2002-Fez conference on Partial Differential Equations,
Electronic Journal of Differential Equations, Conference 09, 2002, pp 9-24.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

Pseudo-monotonicity and degenerate elliptic operators of second order *

Youssef Akdim \& Elhoussine Azroul

Abstract

Extending the theory of pseudo-monotone mappings in weighted Sobolev spaces, we prove some existence results for degenerate or singular elliptic equations generated by the second-order differential operator $$
A u(x)=-\operatorname{div} a(x, u, \nabla u))+a_{0}(x, u, \nabla u),
$$ (in particular, when only large monotonicity is satisfied)

1 Introduction

Let Ω be a open subset of $\mathbb{R}^{N}(N \geq 1)$ and $p>1$ be a real number and $\omega=\left\{\omega_{0}, \omega_{1}, \ldots, \omega_{N}\right\}$ be a collection of weight functions on Ω, i.e, each ω_{i} is a measurable and positive almost everywhere in Ω, and satisfying some integrability condition (see section 2 below).

Let us consider the second-order differential operator

$$
\begin{equation*}
A u(x)=A_{1} u(x)+A_{0} u(x) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1} u(x)=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, u, \nabla u) \tag{1.2}
\end{equation*}
$$

is the top order part of A and where

$$
\begin{equation*}
A_{0} u(x)=a_{0}(x, u, \nabla u) \tag{1.3}
\end{equation*}
$$

is the lower order part of A and where $\left\{a_{i}(x, \eta, \zeta), 0 \leq i \leq N\right\}$ are functions defined on $\Omega \times \mathbb{R} \times \mathbb{R}^{N}$ and satisfy a suitable regularity and growth assumptions.

[^0]Our objective in this paper, is to extend the theory of pseudo-monotone mappings in weighted Sobolev spaces. It's well known that, the essential condition which allows to do this, is the so-called Leray-Lions condition,

$$
\begin{equation*}
\sum_{i=1}^{N}\left(a_{i}(x, \eta, \zeta)-a_{i}(x, \eta, \bar{\zeta})\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right)>0 \tag{1.4}
\end{equation*}
$$

for a.e. $x \in \Omega$, all $\eta \in \mathbb{R}$ and all $\zeta \neq \bar{\zeta} \in \mathbb{R}^{N}$ (resp. the so-called weak LerayLions condition,

$$
\begin{equation*}
\sum_{i=1}^{N}\left(a_{i}(x, \eta, \zeta)-a_{i}(x, \eta, \bar{\zeta})\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right) \geq 0 \tag{1.5}
\end{equation*}
$$

for a.e. $x \in \Omega$, all $\left.(\eta, \zeta, \bar{\zeta}) \in \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$. Let us state the following assumptions:
(H1) The expression

$$
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} \omega_{i}(x) d x\right)^{1 / p}
$$

is a norm on $X=W_{0}^{1, p}(\Omega, \omega)$ equivalent to the usual norm (2.3)(see section $2)$. There exist a weight function $\bar{\omega}$ on Ω and a parameter $q, 1<q<\infty$, such that the (Hardy) inequality

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{q} \bar{\omega}(x)\right)^{1 / q} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} \omega_{i}(x) d x\right)^{1 / p} \tag{1.6}
\end{equation*}
$$

holds for every $u \in W_{0}^{1, p}(\Omega, \omega)$ with a constant $c>0$ independent of u, and moreover, the imbedding expressed by (1.6) is compact, i.e.

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, \omega) \hookrightarrow \hookrightarrow L^{q}(\Omega, \bar{\omega}) . \tag{1.7}
\end{equation*}
$$

(H2) Each $a_{i}(x, \eta, \zeta)(1 \leq i \leq N)$ is a Carathéodory function and

$$
\begin{equation*}
\left|a_{i}(x, \eta, \zeta)\right| \leq C_{i} \omega_{i}^{1 / p}(x)\left[g_{i}(x)+\bar{\omega}^{\frac{1}{p^{\prime}}}|\eta|^{q / p^{\prime}}+\sum_{j=1}^{N} \omega_{j}^{1 / p^{\prime}}(x)\left|\zeta_{j}\right|^{p-1}\right] \tag{1.8}
\end{equation*}
$$

for a.e. $x \in \Omega$, some constants $C_{i}>0$, some functions $g_{i}(x) \in L^{p^{\prime}}(\Omega)$, all $(\eta, \zeta) \in \mathbb{R}^{N+1}$ and all $i=1, \ldots, N$.

Recently, Drabek, Kufner and Mustonen [2] proved that the mapping T_{1} defined from X to its dual X^{*} associated to the top order part A_{1} is pseudo-monotone in X, under the weak conditions (1.5), (H1), (H2). Hence, the authors obtained the existence result for the Dirichlet problem associated to the $A_{1} u=f \in X^{*}$ by assuming some degeneracy.

Our first purpose in this paper, is to extend the previous result [2] in the operator A from (1.1) where the lower order part A_{0} is affine with respect to the gradient, i.e., A_{0} is of the form

$$
\begin{equation*}
A_{0} u(x)=c_{0}(x, u(x))+\sum_{i=1}^{N} c_{i}(x, u(x)) \frac{\partial u(x)}{\partial x_{i}} \tag{1.9}
\end{equation*}
$$

where $c_{i}(x, \eta), 0 \leq i \leq N$ are some Carathéodory functions defined on $\Omega \times \mathbb{R}$ and satisfy

$$
\begin{gather*}
\left|c_{0}(x, \eta)\right| \leq C_{0} \bar{\omega}^{1 / q}(x)\left[g_{0}(x)+\bar{\omega}^{\frac{1}{q^{\prime}}}(x)|\eta|^{\frac{q}{q^{\prime}}}\right] \\
\left|c_{i}(x, \eta)\right| \leq C_{i} \omega_{i}^{1 / p}(x) \bar{\omega}^{1 / q}(x)\left[\gamma_{i}(x)+\bar{\omega}^{\frac{1}{r}}(x)|\eta|^{\frac{q}{r}}\right] \quad \text { for all } i=1, \ldots, N, \tag{1.10}
\end{gather*}
$$

for a.e. $x \in \Omega$, some constants $C_{0}>0, C_{i}>0$, some functions $g_{0} \in L^{q^{\prime}}(\Omega)$ and $\gamma_{i}(x) \in L^{r}(\Omega)$ with

$$
\begin{equation*}
\frac{1}{r}+\frac{1}{p}+\frac{1}{q}<1 \tag{1.11}
\end{equation*}
$$

and where $\bar{\omega}(x)$ and q are from (1.6). More precisely, we prove the following theorem,

Theorem 1.1 Assume that (H1), (H2), (1.10), (1.5) hold. Then the mapping T associated to the operator A from (1.1) and (1.9) is pseudo-monotone in X.

Remark 1.2 Theorem 1.1 is obviously a consequence of the more general result (Theorem 3.1, it suffices to take $I=\emptyset$).

Remark 1.3 About the existence of such r satisfying (1.11) see Remarks 2.1 and 4.2 below.

The second aim of this paper, is to prove the same result of the preceding without restriction on A_{0} and where (1.4) is applied. This is done in Theorem 3.1 , if we take $I^{c}=\emptyset$.

This paper is divided into four sections. In section 2, we start our basic assumptions and we prove some preliminaries lemmas concerning some convergence and generalized Hölder's inequality in weighted Sobolev space. In section 3, we give our general main result and its proof and we study an example which illustrate our abstract hypotheses. The section 4, is devoted to the study of some particular case where $\omega_{0} \equiv 1$ on Ω and where some of our hypotheses (imbedding) are satisfied.

In our work, we shall adopt many ideas from [5] (where the authors have studied the non-degenerated elliptic case). But the results are generalized and improved. concerning the existence results for higher order nonlinear degenerated (or singular) elliptic equations, we refer the reader to $[3,4,1]$ (where the degree theory is used in the two first papers and where the pseudo-monotonicity is used in the last but under some restrictions on the weighted). Finally, not that our approach based on the theory of pseudo-monotone mappings can be applied in the case of non reflexive Banach space, for example in weighted Orlicz-Sobolev spaces (see [1] for related topics).

2 Preliminaries and basic assumptions

1) Weighted Sobolev spaces. Let Ω be a open subset of $\mathbb{R}^{N}(N \geq 1)$, with finite measure, let $1<p<\infty$, and let $\omega=\left\{\omega_{i}(x) 0 \leq i \leq N\right\}$ be a vector of weight functions, i.e. every component $\omega_{i}(x)$ is a measurable function which is positive a.e. in Ω. Further, we suppose that

$$
\begin{equation*}
\omega_{i} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{i}^{-\frac{1}{p-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.2}
\end{equation*}
$$

for any $0 \leq i \leq N$ hold in all our considerations.
Now, we denote by $W^{1, p}(\Omega, \omega)$ the space of all real-valued functions $u \in$ $L^{p}\left(\Omega, \omega_{0}\right)$ such that the derivatives in the sense of distributions fulfil

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, \omega_{i}\right) \quad \text { for all } i=1, \ldots, N
$$

which is a Banach space under the norm,

$$
\begin{equation*}
\|u\|_{1, p, \omega}=\left(\int_{\Omega}|u(x)|^{p} \omega_{0}(x) d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} \omega_{i}(x) d x\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

The condition (2.1) implies that $C_{0}^{\infty}(\Omega)$ is a subspace of $W^{1, p}(\Omega, \omega)$ and consequently, we can introduce the subspace $W_{0}^{1, p}(\Omega, \omega)$ of $W^{1, p}(\Omega, \omega)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (2.3). Moreover, the condition (2.2) implies that $W^{1, p}(\Omega, \omega)$ as well as $W_{0}^{1, p}(\Omega, \omega)$ are reflexive Banach spaces.

We recall that the dual space of weighted Sobolev spaces $W_{0}^{1, p}(\Omega, \omega)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, \omega^{*}\right)$, where $\omega^{*}=\left\{\omega_{i}^{*}=\omega_{i}^{1-p^{\prime}} \forall i=0, \ldots, N\right\}$, with $p^{\prime}=\frac{p}{p-1}$. We shall suppose that the expression

$$
\||u|\|_{1, p, \omega}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} \omega_{i}(x) d x\right)^{1 / p}
$$

is a norm defined on $W_{0}^{1, p}(\Omega, \omega)$ and it's equivalent to the norm (2.3). The reader can find conditions on the weight ω which guarantee this fact in [3]. Notice that ($X,\||\cdot| \cdot \mid\|_{X}$) is a uniformly convex (and thus reflexive) Banach space.
2) Basic assumptions. Let I be a subset of $\{1,2, \ldots, N\}$ and I^{c} its complement, and let introduce the following modified versions of (1.4) and (1.5),

$$
\begin{equation*}
\sum_{i \in I}\left(b_{i}\left(x, \eta, \zeta_{I}\right)-b_{i}\left(x, \eta, \bar{\zeta}_{I}\right)\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right)>0 \tag{2.4}
\end{equation*}
$$

for a.e. $x \in \Omega$, all $\eta \in \mathbb{R}$ and all $\zeta \neq \bar{\zeta} \in \mathbb{R}^{N}$ and

$$
\begin{equation*}
\sum_{i \in I^{c}}\left(b_{i}\left(x, \eta, \zeta_{I^{c}}\right)-b_{i}\left(x, \eta, \bar{\zeta}_{I^{c}}\right)\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right) \geq 0 \tag{2.5}
\end{equation*}
$$

for a.e. $x \in \Omega$, all $\eta \in \mathbb{R}$ and all $\zeta, \bar{\zeta} \in \mathbb{R}^{N}$ where ζ_{J} denoted $\zeta_{J}=\left\{\zeta_{i}, \quad i \in J\right\}$ and where $a_{i}(x, \eta, \zeta)$ are Carathéodory functions such that,

$$
\begin{gather*}
a_{i}(x, \eta, \zeta)=b_{i}\left(x, \eta, \zeta_{I}\right) \quad \text { for all } i \in I, \\
a_{i}(x, \eta, \zeta)=b_{i}\left(x, \eta, \zeta_{I^{c}}\right) \quad \text { for all } i \in I^{c}, \\
a_{0}(x, \eta, \zeta)=c_{0}\left(x, \eta, \zeta_{I}\right)+\sum_{i \in I^{c}} c_{i}\left(x, \eta, \zeta_{I}\right) \zeta_{i} \tag{2.6}
\end{gather*}
$$

for a.e. $x \in \Omega$, all $(\eta, \zeta) \in \mathbb{R}^{N+1}$ and where $b_{i}(i=1, \ldots, N), c_{0}$ and $c_{i}\left(i \in I^{c}\right)$ are functions satisfying the Carathéodory conditions (i.e. measurable in x for any fixed $\xi=(\eta, \zeta) \in \mathbb{R}^{N+1}$ and continuous in ξ for almost all fixed $\left.x \in \Omega\right)$.

We assume the following growth conditions:
(H2') Each $a_{i}(x, \eta, \zeta)$ is a Carathéodory function and, that there exists some positives constants C_{i}, and some functions $g_{i}(x) \in L^{p^{\prime}}(\Omega) i=1, \ldots, N$, and $g_{0} \in L^{q^{\prime}}(\Omega)$ and some $\gamma_{i}(x) \in L^{r}(\Omega)$ for all $\left.i \in I^{c}\right)$ such that

$$
\begin{gathered}
\left|b_{i}\left(x, \eta, \zeta_{I}\right)\right| \leq C_{i} \omega_{i}^{1 / p}(x)\left[g_{i}(x)+\bar{\omega}^{\frac{1}{p^{\prime}}}|\eta|^{\frac{q}{p^{\prime}}}+\sum_{j \in I} \omega_{j}^{\frac{1}{p^{\prime}}}(x)\left|\zeta_{j}\right|^{p-1}\right] \quad \text { for } i \in I \\
\left|b_{i}\left(x, \eta, \zeta_{I^{c}}\right)\right| \leq C_{i} \omega_{i}^{1 / p}(x)\left[g_{i}(x)+\bar{\omega}^{\frac{1}{p^{\prime}}}(x)|\eta|^{\frac{q}{p^{\prime}}}+\sum_{j \in I^{c}} \omega_{j}^{\frac{1}{p^{\prime}}}(x)\left|\zeta_{j}\right|^{p-1}\right] \\
\text { for } i \in I^{c} \\
\left|c_{0}\left(x, \eta, \zeta_{I}\right)\right| \leq C_{0} \bar{\omega}^{1 / q}\left[g_{0}(x)+\bar{\omega}^{\frac{1}{q^{\prime}}}(x)|\eta|^{\frac{q}{q^{\prime}}}+\sum_{j \in I} \omega_{j}^{\frac{1}{q^{\prime}}}(x)\left|\zeta_{j}\right|^{\frac{p}{q^{\prime}}}\right] \\
\left|c_{i}\left(x, \eta, \zeta_{I}\right)\right| \leq C_{i} \omega_{i}^{1 / p}(x) \bar{\omega}^{1 / q}(x)\left[\gamma_{i}(x)+\bar{\omega}^{\frac{1}{r}}(x)|\eta|^{\frac{q}{r}}+\sum_{j \in I} \omega_{j}^{\frac{1}{r}}(x)\left|\zeta_{j}\right|^{\frac{p}{r}}\right] \\
\text { for } i \in I^{c}
\end{gathered}
$$

for a.e. $x \in \Omega$, all $\eta \in \mathbb{R}, \quad \zeta \in \mathbb{R}^{N}$, with

$$
\begin{equation*}
\frac{1}{r}+\frac{1}{p}+\frac{1}{q}<1 \tag{2.7}
\end{equation*}
$$

Remark 2.1 1) The such r satisfying (2.7), exists when $q>p^{\prime}$ (it suffices to choose $r>\frac{p q}{p q-p-q}>1$).
2) If $q \leq p^{\prime}$, we can not found any r satisfying (2.7) (since $\frac{1}{p}+\frac{1}{p^{\prime}}=1 \leq$ $\left.\frac{1}{p}+\frac{1}{q}\right)$.
Before to give main general result, let us give and prove the following lemmas which are needed below.

Lemma 2.2 Let Ω be a subset of \mathbb{R}^{N} with finite measure and let $f \in L^{p}\left(\Omega, \sigma_{1}\right)$ $(1<p<\infty), g \in L^{q}\left(\Omega, \sigma_{2}\right)(1<q<\infty)$ where σ_{1} and σ_{2} are weight functions in Ω and let $h \in L^{r}\left(\Omega, \sigma_{1}^{-\frac{r}{p}} \sigma_{2}^{-\frac{r}{q}}\right)(1<r<\infty)$ with $\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq 1$, then $f g h \in L^{1}(\Omega)$.

Indeed: Let $\frac{1}{s}=\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq 1$. By Hölder inequality we have,

$$
\int_{\Omega}|f g h|^{s} \leq\left(\int_{\Omega} f^{p} \sigma_{1}\right)^{s / p}\left(\int_{\Omega} g^{q} \sigma_{2}\right)^{s / q}\left(\int_{\Omega} h^{r} \sigma_{1}^{-r / p} \sigma_{2}^{-r / q}\right)^{s / r}<\infty
$$

then $f g h \in L^{s}(\Omega)$ which implies that $f g h \in L^{1}(\Omega)$.

Lemma 2.3 Let $\left(g_{n}\right)_{n}$ be a sequence of $L^{p}(\Omega, \sigma)$ and let $g \in L^{p}(\Omega, \sigma)(1<p<$ ∞), where σ is a weight function in Ω. If $g_{n} \rightarrow g$ in measure (in particular a.e. in $\Omega)$ and is bounded in $L^{p}(\Omega, \sigma)$, then $g_{n} \rightarrow g$ in $L^{q}\left(\Omega, \sigma^{q / p}\right)$ for all $q<p$.

Proof. Let $\varepsilon>0$ and set $A_{n}=\left\{x \in \Omega:\left|g_{n}(x)-g(x)\right| \sigma^{1 / p}(x) \leq\left(\frac{\varepsilon}{2 \text { meas }(\Omega)}\right)^{1 / q}\right\}$, we have

$$
\begin{aligned}
\int_{\Omega}\left|g_{n}-g\right|^{q} \sigma^{q / p} d x & =\int_{A_{n}}\left|g_{n}-g\right|^{q} \sigma^{q / p} d x+\int_{A_{n}^{c}}\left|g_{n}-g\right|^{q} \sigma^{q / p} d x \\
& \leq \frac{\varepsilon}{2}+\int_{A_{n}^{c}}\left|g_{n}-g\right|^{q} \sigma^{q / p} d x
\end{aligned}
$$

By Hölder inequality,

$$
\begin{aligned}
\int_{A_{n}^{c}}\left|g_{n}-g\right|^{q} \sigma^{q / p} d x & \leq\left(\int_{\Omega}\left|g_{n}-g\right|^{p} \sigma d x\right)^{q / p}\left(\operatorname{meas}\left(A_{n}^{c}\right)\right)^{1-\frac{q}{p}} \\
& \leq M\left(\operatorname{meas}\left(A_{n}^{c}\right)\right)^{1-\frac{q}{p}}
\end{aligned}
$$

where M is a constant does not depend on n. On the other hand since $g_{n} \rightarrow g$ in measure we have

$$
\operatorname{meas}\left(A_{n}^{c}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

then there exists some $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$
\int_{A_{n}^{c}}\left|g_{n}-g\right|^{q} \sigma^{q / p} d x \leq \frac{\varepsilon}{2} .
$$

Remark 2.4 We can also give an other proof of the last lemma, by using the non-weighted case, i.e., $g_{n} \sigma^{1 / p}$ is bounded in $L^{p}(\Omega)$ and $g_{n}(x) \sigma^{1 / p}(x) \rightarrow$ $g(x) \sigma^{1 / p}(x)$, in measure, hence $g_{n} \sigma^{1 / p} \rightarrow g \sigma^{1 / p}$ in $L^{q}(\Omega)$ for all $q<p$.

The following lemma is a generalization of [7, Lemma 3.2] in weighted spaces.
Lemma 2.5 Let $g \in L^{q}(\Omega, \sigma)$ and let $g_{n} \in L^{q}(\Omega, \sigma)$, with $\left\|g_{n}\right\|_{q, \sigma} \leq c(1<q<$ $\infty)$. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ in $L^{q}(\Omega, \sigma)$, where \rightharpoonup denotes weak convergence.

Proof. Since $g_{n} \sigma^{1 / q}$ is bounded in $L^{q}(\Omega)$ and $g_{n}(x) \sigma^{1 / q}(x) \rightarrow g(x) \sigma^{1 / q}(x)$, a.e. in Ω, by the [7, Lemma 3.2], we have

$$
g_{n} \sigma^{1 / q} \rightharpoonup g \sigma^{1 / q} \quad \text { in } L^{q}(\Omega)
$$

Moreover for all $\varphi \in L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$, we have $\varphi \sigma^{-1 / q} \in L^{q^{\prime}}(\Omega)$, then

$$
\int_{\Omega} g_{n} \varphi d x \rightarrow \int_{\Omega} g \varphi d x, \text { i.e. } g_{n} \rightharpoonup g \text { in } L^{q}(\Omega, \sigma)
$$

Lemma 2.6 Let $g_{n} \in L^{p}\left(\Omega, \sigma_{1}\right)$ and let $g \in L^{p}\left(\Omega, \sigma_{1}\right)(1<p<\infty)$. If $g_{n} \rightharpoonup g$ in $L^{p}\left(\Omega, \sigma_{1}\right)$, then

$$
g_{n} v \rightharpoonup g v \quad \text { in } L^{s}\left(\Omega, \sigma_{1}^{s / p} \sigma_{2}^{s / q}\right) \text { for any } v \in L^{q}\left(\Omega, \sigma_{2}\right)
$$

with $q>1$ and $\frac{1}{s}=\frac{1}{p}+\frac{1}{q}$.

Proof. Let $\varphi \in L^{s^{\prime}}\left(\Omega, \sigma_{1}^{\frac{s}{p}\left(1-s^{\prime}\right)} \sigma_{2}^{\frac{s}{q}\left(1-s^{\prime}\right)}\right)$. For any $v \in L^{q}\left(\Omega, \sigma_{2}\right)$ we have, $v \varphi \in$ $L^{p^{\prime}}\left(\Omega, \sigma_{1}^{1-p^{\prime}}\right)$. Indeed, since $\frac{1}{p^{\prime}}=\frac{1}{s^{\prime}}+\frac{1}{q}$, we have by Hölder's inequality,

$$
\begin{aligned}
& \int_{\Omega}|v \varphi|^{p^{\prime}} \sigma_{1}^{1-p^{\prime}}(x) d x \\
& \quad=\int_{\Omega}\left|v \sigma_{2}^{1 / q}(x)\right|^{p^{\prime}}|\varphi|^{p^{\prime}} \sigma_{1}^{1-p^{\prime}}(x) \sigma_{2}^{-p^{\prime} / q}(x) d x \\
& \quad \leq\left(\int_{\Omega}|v|^{q} \sigma_{2}(x) d x\right)^{p^{\prime} / q}\left(\int_{\Omega}|\varphi|^{s^{\prime}} \sigma_{1}^{\frac{s^{\prime}}{p^{\prime}}\left(1-p^{\prime}\right)}(x) \sigma_{2}^{-s^{\prime} / q}(x) d x\right)^{p^{\prime} / s^{\prime}} \\
& \quad=\left(\int_{\Omega}|v|^{q} \sigma_{2} d x\right)^{p^{\prime} / q}\left(\int_{\Omega}|\varphi|^{s^{\prime}} \sigma_{1}^{\frac{s}{p}\left(1-s^{\prime}\right)}(x) \sigma_{2}^{\frac{s}{q}\left(1-s^{\prime}\right)}(x) d x\right)^{p^{p^{\prime} / s^{\prime}}}<\infty
\end{aligned}
$$

Finally, since $g_{n} \rightharpoonup g$ in $L^{p}\left(\Omega, \sigma_{1}\right)$, then

$$
\int_{\Omega} g_{n} v \varphi d x \rightarrow \int_{\Omega} g v \varphi d x \text { i.e. } g_{n} v \rightharpoonup g v \text { in } L^{s}\left(\Omega, \sigma_{1}^{s / p} \sigma_{2}^{s / q}\right) \forall v \in L^{q}\left(\Omega, \sigma_{2}\right) .
$$

Lemma 2.7 Let Ω be a subset of \mathbb{R}^{N} with finite measure and let $1 \leq p \leq q$ then, we have the continuous imbedding $L^{q}(\Omega, \sigma) \hookrightarrow L^{p}\left(\Omega, \sigma^{p / q}\right)$ where σ is a weight function in Ω.

The proof of this lemma can be deduced easily from Hölder's inequality.

3 Main general result

Under the previous assumptions, the differential operator (1.1) (with coefficients satisfying (2.6), generates a mapping T from $X=W_{0}^{1, p}(\Omega, \omega)$ to its dual X^{*}
through the formula,

$$
\begin{align*}
\langle T u, v\rangle= & \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x+\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u, \zeta_{I^{c}}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x \\
& +\int_{\Omega} c_{0}\left(x, u, \zeta_{I}(\nabla u)\right) v d x+\int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial u}{\partial x_{i}} v d x \tag{3.1}
\end{align*}
$$

for all $u, v \in X$ and where \langle,$\rangle denotes the duality pairing between X^{*}$ and X. When we have adopted the notation $\zeta_{J}(\nabla u)=\left\{\frac{\partial u}{\partial x_{i}}, i \in J\right\}$.

We recall that the mapping T is well defined and bounded, this can be easily seen by Lemma 2.2 and Hölder's inequality.

Definition A bounded mapping T from X to X^{*} is called pseudo-monotone if for any sequence $u_{n} \in X$ with $u_{n} \rightharpoonup u$ in X and $\lim \sup _{n \rightarrow \infty}\left\langle T u_{n}, u_{n}-u\right\rangle \leq 0$, one has

$$
\liminf _{n \rightarrow \infty}\left\langle T u_{n}, u_{n}-v\right\rangle \geq\langle T u, u-v\rangle \quad \text { for all } v \in X
$$

Theorem 3.1 Assume that (H1), (H2'), (2.4) and (2.5) hold. Then the corresponding mapping T defined by (3.1) is pseudo-monotone in $X=W_{0}^{1, p}(\Omega, \omega)$.

Remark 3.2 1) When $I=\emptyset$, the previous theorem applies in particular to operators like (1.1) with A_{0} affine with respect to the gradient variable, this gives from (1.5) a sufficient condition (theorem 1.1 in the introduction).
2) When $I=\emptyset$ and $A_{0} \equiv 0$, we immediately obtain [2, Proposition 1$]$.
3) When $I^{c}=\emptyset$, we obtain $\left[1\right.$, Theorem 7.4] and when $A_{0} \equiv 0, I=\emptyset$, we give in [1, Theorem 7.2].
4) Theorem 3.1 generalizes [5, Theorem 3.1] in the weighted case.

Applying the previous theorem, we obtain the following existence results, which generalizes the corresponding (cf. [1, 2]).

Corollary 3.3 Let Ω be a bounded open subset of \mathbb{R}^{N} and assume the hypotheses in Theorem 3.1. Also assume the degenerate ellipticity condition

$$
\sum_{i=0}^{N} a_{i}(x, \xi) \xi_{i} \geq C_{0} \sum_{i=1}^{N} \omega_{i}(x)\left|\xi_{i}\right|^{p}
$$

for a.e. $x \in \Omega$, some $C_{0}>0$ and all $\xi \in \mathbb{R}^{N+1}$. Then for any $f \in X^{*}$ the Dirichlet associated problem

$$
\begin{aligned}
& \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x+\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u, \zeta_{I^{c}}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x \\
& \quad+\int_{\Omega} c_{0}\left(x, u, \zeta_{I}(\nabla u)\right) v d x+\int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial u}{\partial x_{i}} v d x=\int_{\Omega} f v d x
\end{aligned}
$$

for all $v \in X$ has at least one solution $u \in X$.

Proof of Theorem 3.1. Let $\left(u_{n}\right)_{n}$ be a sequence in X such that:

$$
\begin{equation*}
u_{n} \rightharpoonup u \text { in } X \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle T u_{n}, u_{n}-u\right\rangle \leq 0 \tag{3.3}
\end{equation*}
$$

i.e.

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\{ & \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \\
& +\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \\
& +\int_{\Omega} c_{0}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)\left(u_{n}-u\right) d x \\
& \left.+\int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}}\left(u_{n}-u\right) d x\right\} \leq 0 .
\end{aligned}
$$

a) We shall prove that

$$
\begin{equation*}
\left\langle T u_{n}, v\right\rangle \rightarrow\langle T u, v\rangle \quad \text { as } n \rightarrow \infty \text { for all } v \in X . \tag{3.4}
\end{equation*}
$$

First step. We show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I}\left(b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)-b_{i}\left(x, u_{n}, \zeta_{I}(\nabla u)\right)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x=0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}}\left(b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right)-b_{i}\left(x, u_{n}, \zeta_{I^{c}}(\nabla u)\right)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x=0 . \tag{3.6}
\end{equation*}
$$

Indeed: First, we can choose q_{1} such that $1<q_{1}<r$, and $\frac{1}{q_{1}}+\frac{1}{p}+\frac{1}{q}<1$ (due to $\frac{1}{r}+\frac{1}{p}+\frac{1}{q}<1$). It follows from the compact imbedding (1.7) that, for a subsequence,

$$
\begin{gather*}
u_{n} \rightarrow u \text { in } L^{q}(\Omega, \bar{\omega}) \tag{3.7}\\
u_{n}(x) \rightarrow u(x) \text { a.e. in } \Omega .
\end{gather*}
$$

By (H2'), the sequences $\left\{c_{0}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)\right\}$ (resp. $\left\{c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}}(i \in\right.$ $\left.\left.I^{c}\right)\right\}$) remains bounded in $L^{q^{\prime}}\left(\Omega, \bar{\omega}^{1-q^{\prime}}\right)$ (resp. $L^{\tilde{s}}\left(\Omega, \bar{\omega}^{\frac{-\tilde{s}}{q}}\right)$ with $\left.\frac{1}{\tilde{s}}=\frac{1}{p}+\frac{1}{r}\right)$. Indeed,

$$
\begin{aligned}
& \int_{\Omega}\left|\bar{\omega}^{-1 / q} c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}}\right|^{\tilde{s}} \\
& \quad \leq\left(\int_{\Omega} \omega_{i}^{-r / p} \bar{\omega}^{-r / q}\left|c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)\right|^{r}\right)^{\tilde{s} / r}\left(\int_{\Omega}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} \omega_{i}\right)^{\tilde{s} / p}<c .
\end{aligned}
$$

Thanks to Lemma 2.7 and since $q^{\prime} \leq \tilde{s}$, we have

$$
L^{\tilde{s}}\left(\Omega, \bar{\omega}^{-\tilde{s} / q}\right) \hookrightarrow L^{q^{\prime}}\left(\Omega, \bar{\omega}^{-q^{\prime} / q}\right)
$$

then $\left.\left\{c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}}\left(i \in I^{c}\right)\right\}\right)$ is bounded in $\left.L^{q^{\prime}}\left(\Omega, \bar{\omega}^{1-q^{\prime}}\right)\right)$. Hence, using (3.7) we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} c_{0}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)\left(u_{n}-u\right) d x=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}}\left(u_{n}-u\right) d x=0 \tag{3.9}
\end{equation*}
$$

On the other hand, in virtue of (3.7) and continuity of the Nemytskii operators (see [3]), we have

$$
\begin{aligned}
b_{i}\left(x, u_{n}, \zeta_{I}(\nabla u)\right) \rightarrow b_{i}\left(x, u, \zeta_{I}(\nabla u)\right) & \text { in } L^{p^{\prime}}\left(\Omega, \omega_{i}^{*}\right), i \in I \\
b_{i}\left(x, u_{n}, \zeta_{I^{c}}(\nabla u)\right) \rightarrow b_{i}\left(x, u, \zeta_{I^{c}}(\nabla u)\right) & \text { in } L^{p^{\prime}}\left(\Omega, \omega_{i}^{*}\right), i \in I^{c},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u_{n}, \zeta_{I}(\nabla u)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x=0 \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}(\nabla u)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x=0 \tag{3.11}
\end{equation*}
$$

Combining (2.4), (2.5), (3.3), (3.8), (3.9), (3.10) and (3.11) we conclude the assertions (3.5) and (3.6).

Second step. For to prove of the relation (3.4) it suffices to show the following assertions:
(i) For every $v \in X$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} c_{0}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) v d x=\int_{\Omega} c_{0}\left(x, u, \zeta_{I}(\nabla u)\right) v d x \tag{3.12}
\end{equation*}
$$

(ii) For every $v \in X$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} \sum_{i \in I} b_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x . \tag{3.13}
\end{equation*}
$$

(iii) For every $v \in X$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}} v d x=\int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial u}{\partial x_{i}} v d x \tag{3.14}
\end{equation*}
$$

(iv) For every $v \in X$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u, \zeta_{I^{c}}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x \tag{3.15}
\end{equation*}
$$

Proof of (i)and (ii). Invoking Landes [6, Lemma 6], we obtain from (3.5) and the strict monotonicity (2.4) that,

$$
\begin{equation*}
\frac{\partial u_{n}}{\partial x_{i}} \rightarrow \frac{\partial u}{\partial x_{i}} \quad \text { a.e. in } \Omega \text { for each } i \in I \tag{3.16}
\end{equation*}
$$

which gives

$$
\begin{gathered}
c_{0}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \rightarrow c_{0}\left(x, u, \zeta_{I}(\nabla u)\right) \quad \text { a.e. in } \Omega, \\
b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \rightarrow b_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \quad \text { a.e. in } \Omega \forall i \in I .
\end{gathered}
$$

The growth conditions (H2') imply that, the sequences $\left\{c_{0}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right)\right\}$ (resp. $\left.\left\{b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \quad i \in I\right\}\right)$ remains bounded in $L^{q^{\prime}}\left(\Omega, \bar{\omega}^{1-q^{\prime}}\right)$ (resp. $\left.L^{p^{\prime}}\left(\Omega, \omega_{i}^{*}\right)\right)$. Hence by Lemma 2.5 we conclude (i) and (ii).
Proof of (iii). Similarly, by (3.7) and (3.16) we can write,

$$
c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \rightarrow c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \quad \text { a.e. in } \Omega \text { for all } i \in I^{c} .
$$

And by the growth conditions (H2') also $\left\{c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right), i \in I^{c}\right\}$ is bounded in $L^{r}\left(\Omega, \omega_{i}^{-\frac{r}{p}} \bar{\omega}^{-\frac{r}{q}}\right)$, then in virtue of Lemma 2.3, we have

$$
c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \rightarrow c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \quad \text { in } L^{q_{1}}\left(\Omega, \omega_{i}^{\frac{-q_{1}}{p}} \bar{\omega}^{\frac{-q_{1}}{q}}\right) \quad \forall i \in I^{c} .
$$

Let $s>1$ such that $\frac{1}{s}=\frac{1}{p}+\frac{1}{q}$. Since $\frac{1}{s^{\prime}}+\frac{1}{s}=1>\frac{1}{s}+\frac{1}{q_{1}}$ i.e. $s^{\prime}<q_{1}$, we have (as in the proof of Lemma 2.7),

$$
\int_{\Omega}|v|^{s^{\prime}} \omega_{i}^{-s^{\prime} / p} \bar{\omega}^{-s^{\prime} / q} d x \leq\left(\int_{\Omega}|v|^{q_{1}} \omega_{i}^{-q_{1} / p} \bar{\omega}^{\frac{-q_{1}}{q}} d x\right)^{s^{\prime} / q_{1}}(\operatorname{meas}(\Omega))^{1-\frac{s^{\prime}}{q_{1}}}
$$

for all $v \in L^{q_{1}}\left(\Omega, \omega_{i}^{-q_{1} / p} \bar{\omega}^{-q_{1} / q}\right)$. Then

$$
L^{q_{1}}\left(\Omega, \omega_{i}^{\frac{-q_{1}}{p}} \bar{\omega}^{\frac{-q_{1}}{q}}\right) \hookrightarrow L^{s^{\prime}}\left(\Omega, \omega_{i}^{\frac{-s^{\prime}}{p}} \bar{\omega}^{\frac{-s^{\prime}}{q}}\right),
$$

which implies

$$
c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \rightarrow c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \quad \text { in } L^{s^{\prime}}\left(\Omega, \omega_{i}^{-s^{\prime} / p} \bar{\omega}^{-s^{\prime} / q}\right) \forall i \in I^{c}
$$

On the other hand, from Lemma 2.6 we obtain,

$$
\frac{\partial u_{n}}{\partial x_{i}} v \rightharpoonup \frac{\partial u}{\partial x_{i}} v \quad \text { in } L^{s}\left(\Omega, \omega_{i}^{s / p} \bar{\omega}^{s / q}\right)
$$

for any $v \in L^{q}(\Omega, \bar{\omega})$ and so for any $v \in X$,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}} v d x=\int_{\Omega} \sum_{i \in I^{c}} c_{i}\left(x, u, \zeta_{I}(\nabla u)\right) \frac{\partial u}{\partial x_{i}} v d x
$$

for any $v \in X$.
Proof of (iv). As before, the growth conditions (H2') implies that, the sequence $\left\{b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \quad i \in I^{c}\right\}$ is bounded in $L^{p^{\prime}}\left(\Omega, \omega_{i}^{*}\right)$. Next, we show that,
$\int_{\Omega} \sum_{i \in I^{c}}\left\{b_{i}\left(x, u, \zeta_{I^{c}}(v)\right)-h_{i}\right\}\left(v_{i}-\frac{\partial u}{\partial x_{i}}\right) d x \geq 0 \quad$ for all $v=\left(v_{i}\right) \in \prod_{i=1}^{N} L^{p}\left(\Omega, \omega_{i}\right)$,
here h_{i} stands for the weak limit of $\left\{b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right), i \in I^{c}\right\}$ in $L^{p^{\prime}}\left(\Omega, \omega_{i}^{1-p^{\prime}}\right)$. Indeed by (3.6) we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}} d x \leq \int_{\Omega} \sum_{i \in I^{c}} h_{i} \frac{\partial u}{\partial x_{i}} d x \tag{3.18}
\end{equation*}
$$

and from (2.5), we obtain for any $v=\left(v_{i}\right) \in \prod_{i=1}^{N} L^{p}\left(\Omega, \omega_{i}\right)$,

$$
\begin{aligned}
& \int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}} d x \\
& \quad \geq \int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) v_{i} d x+\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}(v)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-v_{i}\right) d x .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we conclude by (3.18) that,

$$
\int_{\Omega} \sum_{i \in I^{c}} h_{i} \frac{\partial u}{\partial x_{i}} d x \geq \int_{\Omega} \sum_{i \in I^{c}} h_{i} v_{i} d x+\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u, \zeta_{I^{c}}(v)\right)\left(\frac{\partial u}{\partial x_{i}}-v_{i}\right) d x
$$

and hence (3.17) follows. Choosing $v=\nabla u+t \tilde{w}$ with $t>0, \tilde{w}=\left(\tilde{w}_{i}\right) \in$ $\prod_{i=1}^{N} L^{p}\left(\Omega, \omega_{i}\right)$ and letting $t \rightarrow 0$ we obtain,

$$
h_{i}=b_{i}\left(x, u, \zeta_{I^{c}}(\nabla u)\right) \quad \text { a.e. in } \Omega,
$$

which gives,

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \frac{\partial v}{\partial x_{i}} d x=\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u, \zeta_{I^{c}}(\nabla u)\right) \frac{\partial v}{\partial x_{i}} d x
$$

for all $v \in X$.
b) We shall prove that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\langle T u_{n}, u_{n}\right\rangle \geq\langle T u, u\rangle \tag{3.19}
\end{equation*}
$$

by (2.4) and (2.5) we have

$$
\begin{aligned}
& \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}} d x+\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \frac{\partial u_{n}}{\partial x_{i}} d x \\
& \geq \int_{\Omega} \sum_{i \in I} b_{i}\left(x, u_{n}, \zeta_{I}\left(\nabla u_{n}\right)\right) \frac{\partial u}{\partial x_{i}} d x+\int_{\Omega} \sum_{i \in I} b_{i}\left(x, u_{n}, \zeta_{I}(\nabla u)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \\
& +\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}\left(\nabla u_{n}\right)\right) \frac{\partial u}{\partial x_{i}} d x+\int_{\Omega} \sum_{i \in I^{c}} b_{i}\left(x, u_{n}, \zeta_{I^{c}}(\nabla u)\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x,
\end{aligned}
$$

then letting $n \rightarrow \infty$, and using (3.8) and (3.9), we conclude (3.19).

Example Many ideas in this example have adapted from the corresponding examples 1-2 in [2]. We shall suppose that the weight functions satisfy: $\omega_{i_{0}}(x) \equiv$ 0 for some $i_{0} \in I^{c}$, and $\omega_{i}(x)=\omega(x), x \in \Omega$, for all $i \in I \cup I^{c}$ and $i \neq i_{0}$ with $\omega(x)>0$ a.e. in Ω. Then, we can consider the Hardy inequality in the form

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{q} \bar{\omega}(x) d x\right)^{1 / q} \leq c\left(\sum_{i \neq i_{0}} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} \omega\right)^{1 / p} \tag{3.20}
\end{equation*}
$$

for every $u \in X$ with a constant $c>0$ independent of u and for some $q \geq p^{\prime}$.
Let us consider the Carathéodory functions:

$$
\begin{gather*}
b_{i}\left(x, \eta, \zeta_{I}\right)=\omega\left|\zeta_{i}\right|^{p-1} \operatorname{sgn} \zeta_{i}+\omega_{0} A_{0}(\eta) \quad \text { for } i \in I \\
b_{i}\left(x, \eta, \zeta_{I^{c}}\right)=\omega\left|\zeta_{i}\right|^{p-1} \operatorname{sgn} \zeta_{i}+\omega_{0} A_{0}(\eta) \quad \text { for } i \in I^{c} \text { and } i \neq i_{0} \\
b_{i_{0}}\left(x, \eta, \zeta_{I^{c}}\right)=\omega_{0} A_{0}(\eta) \\
c_{0}\left(x, \eta, \zeta_{I}\right)=\sum_{j \in I} \omega^{1 / q^{\prime}} \bar{\omega}^{1 / q}\left|\zeta_{j}\right|^{\frac{p}{q^{\prime}}}+\omega_{0} B_{0}(\eta) \tag{3.21}\\
c_{i}\left(x, \eta, \zeta_{I}\right)=\sum_{j \in I} \omega^{1 / p+1 / r} \bar{\omega}^{1 / q}\left|\zeta_{j}\right|^{p / r}+\omega_{0} B_{1}(\eta) \text { for } i \in I^{c},
\end{gather*}
$$

with $1 / p+1 / r+1 / q<1$. The above functions define by (3.21) satisfies the growth conditions (H2') if we suppose that

$$
\begin{gather*}
\left|\omega_{0} A_{0}(\eta)\right| \leq \beta_{1} \omega^{1 / p} \bar{\omega}^{1 / p^{\prime}}|\eta|^{q / p^{\prime}} \\
\left|\omega_{0} B_{0}(\eta)\right| \leq \beta_{2} \bar{\omega}|\eta|^{q / q^{\prime}} \tag{3.22}\\
\left|\omega_{0} B_{1}(\eta)\right| \leq \beta_{3} \omega^{1 / p} \bar{\omega}^{1 / q+1 / r}|\eta|^{q / r}
\end{gather*}
$$

with $\beta_{j} j=1,2,3$ are some positive constants. In particular, let us use the special weight functions $\omega_{0}, \omega, \bar{\omega}$ expressed in terms of the distance to the boundary $\partial \Omega$: denote $d(x)=\operatorname{dist}(x, \partial \Omega)$ and set

$$
\omega(x)=d^{\lambda}(x), \quad \omega_{0}(x)=d^{\lambda_{0}}(x), \quad \bar{\omega}(x)=d^{\mu}(x)
$$

In this case the condition (3.22) writes as

$$
\begin{gather*}
\left|A_{0}(\eta)\right| \leq \beta_{1} d^{\lambda / p+\mu / p^{\prime}-\lambda_{0}}|\eta|^{q / p} \\
\left|B_{0}(\eta)\right| \leq \beta_{2} d^{\mu-\lambda_{0}}|\eta|^{q / q^{\prime}} \tag{3.23}\\
\left|B_{1}(\eta)\right| \leq \beta_{3} d^{\lambda / p+\mu / q+\mu / r-\lambda_{0}}|\eta|^{q / r},
\end{gather*}
$$

and the Hardy inequality reads

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{q} d^{\mu}(x) d x\right)^{1 / q} \leq c\left(\sum_{i \neq i_{0}} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d^{\lambda}(x) d x\right)^{1 / p}, \tag{3.24}
\end{equation*}
$$

and the corresponding imbedding (1.7) is compact for $1 \leq p \leq q<\infty$ (resp. $1 \leq q<p<\infty$,), if and only if $\lambda \neq p-1, \frac{N}{q}-\frac{N}{p}+1 \geq 0, \frac{\mu}{q}-\frac{\lambda}{p}+\frac{N}{q}-\frac{N}{p}+1>0$, (resp. $\lambda \in \mathbb{R}, \frac{\mu}{q}-\frac{\lambda}{p}+\frac{1}{q}-\frac{1}{p}>0$) (see [8]). Moreover, the two monotonicity conditions (2.4) and (2.5) are satisfied:

$$
\begin{aligned}
& \sum_{i \in I}\left(b_{i}\left(x, \eta, \zeta_{I}\right)-b_{i}\left(x, \eta, \bar{\zeta}_{I}\right)\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right) \\
& =\omega(x) \sum_{i \in I}\left(\left|\zeta_{i}\right|^{p-1} \operatorname{sgn} \zeta_{i}-\left|\bar{\zeta}_{i}\right|^{p-1} \operatorname{sgn} \bar{\zeta}_{i}\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right)>0
\end{aligned}
$$

for almost all $x \in \Omega$ and for all $\zeta, \bar{\zeta} \in \mathbb{R}^{N}$ with $\zeta_{I} \neq \bar{\zeta}_{I}$, since $\omega>0$ a.e. in Ω; and

$$
\begin{aligned}
& \sum_{i \in I^{c}}\left(b_{i}\left(x, \eta, \zeta_{I^{c}}\right)-b_{i}\left(x, \eta, \bar{\zeta}_{I^{c}}\right)\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right) \\
&=\omega(x) \sum_{\substack{i \in I^{c} \\
i \neq i_{0}}}\left(\left|\zeta_{i}\right|^{p-1} \operatorname{sgn} \zeta_{i}-\left|\bar{\zeta}_{i}\right|^{p-1} \operatorname{sgn} \bar{\zeta}_{i}\right)\left(\zeta_{i}-\bar{\zeta}_{i}\right) \geq 0
\end{aligned}
$$

for almost all $x \in \Omega$ and for all $\zeta, \bar{\zeta} \in \mathbb{R}^{N}$. This last inequality can not be strict, since for $\zeta_{I^{c}} \neq \bar{\zeta}_{I^{c}}$ with $\zeta_{i_{0}} \neq \bar{\zeta}_{i_{0}}$ but $\zeta_{i}=\bar{\zeta}_{i}$ for all $i \in I^{c}$ and $i \neq i_{0}$, the corresponding expression is zero. Finally, the hypotheses of theorem 3.1 are verify, then the mapping T defined as (3.1) corresponding to (3.21) is pseudomonotone.

4 Specific case

Let Ω be a bounded open subset of \mathbb{R}^{N} satisfying the cone condition. In this section we assume in addition that the collection of weight functions $\omega=$ $\left\{\omega_{i}(x) i=0, \ldots, N\right\}$ satisfy $\omega_{0}(x)=1$ and the integrability condition: There exists $\nu \in] \frac{N}{p}, \infty\left[\cap\left[\frac{1}{p-1}, \infty[\right.\right.$ such that

$$
\begin{equation*}
\omega_{i}^{-\nu} \in L^{1}(\Omega) \quad \forall i=1, \ldots, N \tag{4.1}
\end{equation*}
$$

Note that (4.1) is stronger than (2.2).

Remark 4.1 ([3]) 1. Assumptions (2.1) and (4.1) imply that,

$$
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} \omega_{i}(x) d x\right)^{1 / p}
$$

is a norm defined on $W_{0}^{1, p}(\Omega, \omega)$ and it's equivalent to (2.3), and that

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, \omega) \hookrightarrow \hookrightarrow L^{q}(\Omega) \tag{4.2}
\end{equation*}
$$

for all $1 \leq q<p_{1}^{*}$ if $p \nu<N(\nu+1)$ and $q \geq 1$ is arbitrary if $p \nu \geq N(\nu+1)$ where $p_{1}=\frac{p \nu}{\nu+1}$ and $p_{1}^{*}=\frac{N p_{1}}{N-p_{1}}=\frac{N p \nu}{N(\nu+1)-p \nu}$ is the Sobolev conjugate of p_{1}.
2. Hypotheses (H1) holds for all q such that $1<q<p_{1}^{*}$ and $\bar{\omega} \equiv 1$.

In the sequel, we replace (4.1) by the hypothesis
(H1) If $\frac{2 N}{N+1}<p<N$ there exists $\left.\nu \in\right] \frac{N}{p}, \infty[\cap] \frac{1}{(p-1)-\frac{p^{*}}{p^{*}}}, \infty\left[\right.$ such that $\omega_{i}^{-\nu} \in$ $L^{1}(\Omega)$, for all $i=1, \ldots, N$. If $p=N$ there exists $\left.\nu \in\right] 1, \infty\left[\right.$ such that $\omega_{i}^{-\nu} \in$ $L^{1}(\Omega)$ for all $i=1, \ldots, N$. If $p>N$ there exist $\left.\nu \in\right] \frac{N}{p-N}, \infty\left[\cap\left[\frac{1}{(p-1)}, \infty[\right.\right.$ such that $\omega_{i}^{-\nu} \in L^{1}(\Omega)$ for all $i=1, \ldots, N$.

Remark 4.2 1. Hypothesis ($\tilde{H} 1$) guarantees the existence of r satisfying $\frac{1}{r}+\frac{1}{p}+\frac{1}{p_{1}^{*}}<1$, where p_{1}^{*} is the Sobolev conjugate of p_{1} in the case $\frac{2 N}{N+1}<p \leq N$ and where $p_{1}^{*}=\infty$ in the case $p>N$ (since $p_{1}>N$ due to $\left.\nu>\frac{N}{p-N}\right)$.
2. If $1<p \leq \frac{2 N}{N+1}$ we can't find a real $r>1$ such that $\frac{1}{r}+\frac{1}{p}+\frac{1}{p_{1}^{*}}<1$, since $\frac{1}{p}+\frac{1}{p_{1}^{*}}>\frac{1}{p}+\frac{1}{p^{*}} \geq 1$.
3. Note that ($\tilde{H} 1)$ is stronger than (4.1), then the compact imbedding (4.2) is satisfied whenever (H1) is assumed.

Theorem 4.3 Let Ω be a bounded open subset of \mathbb{R}^{N}. And assume that (2.1), (\tilde{H}_{1}), (H2'), (2.4) and (2.5) are satisfied. Then the operator T defined in (3.1) is pseudo-monotone in $X=W_{0}^{1, p}(\Omega, \omega)$. Moreover, assume the degenerate ellipticity condition

$$
\sum_{i=0}^{N} a_{i}(x, \xi) \xi_{i} \geq c_{0} \sum_{i=1}^{N} \omega_{i}(x)\left|\xi_{i}\right|^{p}
$$

for a.e. $x \in \Omega$, some $c_{0}>0$ and all $\xi \in \mathbb{R}^{N+1}$. Then for any $f \in X^{*}$ the Dirichlet associated problem

$$
\langle T u, v\rangle=\langle f, v\rangle \quad \text { for all } v \in X
$$

has at least one solution $u \in X$.

References

[1] E. Azroul, Sur certains problèmes elliptiques (non linéaires dégénérés ou singuliers) et calcul des variations, Thèse de Doctorat d'Etat, Faculté des Sciences Dhar-Mahraz, Fès, Maroc, janvier 2000.
[2] P. Drabek, A. Kufner and V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[3] P. Drabek, A. Kufner and F. Nicolosi, Non linear elliptic equations, singular and degenerate cases, University of West Bohemia, (1996).
[4] P. Drabek, A. Kufner and F. Nicolosi, On the solvability of degenerated quasilinear elliptic equations of higher order, Journal of differential equations, 109 (1994), 325-347.
[5] J.P. Gossez and V. Mustonen, Pseudo-monotoncity and the Leray-Lions condition, Differential Integral Equations 6 (1993), 37-45.
[6] R. Landes, On Galerkin's method in the existence theory of quasilinear elliptic equations, J. Functional Analysis 39 (1980), 123-148.
[7] J. Leray and J.L. Lions, Quelques résultats de Vis̃ik sur des problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bul. Soc. Math. France 93 (1965), 97-107.
[8] B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series $\mathbf{2 1 9}$ (Longman Scientific and Technical, Harlow, 1990).

Youssef Akdim (e-mail y.akdim1@caramail.com)
Elhoussine Azroul (e-mail elazroul@caramail.com)
Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B.P 1796 Atlas Fès, Maroc

[^0]: *Mathematics Subject Classifications: 35J25, 35J70.
 Key words: Weighted Sobolev spaces, pseudo-monotonicity, nonlinear degenerate elliptic operators.
 © 2002 Southwest Texas State University.
 Published December 28, 2002.

