. We conjecture that, in the subcritical case, the condition
βq ≥ βS is a necessary and sufficient condition for the existence of positive
solutions to (4.2).

We want to mention another quasilinear equation of Emden type which
admits specific solutions:

−∇.
(
|∇u|p−2∇u

)
= λeu, (4.11)

with λ > 0. If we look for particular solutions of (4.11) under the form

u(r, σ) = α ln r + bw(σ) + k,

where α, b and k are constants, one finds α = −p and

b∇σ.
([
p2 + b2|∇σw|2

]p/2−1∇σw
)

+λekebw− p(N − p)
[
p2 + b2|∇σw|2

]p/2−1 = 0

on SN−1. A necessary condition for the existence of a solution is

p−N < 0. (4.12)

Assuming this condition, we take b = p and get

∇σ.
([

1 + |∇σw|2
]p/2−1∇σw

)
− (N − p)

[
1 + |∇σw|2

]p/2−1 + λp1−pekepw = 0.

Now choose k = ln(pp−1λ−1). Assuming 1 < p < N , then w satisfies

∇σ.
([

1 + |∇σw|2
]p/2−1∇σw

)
− (N − p)

[
1 + |∇σw|2

]p/2−1 + epw = 0 (4.13)

on SN−1. In the particular case p = 2, N = 3, this is the equation of conformal
change of structures on S2, and the set of all solutions can be endowed with
a structure of a 3-dim non-compact Lie group. We believe that the case p =
N − 1 = n should play a similar algebraic role. The corresponding equation is

∇σ.
([

1 + |∇σw|2
]n/2−1∇σw

)
−

[
1 + |∇σw|2

]n/2−1 + enw = 0 (4.14)

on SN−1.
In the case 1 < p < N and p− 1 < q < N(p− 1)/(N − p) = p#, the classi-

fication of isolated singularities of positive solutions of (4.1) has been initiated
by Guedda and Véron [7], under the priori bound assumption (4.18), and then
completed by Bidaut-Véron [1].
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Theorem 4.2 Let Ω be an open subset of RN containing 0, Ω∗ = Ω \ {0},
1 < p < N and p − 1 < q < p#, and let u ∈ C1(Ω∗) be a nonnegative solution
of (4.1) in Ω∗. Then the following dichotomy occurs.

(i) Either there exists α > 0 such that lim
x→0

u(x)/µp(x) = α, and u satisfies

−∇.(|∇u|p−2∇u)− uq = cN,pα
p−1δ0, in D′(Ω). (4.15)

(ii) Or u can be extended as a C1 solution of (4.1) in Ω.

The general proof of this result is based upon the extension obtained in [1]
of the Brezis-Lions lemma [3] dealing with singular super-harmonic functions.

Lemma 4.3 Let 1 < p < N and u ∈ C(Ω∗)∩W 1,p
loc (Ω∗) with ∇.

(
|∇u|p−2∇u

)
∈

L1
loc(Ω

∗) is a nonnegative solution of

∇.
(
|∇u|p−2∇u

)
≤ 0, (4.16)

a.e. in Ω and in the sense of distributions in Ω∗. Then up−1 ∈ MN/(N−p)
loc (Ω),

|∇u|p−1 ∈ M
N/(N−1)
loc (Ω), and there exists a nonnegative constant β and some

g ∈ L1
loc(Ω) such that

−∇.
(
|∇u|p−2∇u

)
= g + βδ0, (4.17)

in the sense of distributions in Ω.

From this result and using some test functions introduced by Serrin in [11],
Harnack inequality and a method due to Benilan, it is possible to derive the
key estimate that is satisfied by any positive solution u of (4.1) in this range of
values of q : there exists some C > 0 such that

u(x) ≤ Cµp(x), (4.18)

holds in a neighborhood of 0. With this estimate, a scaling methods similar to
the one used in [5] ends the proof. Actually, in [7], a more general convergence
result is proved: if 1 < p ≤ N , p − 1 < q < p# (no condition if p = N) and
u ∈ C1(Ω∗) is a signed solution of (4.1) in Ω∗ such that

|u(x)| ≤ Cµp(x),

near 0, then either
(i’) there exists α 6= 0 such that lim

x→0
u(x)/µp(x) = α, and u satisfies

−∇.(|∇u|p−2∇u)− |u|q−1
u = cN,p|α|p−2

αδ0, in D′(Ω). (4.19)

(ii’) Or u can be extended as a C1 solution of (4.1) in Ω.
In the case q ≥ p#, the classification of isolated singularities of radial solu-

tions of (4.1) has been performed by Guedda and Véron [7]. Latter on Guedda
and Véron’s results have been extended by Bidaut-Véron [1], with no restriction
on q, but always when dealing with radial solutions.
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Theorem 4.4 Let p# < p < qc, and let u ∈ C1(B∗1) be a radial solution of
(4.1) in B∗1 . Then the following occurs.
(i) Either u is a regular solution of (4.1) in B1.

(ii) Either
u(x) ≡ (βp−1

q (N − qβq)1/(q+1−p)|x|−βq ,

or
u(x) ≡ −(βp−1

q (N − qβq)1/(q+1−p)|x|−βq .

(iii) Or |x|βqu(x) is not constant and

lim
x→0

|x|βqu(x) = (βp−1
q (N − qβq)1/(q+1−p)|x|−βq ,

or
lim
x→0

|x|βqu(x) = −(βp−1
q (N − qβq)1/(q+1−p)|x|−βq .

The results related to the cases p# = p, p = Np/(N − p) − 1 and p >
Np/(N − p) − 1 can be found in [1]. For a long time, the non-radial case
appeared out of reach up to the recent work of Serrin and Zou [13]. In this
striking paper they proved, among other results, that Gidas and Spruck classical
a priori estimate in the case p = 2, N/(N − 2) ≤ q < qc [6] still holds in the
range p > 1 and p# ≤ p < Np/(N − p) − 1 (under a form appropriate to the
p-Laplace operator).
Any positive solution u of (4.1) in Ω∗ satisfies

u(x) ≤ C|x|−βq , (4.20)

near 0.
The proof is an extremely clever (but difficult) adaptation of the proof given by
Gidas and Spruck. Among other results Serrin and Zou provide also a descrip-
tion of entire solutions of the same equation in RN .
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[7] Guedda M. & Véron L., Local and global properties of solutions of quasi-
linear elliptic equations, J. Diff. Equ. 76, 159-189 (1988).

[8] Kroll I. N. & Mazja V. G., The lack of continuity and Hölder continuity
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