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Pseudo-monotonicity and degenerate elliptic

operators of second order ∗

Youssef Akdim & Elhoussine Azroul

Abstract

Extending the theory of pseudo-monotone mappings in weighted Sobolev
spaces, we prove some existence results for degenerate or singular elliptic
equations generated by the second-order differential operator

Au(x) = − div a(x, u,∇u)) + a0(x, u,∇u),

(in particular, when only large monotonicity is satisfied)

1 Introduction

Let Ω be a open subset of RN (N ≥ 1) and p > 1 be a real number and
ω = {ω0, ω1, . . . , ωN} be a collection of weight functions on Ω, i.e, each ωi is a
measurable and positive almost everywhere in Ω, and satisfying some integra-
bility condition (see section 2 below).

Let us consider the second-order differential operator

Au(x) = A1u(x) + A0u(x) (1.1)

where

A1u(x) = −
N∑

i=1

∂

∂xi
ai(x, u,∇u) (1.2)

is the top order part of A and where

A0u(x) = a0(x, u,∇u) (1.3)

is the lower order part of A and where {ai(x, η, ζ), 0 ≤ i ≤ N} are functions
defined on Ω×R×RN and satisfy a suitable regularity and growth assumptions.
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10 Pseudo-monotonicity and degenerate elliptic operators

Our objective in this paper, is to extend the theory of pseudo-monotone map-
pings in weighted Sobolev spaces. It’s well known that, the essential condition
which allows to do this, is the so-called Leray-Lions condition,

N∑
i=1

(ai(x, η, ζ)− ai(x, η, ζ̄))(ζi − ζ̄i) > 0, (1.4)

for a.e. x ∈ Ω, all η ∈ R and all ζ 6= ζ̄ ∈ RN (resp. the so-called weak Leray-
Lions condition,

N∑
i=1

(ai(x, η, ζ)− ai(x, η, ζ̄))(ζi − ζ̄i) ≥ 0, (1.5)

for a.e. x ∈ Ω, all (η, ζ, ζ̄) ∈ R×RN ×RN ). Let us state the following assump-
tions:

(H1) The expression

‖|u|‖X =
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pωi(x) dx
)1/p

is a norm on X = W 1,p
0 (Ω, ω) equivalent to the usual norm (2.3)(see section

2). There exist a weight function ω̄ on Ω and a parameter q, 1 < q < ∞,
such that the (Hardy) inequality

( ∫
Ω

|u(x)|qω̄(x)
)1/q

≤ c
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pωi(x) dx
)1/p

(1.6)

holds for every u ∈ W 1,p
0 (Ω, ω) with a constant c > 0 independent of u,

and moreover, the imbedding expressed by (1.6) is compact, i.e.

W 1,p
0 (Ω, ω) ↪→↪→ Lq(Ω, ω̄). (1.7)

(H2) Each ai(x, η, ζ) (1 ≤ i ≤ N) is a Carathéodory function and

|ai(x, η, ζ)| ≤ Ciω
1/p
i (x)[gi(x) + ω̄

1
p′ |η|q/p′ +

N∑
j=1

ω
1/p′

j (x)|ζj |p−1], (1.8)

for a.e. x ∈ Ω, some constants Ci > 0, some functions gi(x) ∈ Lp′(Ω), all
(η, ζ) ∈ RN+1 and all i = 1, . . . , N .

Recently, Drabek, Kufner and Mustonen [2] proved that the mapping T1 defined
from X to its dual X∗ associated to the top order part A1 is pseudo-monotone
in X, under the weak conditions (1.5), (H1), (H2). Hence, the authors obtained
the existence result for the Dirichlet problem associated to the A1u = f ∈ X∗

by assuming some degeneracy.
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Our first purpose in this paper, is to extend the previous result [2] in the
operator A from (1.1) where the lower order part A0 is affine with respect to
the gradient, i.e., A0 is of the form

A0u(x) = c0(x, u(x)) +
N∑

i=1

ci(x, u(x))
∂u(x)
∂xi

, (1.9)

where ci(x, η), 0 ≤ i ≤ N are some Carathéodory functions defined on Ω × R
and satisfy

|c0(x, η)| ≤ C0ω̄
1/q(x)[g0(x) + ω̄

1
q′ (x)|η|

q
q′ ]

|ci(x, η)| ≤ Ciω
1/p
i (x)ω̄1/q(x)[γi(x) + ω̄

1
r (x)|η|

q
r ] for all i = 1, . . . , N,

(1.10)

for a.e. x ∈ Ω, some constants C0 > 0, Ci > 0, some functions g0 ∈ Lq′(Ω) and
γi(x) ∈ Lr(Ω) with

1
r

+
1
p

+
1
q

< 1 (1.11)

and where ω̄(x) and q are from (1.6). More precisely, we prove the following
theorem,

Theorem 1.1 Assume that (H1), (H2), (1.10), (1.5) hold. Then the mapping
T associated to the operator A from (1.1) and (1.9) is pseudo-monotone in X.

Remark 1.2 Theorem 1.1 is obviously a consequence of the more general result
(Theorem 3.1, it suffices to take I = ∅).

Remark 1.3 About the existence of such r satisfying (1.11) see Remarks 2.1
and 4.2 below.

The second aim of this paper, is to prove the same result of the preceding
without restriction on A0 and where (1.4) is applied. This is done in Theorem
3.1, if we take Ic = ∅.

This paper is divided into four sections. In section 2, we start our basic
assumptions and we prove some preliminaries lemmas concerning some conver-
gence and generalized Hölder’s inequality in weighted Sobolev space. In section
3, we give our general main result and its proof and we study an example which
illustrate our abstract hypotheses. The section 4, is devoted to the study of
some particular case where ω0 ≡ 1 on Ω and where some of our hypotheses
(imbedding) are satisfied.

In our work, we shall adopt many ideas from [5] (where the authors have
studied the non-degenerated elliptic case). But the results are generalized and
improved. concerning the existence results for higher order nonlinear degener-
ated (or singular) elliptic equations, we refer the reader to [3, 4, 1] (where the
degree theory is used in the two first papers and where the pseudo-monotonicity
is used in the last but under some restrictions on the weighted). Finally, not that
our approach based on the theory of pseudo-monotone mappings can be applied
in the case of non reflexive Banach space, for example in weighted Orlicz-Sobolev
spaces (see [1] for related topics).
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2 Preliminaries and basic assumptions

1) Weighted Sobolev spaces. Let Ω be a open subset of RN (N ≥ 1), with
finite measure, let 1 < p < ∞, and let ω = {ωi(x) 0 ≤ i ≤ N} be a vector of
weight functions, i.e. every component ωi(x) is a measurable function which is
positive a.e. in Ω. Further, we suppose that

ωi ∈ L1
loc(Ω) (2.1)

and
ω
− 1

p−1
i ∈ L1

loc(Ω) (2.2)

for any 0 ≤ i ≤ N hold in all our considerations.
Now, we denote by W 1,p(Ω, ω) the space of all real-valued functions u ∈

Lp(Ω, ω0) such that the derivatives in the sense of distributions fulfil

∂u

∂xi
∈ Lp(Ω, ωi) for all i = 1, . . . , N,

which is a Banach space under the norm,

‖u‖1,p,ω =
( ∫

Ω

|u(x)|pω0(x) dx +
N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pωi(x) dx
)1/p

. (2.3)

The condition (2.1) implies that C∞0 (Ω) is a subspace of W 1,p(Ω, ω) and conse-
quently, we can introduce the subspace W 1,p

0 (Ω, ω) of W 1,p(Ω, ω) as the closure
of C∞0 (Ω) with respect to the norm (2.3). Moreover, the condition (2.2) implies
that W 1,p(Ω, ω) as well as W 1,p

0 (Ω, ω) are reflexive Banach spaces.
We recall that the dual space of weighted Sobolev spaces W 1,p

0 (Ω, ω) is equiv-
alent to W−1,p′(Ω, ω∗), where ω∗ = {ω∗i = ω1−p′

i ∀i = 0, . . . , N}, with p′ = p
p−1 .

We shall suppose that the expression

‖|u|‖1,p,ω =
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pωi(x) dx
)1/p

is a norm defined on W 1,p
0 (Ω, ω) and it’s equivalent to the norm (2.3). The

reader can find conditions on the weight ω which guarantee this fact in [3].
Notice that (X, ‖|.|‖X) is a uniformly convex (and thus reflexive) Banach space.

2) Basic assumptions. Let I be a subset of {1, 2, . . . , N} and Ic its comple-
ment, and let introduce the following modified versions of (1.4) and (1.5),∑

i∈I

(bi(x, η, ζI)− bi(x, η, ζ̄I))(ζi − ζ̄i) > 0, (2.4)

for a.e. x ∈ Ω, all η ∈ R and all ζ 6= ζ̄ ∈ RN and∑
i∈Ic

(bi(x, η, ζIc)− bi(x, η, ζ̄Ic))(ζi − ζ̄i) ≥ 0, (2.5)
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for a.e. x ∈ Ω, all η ∈ R and all ζ, ζ̄ ∈ RN where ζJ denoted ζJ = {ζi, i ∈ J}
and where ai(x, η, ζ) are Carathéodory functions such that,

ai(x, η, ζ) = bi(x, η, ζI) for all i ∈ I,

ai(x, η, ζ) = bi(x, η, ζIc) for all i ∈ Ic,

a0(x, η, ζ) = c0(x, η, ζI) +
∑
i∈Ic

ci(x, η, ζI)ζi,
(2.6)

for a.e. x ∈ Ω, all (η, ζ) ∈ RN+1 and where bi (i = 1, . . . , N), c0 and ci (i ∈ Ic)
are functions satisfying the Carathéodory conditions (i.e. measurable in x for
any fixed ξ = (η, ζ) ∈ RN+1 and continuous in ξ for almost all fixed x ∈ Ω).

We assume the following growth conditions:

(H2’) Each ai(x, η, ζ) is a Carathéodory function and, that there exists some
positives constants Ci, and some functions gi(x) ∈ Lp′(Ω) i = 1, . . . , N,
and g0 ∈ Lq′(Ω) and some γi(x) ∈ Lr(Ω) for all i ∈ Ic) such that

|bi(x, η, ζI)| ≤ Ciω
1/p
i (x)[gi(x) + ω̄

1
p′ |η|

q
p′ +

∑
j∈I

ω
1
p′

j (x)|ζj |p−1] for i ∈ I

|bi(x, η, ζIc)| ≤ Ciω
1/p
i (x)[gi(x) + ω̄

1
p′ (x)|η|

q
p′ +

∑
j∈Ic

ω
1
p′

j (x)|ζj |p−1],

for i ∈ Ic

|c0(x, η, ζI)| ≤ C0ω̄
1/q[g0(x) + ω̄

1
q′ (x)|η|

q
q′ +

∑
j∈I

ω
1
q′

j (x)|ζj |
p
q′ ]

|ci(x, η, ζI)| ≤ Ciω
1/p
i (x)ω̄1/q(x)[γi(x) + ω̄

1
r (x)|η|

q
r +

∑
j∈I

ω
1
r
j (x)|ζj |

p
r ],

for i ∈ Ic,

for a.e. x ∈ Ω, all η ∈ R, ζ ∈ RN , with

1
r

+
1
p

+
1
q

< 1. (2.7)

Remark 2.1 1) The such r satisfying (2.7), exists when q > p′ (it suffices
to choose r > pq

pq−p−q > 1).

2) If q ≤ p′, we can not found any r satisfying (2.7) (since 1
p + 1

p′ = 1 ≤
1
p + 1

q ).

Before to give main general result, let us give and prove the following lemmas
which are needed below.

Lemma 2.2 Let Ω be a subset of RN with finite measure and let f ∈ Lp(Ω, σ1)
(1 < p < ∞), g ∈ Lq(Ω, σ2) (1 < q < ∞) where σ1 and σ2 are weight functions
in Ω and let h ∈ Lr(Ω, σ

− r
p

1 σ
− r

q

2 ) (1 < r < ∞) with 1
p + 1

q + 1
r ≤ 1, then

fgh ∈ L1(Ω).
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Indeed: Let 1
s = 1

p + 1
q + 1

r ≤ 1. By Hölder inequality we have,

∫
Ω

|fgh|s ≤
( ∫

Ω

fpσ1

)s/p( ∫
Ω

gqσ2

)s/q( ∫
Ω

hrσ
−r/p
1 σ

−r/q
2

)s/r

< ∞,

then fgh ∈ Ls(Ω) which implies that fgh ∈ L1(Ω).

Lemma 2.3 Let (gn)n be a sequence of Lp(Ω, σ) and let g ∈ Lp(Ω, σ) (1 < p <
∞), where σ is a weight function in Ω. If gn → g in measure (in particular a.e.
in Ω) and is bounded in Lp(Ω, σ), then gn → g in Lq(Ω, σq/p) for all q < p.

Proof. Let ε > 0 and set An = {x ∈ Ω : |gn(x)−g(x)|σ1/p(x) ≤ ( ε
2 meas(Ω) )

1/q},
we have∫

Ω

|gn − g|qσq/p dx =
∫

An

|gn − g|qσq/p dx +
∫

Ac
n

|gn − g|qσq/p dx

≤ ε

2
+

∫
Ac

n

|gn − g|qσq/p dx.

By Hölder inequality,∫
Ac

n

|gn − g|qσq/p dx ≤
( ∫

Ω

|gn − g|pσ dx
)q/p(

meas(Ac
n)

)1− q
p

≤ M (meas(Ac
n))1−

q
p ,

where M is a constant does not depend on n. On the other hand since gn → g
in measure we have

meas(Ac
n) → 0 as n →∞,

then there exists some n0 ∈ N such that for all n ≥ n0,∫
Ac

n

|gn − g|qσq/p dx ≤ ε

2
.

Remark 2.4 We can also give an other proof of the last lemma, by using
the non-weighted case, i.e., gnσ1/p is bounded in Lp(Ω) and gn(x)σ1/p(x) →
g(x)σ1/p(x), in measure, hence gnσ1/p → gσ1/p in Lq(Ω) for all q < p.

The following lemma is a generalization of [7, Lemma 3.2] in weighted spaces.

Lemma 2.5 Let g ∈ Lq(Ω, σ) and let gn ∈ Lq(Ω, σ), with ‖gn‖q,σ ≤ c (1 < q <
∞). If gn(x) → g(x) a.e. in Ω, then gn ⇀ g in Lq(Ω, σ), where ⇀ denotes weak
convergence.
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Proof. Since gnσ1/q is bounded in Lq(Ω) and gn(x)σ1/q(x) → g(x)σ1/q(x),
a.e. in Ω, by the [7, Lemma 3.2], we have

gnσ1/q ⇀ gσ1/q in Lq(Ω).

Moreover for all ϕ ∈ Lq′(Ω, σ1−q′), we have ϕσ−1/q ∈ Lq′(Ω), then∫
Ω

gnϕ dx →
∫

Ω

gϕ dx, i.e. gn ⇀ g in Lq(Ω, σ).

Lemma 2.6 Let gn ∈ Lp(Ω, σ1) and let g ∈ Lp(Ω, σ1) (1 < p < ∞). If gn ⇀ g
in Lp(Ω, σ1), then

gnv ⇀ gv in Ls(Ω, σ
s/p
1 σ

s/q
2 ) for any v ∈ Lq(Ω, σ2),

with q > 1 and 1
s = 1

p + 1
q .

Proof. Letϕ ∈ Ls′(Ω, σ
s
p (1−s′)

1 σ
s
q (1−s′)

2 ). For any v ∈ Lq(Ω, σ2) we have, vϕ ∈
Lp′(Ω, σ1−p′

1 ). Indeed, since 1
p′ = 1

s′ + 1
q , we have by Hölder’s inequality,∫

Ω

|vϕ|p
′
σ1−p′

1 (x) dx

=
∫

Ω

|vσ
1/q
2 (x)|p

′
|ϕ|p

′
σ1−p′

1 (x)σ−p′/q
2 (x) dx

≤
( ∫

Ω

|v|qσ2(x) dx
)p′/q( ∫

Ω

|ϕ|s
′
σ

s′
p′ (1−p′)

1 (x)σ−s′/q
2 (x) dx

)p′/s′

=
( ∫

Ω

|v|qσ2 dx
)p′/q( ∫

Ω

|ϕ|s
′
σ

s
p (1−s′)

1 (x)σ
s
q (1−s′)

2 (x) dx
)p′/s′

< ∞.

Finally, since gn ⇀ g in Lp(Ω, σ1), then∫
Ω

gnvϕ dx →
∫

Ω

gvϕ dx i.e. gnv ⇀ gv in Ls(Ω, σ
s/p
1 σ

s/q
2 ) ∀v ∈ Lq(Ω, σ2).

Lemma 2.7 Let Ω be a subset of RN with finite measure and let 1 ≤ p ≤ q
then, we have the continuous imbedding Lq(Ω, σ) ↪→ Lp(Ω, σp/q) where σ is a
weight function in Ω.

The proof of this lemma can be deduced easily from Hölder’s inequality.

3 Main general result

Under the previous assumptions, the differential operator (1.1) (with coefficients
satisfying (2.6), generates a mapping T from X = W 1,p

0 (Ω, ω) to its dual X∗
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through the formula,

〈Tu, v〉 =
∫

Ω

∑
i∈I

bi(x, u, ζI(∇u))
∂v

∂xi
dx +

∫
Ω

∑
i∈Ic

bi(x, u, ζIc(∇u))
∂v

∂xi
dx

+
∫

Ω

c0(x, u, ζI(∇u))v dx +
∫

Ω

∑
i∈Ic

ci(x, u, ζI(∇u))
∂u

∂xi
v dx,

(3.1)

for all u, v ∈ X and where 〈, 〉 denotes the duality pairing between X∗ and X.
When we have adopted the notation ζJ(∇u) = { ∂u

∂xi
, i ∈ J}.

We recall that the mapping T is well defined and bounded, this can be easily
seen by Lemma 2.2 and Hölder’s inequality.

Definition A bounded mapping T from X to X∗ is called pseudo-monotone if
for any sequence un ∈ X with un ⇀ u in X and lim supn→∞〈T un, un − u〉 ≤ 0,
one has

lim inf
n→∞

〈Tun, un − v〉 ≥ 〈Tu, u− v〉 for all v ∈ X.

Theorem 3.1 Assume that (H1), (H2’), (2.4) and (2.5) hold. Then the corre-
sponding mapping T defined by (3.1) is pseudo-monotone in X = W 1,p

0 (Ω, ω).

Remark 3.2 1) When I = ∅, the previous theorem applies in particular to
operators like (1.1) with A0 affine with respect to the gradient variable, this
gives from (1.5) a sufficient condition (theorem 1.1 in the introduction).
2) When I = ∅ and A0 ≡ 0, we immediately obtain [2, Proposition 1].
3) When Ic = ∅, we obtain [1, Theorem 7.4] and when A0 ≡ 0, I = ∅, we give
in [1, Theorem 7.2].
4) Theorem 3.1 generalizes [5, Theorem 3.1] in the weighted case.

Applying the previous theorem, we obtain the following existence results,
which generalizes the corresponding (cf. [1, 2]).

Corollary 3.3 Let Ω be a bounded open subset of RN and assume the hypothe-
ses in Theorem 3.1. Also assume the degenerate ellipticity condition

N∑
i=0

ai(x, ξ)ξi ≥ C0

N∑
i=1

ωi(x)|ξi|p

for a.e. x ∈ Ω, some C0 > 0 and all ξ ∈ RN+1. Then for any f ∈ X∗ the
Dirichlet associated problem∫

Ω

∑
i∈I

bi(x, u, ζI(∇u))
∂v

∂xi
dx +

∫
Ω

∑
i∈Ic

bi(x, u, ζIc(∇u))
∂v

∂xi
dx

+
∫

Ω

c0(x, u, ζI(∇u))v dx +
∫

Ω

∑
i∈Ic

ci(x, u, ζI(∇u))
∂u

∂xi
v dx =

∫
Ω

fv dx

for all v ∈ X has at least one solution u ∈ X.
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Proof of Theorem 3.1. Let (un)n be a sequence in X such that:

un ⇀ u in X (3.2)

and
lim sup

n→∞
〈Tun, un − u〉 ≤ 0, (3.3)

i.e.

lim sup
n→∞

{
∫

Ω

∑
i∈I

bi(x, un, ζI(∇un))(
∂un

∂xi
− ∂u

∂xi
) dx

+
∫

Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))(
∂un

∂xi
− ∂u

∂xi
) dx

+
∫

Ω

c0(x, un, ζI(∇un))(un − u) dx

+
∫

Ω

∑
i∈Ic

ci(x, un, ζI(∇un))
∂un

∂xi
(un − u) dx} ≤ 0.

a) We shall prove that

〈Tun, v〉 → 〈Tu, v〉 as n →∞ for all v ∈ X. (3.4)

First step. We show that

lim
n→∞

∫
Ω

∑
i∈I

(bi(x, un, ζI(∇un))− bi(x, un, ζI(∇u)))(
∂un

∂xi
− ∂u

∂xi
) dx = 0 (3.5)

and

lim
n→∞

∫
Ω

∑
i∈Ic

(bi(x, un, ζIc(∇un))−bi(x, un, ζIc(∇u)))(
∂un

∂xi
− ∂u

∂xi
) dx = 0. (3.6)

Indeed: First, we can choose q1 such that 1 < q1 < r, and 1
q1

+ 1
p + 1

q < 1 (due
to 1

r + 1
p + 1

q < 1). It follows from the compact imbedding (1.7) that, for a
subsequence,

un → u in Lq(Ω, ω̄)
un(x) → u(x) a.e. in Ω.

(3.7)

By (H2’), the sequences {c0(x, un, ζI(∇un))} (resp. {ci(x, un, ζI(∇un))∂un

∂xi
(i ∈

Ic)}) remains bounded in Lq′(Ω, ω̄1−q′) (resp. Ls̃(Ω, ω̄
−s̃
q ) with 1

s̃ = 1
p + 1

r ).
Indeed,∫

Ω

|ω̄−1/qci(x, un, ζI(∇un))
∂un

∂xi
|s̃

≤
( ∫

Ω

ω
−r/p
i ω̄−r/q|ci(x, un, ζI(∇un))|r

)s̃/r( ∫
Ω

|∂un

∂xi
|pωi

)s̃/p

< c.
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Thanks to Lemma 2.7 and since q′ ≤ s̃, we have

Ls̃(Ω, ω̄−s̃/q) ↪→ Lq′(Ω, ω̄−q′/q),

then {ci(x, un, ζI(∇un))∂un

∂xi
(i ∈ Ic)}) is bounded in Lq′(Ω, ω̄1−q′)). Hence,

using (3.7) we conclude that

lim
n→∞

∫
Ω

c0(x, un, ζI(∇un))(un − u) dx = 0 (3.8)

and
lim

n→∞

∫
Ω

∑
i∈Ic

ci(x, un, ζI(∇un))
∂un

∂xi
(un − u) dx = 0. (3.9)

On the other hand, in virtue of (3.7) and continuity of the Nemytskii operators
(see [3]), we have

bi(x, un, ζI(∇u)) → bi(x, u, ζI(∇u)) in Lp′(Ω, ω∗i ), i ∈ I

bi(x, un, ζIc(∇u)) → bi(x, u, ζIc(∇u)) in Lp′(Ω, ω∗i ), i ∈ Ic,

which implies

lim
n→∞

∫
Ω

∑
i∈I

bi(x, un, ζI(∇u))(
∂un

∂xi
− ∂u

∂xi
) dx = 0 (3.10)

and
lim

n→∞

∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇u))(
∂un

∂xi
− ∂u

∂xi
) dx = 0. (3.11)

Combining (2.4), (2.5), (3.3), (3.8), (3.9), (3.10) and (3.11) we conclude the
assertions (3.5) and (3.6).

Second step. For to prove of the relation (3.4) it suffices to show the following
assertions:
(i) For every v ∈ X,

lim
n→∞

∫
Ω

c0(x, un, ζI(∇un))v dx =
∫

Ω

c0(x, u, ζI(∇u))v dx. (3.12)

(ii) For every v ∈ X,

lim
n→∞

∫
Ω

∑
i∈I

bi(x, un, ζI(∇un))
∂v

∂xi
dx =

∫
Ω

∑
i∈I

bi(x, u, ζI(∇u))
∂v

∂xi
dx. (3.13)

(iii) For every v ∈ X,

lim
n→∞

∫
Ω

∑
i∈Ic

ci(x, un, ζI(∇un))
∂un

∂xi
v dx =

∫
Ω

∑
i∈Ic

ci(x, u, ζI(∇u))
∂u

∂xi
v dx.

(3.14)
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(iv) For every v ∈ X,

lim
n→∞

∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))
∂v

∂xi
dx =

∫
Ω

∑
i∈Ic

bi(x, u, ζIc(∇u))
∂v

∂xi
dx.

(3.15)
Proof of (i)and (ii). Invoking Landes [6, Lemma 6], we obtain from (3.5) and
the strict monotonicity (2.4) that,

∂un

∂xi
→ ∂u

∂xi
a.e. in Ω for each i ∈ I, (3.16)

which gives

c0(x, un, ζI(∇un)) → c0(x, u, ζI(∇u)) a.e. in Ω,

bi(x, un, ζI(∇un)) → bi(x, u, ζI(∇u)) a.e. in Ω ∀i ∈ I.

The growth conditions (H2’) imply that, the sequences {c0(x, un, ζI(∇un))}
(resp. {bi(x, un, ζI(∇un)) i ∈ I}) remains bounded in Lq′(Ω, ω̄1−q′) (resp.
Lp′(Ω, ω∗i )). Hence by Lemma 2.5 we conclude (i) and (ii).
Proof of (iii). Similarly, by (3.7) and (3.16) we can write,

ci(x, un, ζI(∇un)) → ci(x, u, ζI(∇u)) a.e. in Ω for all i ∈ Ic.

And by the growth conditions (H2’) also {ci(x, un, ζI(∇un)), i ∈ Ic} is bounded
in Lr(Ω, ω

− r
p

i ω̄−
r
q ), then in virtue of Lemma 2.3, we have

ci(x, un, ζI(∇un)) → ci(x, u, ζI(∇u)) in Lq1(Ω, ω
−q1

p

i ω̄
−q1

q ) ∀i ∈ Ic.

Let s > 1 such that 1
s = 1

p + 1
q . Since 1

s′ + 1
s = 1 > 1

s + 1
q1

i.e. s′ < q1, we have
(as in the proof of Lemma 2.7),∫

Ω

|v|s
′
ω
−s′/p
i ω̄−s′/q dx ≤

( ∫
Ω

|v|q1ω
−q1/p
i ω̄

−q1
q dx

)s′/q1

(meas(Ω))1−
s′
q1

for all v ∈ Lq1(Ω, ω
−q1/p
i ω̄−q1/q). Then

Lq1(Ω, ω
−q1

p

i ω̄
−q1

q ) ↪→ Ls′(Ω, ω
−s′

p

i ω̄
−s′

q ),

which implies

ci(x, un, ζI(∇un)) → ci(x, u, ζI(∇u)) in Ls′(Ω, ω
−s′/p
i ω̄−s′/q) ∀i ∈ Ic.

On the other hand, from Lemma 2.6 we obtain,

∂un

∂xi
v ⇀

∂u

∂xi
v in Ls(Ω, ω

s/p
i ω̄s/q),
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for any v ∈ Lq(Ω, ω̄) and so for any v ∈ X,

lim
n→∞

∫
Ω

∑
i∈Ic

ci(x, un, ζI(∇un))
∂un

∂xi
v dx =

∫
Ω

∑
i∈Ic

ci(x, u, ζI(∇u))
∂u

∂xi
v dx

for any v ∈ X.
Proof of (iv). As before, the growth conditions (H2’) implies that, the sequence
{bi(x, un, ζIc(∇un)) i ∈ Ic} is bounded in Lp′(Ω, ω∗i ). Next, we show that,∫

Ω

∑
i∈Ic

{bi(x, u, ζIc(v))− hi}(vi −
∂u

∂xi
) dx ≥ 0 for all v = (vi) ∈

N∏
i=1

Lp(Ω, ωi),

(3.17)
here hi stands for the weak limit of {bi(x, un, ζIc(∇un)), i ∈ Ic} in Lp′(Ω, ω1−p′

i ).
Indeed by (3.6) we have

lim sup
n→∞

∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))
∂un

∂xi
dx ≤

∫
Ω

∑
i∈Ic

hi
∂u

∂xi
dx (3.18)

and from (2.5), we obtain for any v = (vi) ∈
∏N

i=1 Lp(Ω, ωi),∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))
∂un

∂xi
dx

≥
∫

Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))vi dx +
∫

Ω

∑
i∈Ic

bi(x, un, ζIc(v))(
∂un

∂xi
− vi) dx.

Letting n →∞ we conclude by (3.18) that,∫
Ω

∑
i∈Ic

hi
∂u

∂xi
dx ≥

∫
Ω

∑
i∈Ic

hivi dx +
∫

Ω

∑
i∈Ic

bi(x, u, ζIc(v))(
∂u

∂xi
− vi) dx

and hence (3.17) follows. Choosing v = ∇u + tw̃ with t > 0, w̃ = (w̃i) ∈∏N
i=1 Lp(Ω, ωi) and letting t → 0 we obtain,

hi = bi(x, u, ζIc(∇u)) a.e. in Ω,

which gives,

lim
n→∞

∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))
∂v

∂xi
dx =

∫
Ω

∑
i∈Ic

bi(x, u, ζIc(∇u))
∂v

∂xi
dx

for all v ∈ X. �

b) We shall prove that

lim inf
n→∞

〈Tun, un〉 ≥ 〈Tu, u〉 (3.19)
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by (2.4) and (2.5) we have∫
Ω

∑
i∈I

bi(x, un, ζI(∇un))
∂un

∂xi
dx +

∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))
∂un

∂xi
dx

≥
∫

Ω

∑
i∈I

bi(x, un, ζI(∇un))
∂u

∂xi
dx +

∫
Ω

∑
i∈I

bi(x, un, ζI(∇u))(
∂un

∂xi
− ∂u

∂xi
) dx

+
∫

Ω

∑
i∈Ic

bi(x, un, ζIc(∇un))
∂u

∂xi
dx +

∫
Ω

∑
i∈Ic

bi(x, un, ζIc(∇u))(
∂un

∂xi
− ∂u

∂xi
) dx,

then letting n →∞, and using (3.8) and (3.9), we conclude (3.19).

Example Many ideas in this example have adapted from the corresponding
examples 1-2 in [2]. We shall suppose that the weight functions satisfy: ωi0(x) ≡
0 for some i0 ∈ Ic, and ωi(x) = ω(x), x ∈ Ω, for all i ∈ I ∪ Ic and i 6= i0 with
ω(x) > 0 a.e. in Ω. Then, we can consider the Hardy inequality in the form( ∫

Ω

|u(x)|qω̄(x) dx
)1/q

≤ c
( ∑

i 6=i0

∫
Ω

| ∂u

∂xi
|pω

)1/p

(3.20)

for every u ∈ X with a constant c > 0 independent of u and for some q ≥ p′.
Let us consider the Carathéodory functions:

bi(x, η, ζI) = ω|ζi|p−1 sgn ζi + ω0A0(η) for i ∈ I

bi(x, η, ζIc) = ω|ζi|p−1 sgn ζi + ω0A0(η) for i ∈ Ic and i 6= i0

bi0(x, η, ζIc) = ω0A0(η)

c0(x, η, ζI) =
∑
j∈I

ω1/q′ ω̄1/q|ζj |
p
q′ + ω0B0(η)

ci(x, η, ζI) =
∑
j∈I

ω1/p+1/rω̄1/q|ζj |p/r + ω0B1(η) for i ∈ Ic,

(3.21)

with 1/p + 1/r + 1/q < 1. The above functions define by (3.21) satisfies the
growth conditions (H2’) if we suppose that

|ω0A0(η)| ≤ β1ω
1/pω̄1/p′ |η|q/p′

|ω0B0(η)| ≤ β2ω̄|η|q/q′

|ω0B1(η)| ≤ β3ω
1/pω̄1/q+1/r|η|q/r,

(3.22)

with βj j = 1, 2, 3 are some positive constants. In particular, let us use the spe-
cial weight functions ω0, ω, ω̄ expressed in terms of the distance to the boundary
∂Ω: denote d(x) = dist(x, ∂Ω) and set

ω(x) = dλ(x), ω0(x) = dλ0(x), ω̄(x) = dµ(x).
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In this case the condition (3.22) writes as

|A0(η)| ≤ β1d
λ/p+µ/p′−λ0 |η|q/p

|B0(η)| ≤ β2d
µ−λ0 |η|q/q′

|B1(η)| ≤ β3d
λ/p+µ/q+µ/r−λ0 |η|q/r,

(3.23)

and the Hardy inequality reads( ∫
Ω

|u(x)|q dµ(x) dx
)1/q

≤ c
( ∑

i 6=i0

∫
Ω

| ∂u

∂xi
|p dλ(x) dx

)1/p

, (3.24)

and the corresponding imbedding (1.7) is compact for 1 ≤ p ≤ q < ∞ (resp.
1 ≤ q < p < ∞,), if and only if λ 6= p−1, N

q −
N
p +1 ≥ 0, µ

q −
λ
p + N

q −
N
p +1 > 0,

(resp. λ ∈ R, µ
q −

λ
p + 1

q −
1
p > 0) (see [8]). Moreover, the two monotonicity

conditions (2.4) and (2.5) are satisfied:∑
i∈I

(
bi(x, η, ζI)− bi(x, η, ζ̄I)

) (
ζi − ζ̄i

)
= ω(x)

∑
i∈I

(
|ζi|p−1 sgn ζi − |ζ̄i|p−1 sgn ζ̄i

) (
ζi − ζ̄i

)
> 0

for almost all x ∈ Ω and for all ζ, ζ̄ ∈ RN with ζI 6= ζ̄I , since ω > 0 a.e. in Ω;
and∑

i∈Ic

(
bi(x, η, ζIc)− bi(x, η, ζ̄Ic)

) (
ζi − ζ̄i

)
= ω(x)

∑
i∈Ic

i 6=i0

(
|ζi|p−1sgnζi − |ζ̄i|p−1sgnζ̄i

) (
ζi − ζ̄i

)
≥ 0

for almost all x ∈ Ω and for all ζ, ζ̄ ∈ RN . This last inequality can not be
strict, since for ζIc 6= ζ̄Ic with ζi0 6= ζ̄i0 but ζi = ζ̄i for all i ∈ Ic and i 6= i0,
the corresponding expression is zero. Finally, the hypotheses of theorem 3.1 are
verify, then the mapping T defined as (3.1) corresponding to (3.21) is pseudo-
monotone.

4 Specific case

Let Ω be a bounded open subset of RN satisfying the cone condition. In
this section we assume in addition that the collection of weight functions ω =
{ωi(x) i = 0, . . . , N} satisfy ω0(x) = 1 and the integrability condition: There
exists ν ∈]N

p ,∞[∩[ 1
p−1 ,∞[ such that

ω−ν
i ∈ L1(Ω) ∀i = 1, . . . , N. (4.1)

Note that (4.1) is stronger than (2.2).
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Remark 4.1 ([3]) 1. Assumptions (2.1) and (4.1) imply that,

‖|u|‖X =
( N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pωi(x) dx
)1/p

is a norm defined on W 1,p
0 (Ω, ω) and it’s equivalent to (2.3), and that

W 1,p
0 (Ω, ω) ↪→↪→ Lq(Ω) (4.2)

for all 1 ≤ q < p∗1 if pν < N(ν +1) and q ≥ 1 is arbitrary if pν ≥ N(ν +1)
where p1 = pν

ν+1 and p∗1 = Np1
N−p1

= Npν
N(ν+1)−pν is the Sobolev conjugate of

p1.

2. Hypotheses (H1) holds for all q such that 1 < q < p∗1 and ω̄ ≡ 1.

In the sequel, we replace (4.1) by the hypothesis

(H̃1) If 2N
N+1 < p < N there exists ν ∈]N

p ,∞[∩] 1
(p−1)− p

p∗
,∞[ such that ω−ν

i ∈
L1(Ω), for all i = 1, . . . , N . If p = N there exists ν ∈]1,∞[ such that ω−ν

i ∈
L1(Ω) for all i = 1, . . . , N . If p > N there exist ν ∈] N

p−N ,∞[∩[ 1
(p−1) ,∞[

such that ω−ν
i ∈ L1(Ω) for all i = 1, . . . , N .

Remark 4.2 1. Hypothesis (H̃1) guarantees the existence of r satisfying
1
r + 1

p + 1
p∗1

< 1, where p∗1 is the Sobolev conjugate of p1 in the case
2N

N+1 < p ≤ N and where p∗1 = ∞ in the case p > N (since p1 > N due to
ν > N

p−N ).

2. If 1 < p ≤ 2N
N+1 we can’t find a real r > 1 such that 1

r + 1
p + 1

p∗1
< 1, since

1
p + 1

p∗1
> 1

p + 1
p∗ ≥ 1.

3. Note that (H̃1) is stronger than (4.1), then the compact imbedding (4.2)
is satisfied whenever (H̃1) is assumed.

Theorem 4.3 Let Ω be a bounded open subset of RN . And assume that (2.1),
(H̃1), (H2’), (2.4) and (2.5) are satisfied. Then the operator T defined in (3.1)
is pseudo-monotone in X = W 1,p

0 (Ω, ω). Moreover, assume the degenerate el-
lipticity condition

N∑
i=0

ai(x, ξ)ξi ≥ c0

N∑
i=1

ωi(x)|ξi|p

for a.e. x ∈ Ω, some c0 > 0 and all ξ ∈ RN+1. Then for any f ∈ X∗ the
Dirichlet associated problem

〈Tu, v〉 = 〈f, v〉 for all v ∈ X,

has at least one solution u ∈ X.
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