Strongly nonlinear degenerated elliptic unilateral problems via convergence of truncations *

Youssef Akdim, Elhoussine Azroul, \& Abdelmoujib Benkirane

Abstract

We prove an existence theorem for a strongly nonlinear degenerated elliptic inequalities involving nonlinear operators of the form $A u+g(x, u, \nabla u)$, Here A is a Leray-Lions operator, $g(x, s, \xi)$ is a lower order term satisfying some natural growth with respect to $|\nabla u|$. There is no growth restrictions with respect to $|u|$, only a sign condition. Under the assumption that the second term belongs to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, we obtain the main result via strong convergence of truncations.

1 Introduction

Let Ω be a bounded open set of \mathbb{R}^{N} and p a real number such that $1<p<\infty$. Let $w=\left\{w_{i}(x), 0 \leq i \leq N\right\}$ be a vector of weight functions on Ω, i.e. each $w_{i}(x)$ is a measurable a.e. strictly positive function on Ω, satisfying some integrability conditions (see section 2). The aim of this paper, is to prove an existence theorem for unilateral degenerate problems associated to a nonlinear operators of the form $A u+g(x, u, \nabla u)$. Where A is a Leray-Lions operator from $W_{0}^{1, p}(\Omega, w)$ into its dual $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, defined by,

$$
A u=-\operatorname{div}(a(x, u, \nabla u))
$$

and where g is a nonlinear lower order term having natural growth with respect to $|\nabla u|$. With respect to $|u|$ we do not assume any growth restrictions, but we assume a sign condition. Bensoussan, Boccardo and Murat have proved in the second part of [2] the existence of at least one solution of the unilateral problem

$$
\begin{aligned}
& \langle A u, v-u\rangle+\int_{\Omega} g(x, u, \nabla u)(v-u) d x \geq\langle f, v-u\rangle \quad \text { for all } v \in K_{\psi} \\
& u \in W_{0}^{1, p}(\Omega) \quad u \geq \psi \text { a.e. } \\
& g(x, u, \nabla u) \in L^{1}(\Omega) \quad g(x, u, \nabla u) u \in L^{1}(\Omega)
\end{aligned}
$$

[^0]where $f \in W^{-1, p^{\prime}}(\Omega)$ and $K_{\psi}=\left\{v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega), v \geq \psi\right.$ a.e. Here ψ is a measurable function on Ω such that $\psi^{+} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$. For that the authors obtain the existence results by proving that the positive part u_{ε}^{+}(resp. u_{ε}^{-}) of u_{ε} strongly converges to $u^{+}\left(\right.$resp. $\left.u^{-}\right)$in $W_{0}^{1, p}(\Omega)$, where u_{ε} is a solution of the approximate problem. In the present paper, we study the variational degenerated inequalities. More precisely, we prove the existence of a solution for the problem (3.3) (see section 3), by using another approach based on the strong convergence of the truncations $T_{k}\left(u_{\varepsilon}\right)$ in $W_{0}^{1, p}(\Omega, w)$. Moreover, in this paper, we assume only the weak integrability condition $\sigma^{1-q^{\prime}} \in L_{\text {loc }}^{1}(\Omega)$ (see (2.11) below) instead of the stronger $\sigma^{1-q^{\prime}} \in L^{1}(\Omega)$ as in [1]. This can be done by approximating Ω by a sequence of compact sets Ω_{ε}. Note that, in the non weighted case the same result is proved in [3] where $f \in L^{1}(\Omega)$. Let us point out that other works in this direction can be found in $[6,1]$.

This paper is organized as follows: Section 2 contains some preliminaries and basic assumptions. In section 3 we state and prove our main results.

2 Preliminaries and basic assumption

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 1)$, let $1<p<\infty$, and let $w=\left\{w_{i}(x), 0 \leq i \leq N\right\}$ be a vector of weight functions, i.e. every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that for $0 \leq i \leq N$,

$$
\begin{gather*}
w_{i} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.1}\\
w_{i}^{-\frac{1}{p-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.2}
\end{gather*}
$$

We define the weighted space $L^{p}(\Omega, \gamma)$ where γ is a weight function on Ω by,

$$
L^{p}(\Omega, \gamma)=\left\{u=u(x), u \gamma^{1 / p} \in L^{p}(\Omega)\right\}
$$

with the norm

$$
\|u\|_{p, \gamma}=\left(\int_{\Omega}|u(x)|^{p} \gamma(x) d x\right)^{1 / p}
$$

We denote by $W^{1, p}(\Omega, w)$ the space of all real-valued functions $u \in L^{p}\left(\Omega, w_{0}\right)$ such that the derivatives in the sense of distributions satisfies

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, w_{i}\right) \text { for all } i=1, \ldots, N
$$

which is a Banach space under the norm

$$
\begin{equation*}
\|u\|_{1, p, w}=\left(\int_{\Omega}|u(x)|^{p} w_{0}(x) d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

Since we shall deal with the Dirichlet problem, we shall use the space

$$
\begin{equation*}
X=W_{0}^{1, p}(\Omega, w) \tag{2.4}
\end{equation*}
$$

defined as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm (2.3). Note that, $C_{0}^{\infty}(\Omega)$ is dense in $W_{0}^{1, p}(\Omega, w)$ and $\left(X,\|\cdot\|_{1, p, w}\right)$ is a reflexive Banach space.

We recall that the dual space of weighted Sobolev spaces $W_{0}^{1, p}(\Omega, w)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, where $w^{*}=\left\{w_{i}^{*}=w_{i}^{1-p^{\prime}}, \forall i=0, \ldots, N\right\}$, where p^{\prime} is the conjugate of p i.e. $p^{\prime}=\frac{p}{p-1}$ (for more details we refer to [5]).

Definition 2.1 Let Y be a separable reflexive Banach space, the operator B from Y to its dual Y^{*} is called of the calculus of variations type, if B is bounded and is of the form

$$
\begin{equation*}
B(u)=B(u, u) \tag{2.5}
\end{equation*}
$$

where $(u, v) \rightarrow B(u, v)$ is an operator from $Y \times Y$ into Y^{*} satisfying the following properties:

$$
\begin{gather*}
\forall u \in Y, v \rightarrow B(u, v) \text { is bounded hemicontinuous from } Y \text { into } Y^{*} \\
\quad \text { and }(B(u, u)-B(u, v), u-v) \geq 0, \tag{2.6}
\end{gather*}
$$

$\forall v \in Y, u \rightarrow B(u, v) \quad$ is bounded hemicontinuous from Y into Y^{*},
if $u_{n} \rightharpoonup u$ weakly in Y and if $\left(B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-u\right) \rightarrow 0$ then, $B\left(u_{n}, v\right) \rightharpoonup B(u, v)$ weakly in $Y^{*}, \forall v \in Y$,

$$
\begin{gather*}
\text { if } u_{n} \rightharpoonup u \text { weakly in } Y \text { and if } B\left(u_{n}, v\right) \rightharpoonup \psi \text { weakly in } Y^{*}, \tag{2.8}\\
\text { then, }\left(B\left(u_{n}, v\right), u_{n}\right) \rightarrow(\psi, u) . \tag{2.9}
\end{gather*}
$$

Definition 2.2 Let Y be a reflexive Banach space, a bounded mapping B from Y to Y^{*} is called pseudo-monotone if for any sequence $u_{n} \in Y$ with $u_{n} \rightharpoonup u$ weakly in Y and $\lim \sup _{n \rightarrow \infty}\left\langle B u_{n}, u_{n}-u\right\rangle \leq 0$, one has

$$
\liminf _{n \rightarrow \infty}\left\langle B u_{n}, u_{n}-v\right\rangle \geq\langle B u, u-v\rangle \quad \text { for all } v \in Y
$$

We start by stating the following assumptions:
Assumption (H1) The expression

$$
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}
$$

is a norm on X and it is equivalent to the norm (2.3). There exist a weight function σ on Ω and a parameter q, such that

$$
\begin{gather*}
1<q<p+p^{\prime} \tag{2.10}\\
\sigma^{1-q^{\prime}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.11}
\end{gather*}
$$

with $q^{\prime}=\frac{q}{q-1}$. The Hardy inequality,

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{q} \sigma d x\right)^{1 / q} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.12}
\end{equation*}
$$

holds for every $u \in X$ with a constant $c>0$ independent of u. Moreover, the imbedding

$$
\begin{equation*}
X \hookrightarrow \hookrightarrow L^{q}(\Omega, \sigma) \tag{2.13}
\end{equation*}
$$

expressed by the inequality (2.12) is compact.
Note that $\left(X,\||\cdot|\|_{X}\right)$ is a uniformly convex (and thus reflexive) Banach space.

Remark 2.1 If we assume that $w_{0}(x) \equiv 1$ and in addition the integrability condition: There exists $\nu \in] \frac{N}{p}, \infty\left[\cap\left[\frac{1}{p-1}, \infty[\right.\right.$ such that

$$
w_{i}^{-\nu} \in L^{1}(\Omega)
$$

for all $i=1, \ldots, N$ (which is stronger than (2.2)). Then

$$
\||u|\|_{X}=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}
$$

is a norm defined on $W_{0}^{1, p}(\Omega, w)$ and is equivalent to (2.3). Moreover

$$
W_{0}^{1, p}(\Omega, w) \hookrightarrow \hookrightarrow L^{q}(\Omega)
$$

for all $1 \leq q<p_{1}^{*}$ if $p \nu<N(\nu+1)$ and for all $q \geq 1$ if $p \nu \geq N(\nu+1)$, where $p_{1}=\frac{p \nu}{\nu+1}$ and $p_{1}^{*}=\frac{N p_{1}}{N-p_{1}}=\frac{N p \nu}{N(\nu+1)-p \nu}$ is the Sobolev conjugate of p_{1} (see [5]). Thus the hypotheses (H1) is verified for $\sigma \equiv 1$ and for all $1<q<\min \left\{p_{1}^{*}, p+p^{\prime}\right\}$ if $p \nu<N(\nu+1)$ and for all $1<q<p+p^{\prime}$ if $p \nu \geq N(\nu+1)$.

Let A be a nonlinear operator from $W_{0}^{1, p}(\Omega, w)$ into its dual $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ defined by,

$$
A u=-\operatorname{div}(a(x, u, \nabla u))
$$

where $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory vector function satisfying the following assumptions:

Assumption (H2)

$$
\begin{gather*}
\left|a_{i}(x, s, \xi)\right| \leq \beta w_{i}^{1 / p}(x)\left[k(x)+\sigma^{\frac{1}{p^{\prime}}}|s|^{\frac{q}{p^{\prime}}}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}(x)\left|\xi_{j}\right|^{p-1}\right] \text { for } i=1, \ldots, N, \tag{2.14}\\
{[a(x, s, \xi)-a(x, s, \eta)](\xi-\eta)>0, \text { for all } \xi \neq \eta \in \mathbb{R}^{N}} \tag{2.15}\\
a(x, s, \xi) \cdot \xi \geq \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p} \tag{2.16}
\end{gather*}
$$

where $k(x)$ is a positive function in $L^{p^{\prime}}(\Omega)$ and α, β are strictly positive constants.

Assumption (H3) Let $g(x, s, \xi)$ be a Carathéodory function satisfying the following assumptions:

$$
\begin{gather*}
g(x, s, \xi) s \geq 0 \tag{2.17}\\
|g(x, s, \xi)| \leq b(|s|)\left(\sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p}+c(x)\right) \tag{2.18}
\end{gather*}
$$

where $b: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous increasing function and $c(x)$ is a positive function which lies in $L^{1}(\Omega)$. Now we recall some lemmas introduced in [1] which will be used later.
Lemma 2.1 (cf. [1]) Let $g \in L^{r}(\Omega, \gamma)$ and let $g_{n} \in L^{r}(\Omega, \gamma)$, with $\left\|g_{n}\right\|_{r, \gamma} \leq$ $c \quad(1<r<\infty)$. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ weakly in $L^{r}(\Omega, \gamma)$, where γ is a weight function on Ω.
Lemma 2.2 (cf. [1]) Assume that (H1) holds. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly Lipschitzian, with $F(0)=0$. Let $u \in W_{0}^{1, p}(\Omega, w)$. Then $F(u) \in W_{0}^{1, p}(\Omega, w)$. Moreover, if the set D of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial(F \circ u)}{\partial x_{i}}= \begin{cases}F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. in }\{x \in \Omega: u(x) \notin D\} \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \in D\} .\end{cases}
$$

Lemma 2.3 (cf. [1]) Assume that (H1) holds. Let $u \in W_{0}^{1, p}(\Omega, w)$, and let $T_{k}(u), k \in \mathbb{R}^{+}$, is the usual truncation then $T_{k}(u) \in W_{0}^{1, p}(\Omega, w)$. Moreover, we have

$$
T_{k}(u) \rightarrow u \quad \text { strongly in } W_{0}^{1, p}(\Omega, w) .
$$

Lemma 2.4 Assume that (H1) holds. Let $\left(u_{n}\right)$ be a sequence of $W_{0}^{1, p}(\Omega, w)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$. Then, $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ weakly in $W_{0}^{1, p}(\Omega, w)$

Proof. Since $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and by (2.13) we have for a subsequence $u_{n} \rightarrow u$ strongly in $L^{q}(\Omega, \sigma)$ and a.e. in Ω. On the other hand,

$$
\begin{aligned}
\left\|\left|T_{k}\left(u_{n}\right)\right|\right\|_{X}^{p} & =\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial T_{k}\left(u_{n}\right)}{\partial x_{i}}\right|^{p} w_{i}=\sum_{i=1}^{N} \int_{\Omega}\left|T_{k}^{\prime}\left(u_{n}\right) \frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i} \\
& \leq \sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} w_{i}=\left\|\left|u_{n}\right|\right\|_{X}^{p} .
\end{aligned}
$$

Then $\left(T_{k}\left(u_{n}\right)\right)$ is bounded in $W_{0}^{1, p}(\Omega, w)$, hence by using $(2.13), T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ weakly in $W_{0}^{1, p}(\Omega, w)$.
Lemma 2.5 (cf. [1]) Assume that (H1) and (H2) are satisfied, and let (u_{n}) be a sequence of $W_{0}^{1, p}(\Omega, w)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and

$$
\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right) d x \rightarrow 0
$$

Then $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega, w)$.

3 Main result

Let ψ be a measurable function with values in \mathbb{R} such that

$$
\begin{equation*}
\psi^{+} \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega) \tag{3.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
K_{\psi}=\left\{v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega) \quad v \geq \psi \text { a.e. }\right\} \tag{3.2}
\end{equation*}
$$

Note that (3.1) implies $K_{\psi} \neq \emptyset$. Consider the nonlinear problem with Dirichlet boundary conditions,

$$
\begin{gather*}
\langle A u, v-u\rangle+\int_{\Omega} g(x, u, \nabla u)(v-u) d x \geq\langle f, v-u\rangle \text { for all } v \in K_{\psi} \\
u \in W_{0}^{1, p}(\Omega, w) \quad u \geq \psi \text { a.e. } \tag{3.3}\\
g(x, u, \nabla u) \in L^{1}(\Omega), \quad g(x, u, \nabla u) u \in L^{1}(\Omega)
\end{gather*}
$$

Then, the following result can be proved for a solution u of this problem.

Theorem 3.1 Assume that the assumptions (H1)-(H3) and (3.1) hold and let $f \in W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$. Then there exists at least one solution of (3.3).

Remark 3.1 1) Theorem 3.1 can be generalized in weighted case to an analogous statement in [2].
2) Note that in [1] the authors have assumed that $\sigma^{1-q^{\prime}} \in L^{1}(\Omega)$ which is stronger than (2.11).

In the proof of theorem 3.1 we need the following lemma.
Lemma 3.1 Assume that f lies in $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$. If u is a solution of (\mathcal{P}), then, u is also a solution of the variational inequality

$$
\begin{gather*}
\left\langle A u, T_{k}(v-u)\right\rangle+\int_{\Omega} g(x, u, \nabla u) T_{k}(v-u) d x \geq\left\langle f, T_{k}(v-u)\right\rangle \quad \forall k>0 \\
\text { for all } v \in W_{0}^{1, p}(\Omega, w) \quad v \geq \psi \text { a.e. } \tag{3.4}\\
u \in W_{0}^{1, p}(\Omega, w) \quad u \geq \psi \text { a.e. } \\
g(x, u, \nabla u) \in L^{1}(\Omega)
\end{gather*}
$$

Conversely, if u is a solution of (3.4) then u is a solution of (3.3).
The proof of this lemma is similar to the proof of [3, Remark 2.2] for the non weighted case.

Proof of theorem 3.1 Step (1) The approximate problem and a priori estimate. Let Ω_{ε} be a sequence of compact subsets of Ω such that Ω_{ε} increases to Ω as $\varepsilon \rightarrow 0$. We consider the sequence of approximate problems,

$$
\begin{gather*}
\left\langle A u_{\varepsilon}, v-u_{\varepsilon}\right\rangle+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\left(v-u_{\varepsilon}\right) d x \geq\left\langle f, v-u_{\varepsilon}\right\rangle \\
v \in W_{0}^{1, p}(\Omega, w) \quad v \geq \psi \text { a.e. } \tag{3.5}\\
u_{\varepsilon} \in W_{0}^{1, p}(\Omega, w) \quad u_{\varepsilon} \geq \psi \text { a.e. }
\end{gather*}
$$

where,

$$
g_{\varepsilon}(x, s, \xi)=\frac{g(x, s, \xi)}{1+\varepsilon|g(x, s, \xi)|} \chi_{\Omega_{\varepsilon}}(x)
$$

and where $\chi_{\Omega_{\varepsilon}}$ is the characteristic function of Ω_{ε}. Note that $g_{\varepsilon}(x, s, \xi)$ satisfies the following conditions,

$$
g_{\varepsilon}(x, s, \xi) s \geq 0, \quad\left|g_{\varepsilon}(x, s, \xi)\right| \leq|g(x, s, \xi)| \quad \text { and } \quad\left|g_{\varepsilon}(x, s, \xi)\right| \leq \frac{1}{\varepsilon}
$$

We define the operator $G_{\varepsilon}: X \rightarrow X^{*}$ by,

$$
\left\langle G_{\varepsilon} u, v\right\rangle=\int_{\Omega} g_{\varepsilon}(x, u, \nabla u) v d x
$$

Thanks to Hölder's inequality we have for all $u \in X$ and $v \in X$,

$$
\begin{align*}
\left|\int_{\Omega} g_{\varepsilon}(x, u, \nabla u) v d x\right| & \leq\left(\int_{\Omega}\left|g_{\varepsilon}(x, u, \nabla u)\right|^{q^{\prime}} \sigma^{-\frac{q^{\prime}}{q}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}|v|^{q} \sigma d x\right)^{1 / q} \\
& \leq \frac{1}{\varepsilon}\left(\int_{\Omega_{\varepsilon}} \sigma^{1-q^{\prime}} d x\right)^{1 / q^{\prime}}\|v\|_{q, \sigma} \leq c_{\varepsilon}\||v|\| \tag{3.6}
\end{align*}
$$

The last inequality is due to (2.11) and (2.13).
Lemma 3.2 The operator $B_{\varepsilon}=A+G_{\varepsilon}$ from X into its dual X^{*} is pseudomonotone. Moreover, B_{ε} is coercive, in the sense that: There exists $v_{0} \in K_{\psi}$ such that

$$
\frac{\left\langle B_{\varepsilon} v, v-v_{0}\right\rangle}{\||v|\|} \rightarrow+\infty \quad a s\||v|\| \rightarrow \infty, \quad v \in K_{\psi}
$$

The proof of this lemma will be presented below. In view of lemma 3.2, (3.5) has a solution by the classical result (cf. Theorem 8.1 and Theorem 8.2 chapter 2 [7]).

With $v=\psi^{+}$as test function in (3.5), we deduce that $\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\left(u_{\varepsilon}-\right.$ $\left.\psi^{+}\right) \geq 0$, then, $\left\langle A u_{\varepsilon}, u_{\varepsilon}\right\rangle \leq\left\langle f, u_{\varepsilon}-\psi^{+}\right\rangle+\left\langle A u_{\varepsilon}, \psi^{+}\right\rangle$, i.e.,

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla u_{\varepsilon} d x \leq\left\langle f, u_{\varepsilon}-\psi^{+}\right\rangle+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \frac{\partial \psi^{+}}{\partial x_{i}} d x
$$

then,

$$
\begin{aligned}
& \alpha \sum_{i=1}^{N} \int_{\Omega} w_{i}\left|\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{p} d x \\
&= \alpha\left\|\left|\left\|u_{\varepsilon} \mid\right\|^{p}\right.\right. \\
& \leq\|f\|_{X^{*}}\left(\left\|| | u_{\varepsilon}|\|+\|| \psi^{+} \mid\right\|\right)+ \\
& \quad+\sum_{i=1}^{N}\left(\int_{\Omega}\left|a_{i}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right|^{p^{\prime}} w_{i}^{1-p^{\prime}} d x\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}\left|\frac{\partial \psi^{+}}{\partial x_{i}}\right|^{p} w_{i} d x\right)^{1 / p} \\
& \leq\|f\|_{X^{*}}\left(\left\|| | u_{\varepsilon}|\|+\|| \psi^{+} \mid\right\|\right)+ \\
& \quad+c \sum_{i=1}^{N}\left(\int_{\Omega}\left(k^{p^{\prime}}+\left|u_{\varepsilon}\right|^{q} \sigma+\sum_{j=1}^{N}\left|\frac{\partial u_{\varepsilon}}{\partial x_{j}}\right|{ }^{p} w_{j}\right) d x\right)^{1 / p^{\prime}}\left\|\left|\psi^{+}\right|\right\|
\end{aligned}
$$

Using (2.13) the last inequality becomes,

$$
\alpha\left\|\left|u_{\varepsilon}\right|\right\|^{p} \leq c_{1}\left\|\left|u_{\varepsilon}\right|\right\|+c_{2}\left\|\left|u_{\varepsilon}\right|\right\|^{\frac{q}{p^{\prime}}}+c_{3}\left\|\left|u_{\varepsilon}\right|\right\|^{p-1}+c_{4},
$$

where c_{i} are various positive constants. Then, thanks to (2.10) we can deduce that u_{ε} remains bounded in $W_{0}^{1, p}(\Omega, w)$, i.e.,

$$
\begin{equation*}
\left\|\left|u_{\varepsilon}\right|\right\| \leq \beta_{0} \tag{3.7}
\end{equation*}
$$

where β_{0} is some positive constant. Extracting a subsequence (still denoted by u_{ε}) we get

$$
u_{\varepsilon} \rightharpoonup u \quad \text { weakly in } X \text { and a.e. in } \Omega .
$$

Note that $u \geq \psi$ a.e.
Step (2) Strong convergence of $T_{k}\left(u_{\varepsilon}\right)$. Thanks to (3.7) and (2.13) we can extract a subsequence still denoted by u_{ε} such that

$$
\begin{gather*}
u_{\varepsilon} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, p}(\Omega, w,) \tag{3.8}\\
u_{\varepsilon} \rightarrow u \quad \text { a.e. in } \Omega .
\end{gather*}
$$

Let $k>0$ by lemma 2.4 we have

$$
\begin{equation*}
T_{k}\left(u_{\varepsilon}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } W_{0}^{1, p}(\Omega, w) \text { as } \varepsilon \rightarrow 0 \tag{3.9}
\end{equation*}
$$

Our objective is to prove that

$$
\begin{equation*}
T_{k}\left(u_{\varepsilon}\right) \rightarrow T_{k}(u) \quad \text { strongly in } W_{0}^{1, p}(\Omega, w) \text { as } \varepsilon \rightarrow 0 \tag{3.10}
\end{equation*}
$$

Fix $k>\left\|\psi^{+}\right\|_{\infty}$, and use the notation $z_{\varepsilon}=T_{k}\left(u_{\varepsilon}\right)-T_{k}(u)$. We use, as a test function in (3.5),

$$
\begin{equation*}
v_{\varepsilon}=u_{\varepsilon}-\eta \varphi_{\lambda}\left(z_{\varepsilon}\right) \tag{3.11}
\end{equation*}
$$

where $\varphi_{\lambda}(s)=s e^{\lambda s^{2}}$ and $\eta=e^{-4 \lambda k^{2}}$. Then we can check that v_{ε} is admisible test function. So that

$$
-\left\langle A u_{\varepsilon}, \eta \varphi_{\lambda} z_{\varepsilon}\right\rangle-\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \eta \varphi_{\lambda}\left(z_{\varepsilon}\right) d x \geq-\left\langle f, \eta \varphi_{\lambda}\left(z_{\varepsilon}\right)\right\rangle
$$

which implies that

$$
\begin{equation*}
\left\langle A u_{\varepsilon}, \varphi_{\lambda}\left(z_{\varepsilon}\right)\right\rangle+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}\right) d x \leq\left\langle f, \varphi_{\lambda}\left(z_{\varepsilon}\right)\right\rangle . \tag{3.12}
\end{equation*}
$$

Since $\varphi_{\lambda}\left(z_{\varepsilon}\right)$ is bounded in X and converges a.e. in Ω to zero and using (2.13), we have $\varphi_{\lambda}\left(z_{\varepsilon}\right) \rightharpoonup 0$ weakly in X as $\varepsilon \rightarrow 0$. Then

$$
\begin{equation*}
\eta_{1}(\varepsilon)=\left\langle f, \varphi_{\lambda}\left(z_{\varepsilon}\right)\right\rangle \rightarrow 0, \tag{3.13}
\end{equation*}
$$

and since $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}\right) \geq 0$ in the subset $\left\{x \in \Omega:\left|u_{\varepsilon}(x)\right| \geq k\right\}$ hence (3.12) and (3.13) yield

$$
\begin{equation*}
\left\langle A u_{\varepsilon}, \varphi_{\lambda}\left(z_{\varepsilon}\right)\right\rangle+\int_{\left\{\left|u_{\varepsilon}\right| \leq k\right\}} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}\right) d x \leq \eta_{1}(\varepsilon) . \tag{3.14}
\end{equation*}
$$

We study each term in the left hand side of (3.14). We have,

$$
\begin{align*}
\left\langle A u_{\varepsilon}, \varphi_{\lambda}\left(z_{\varepsilon}\right)\right\rangle= & \int_{\Omega} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}\right) d x \\
= & \int_{\Omega} a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}\left(u_{\varepsilon}\right)\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}\right) d x \\
& -\int_{\left\{\left|u_{\varepsilon}\right|>k\right\}} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla T_{k}(u) \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}\right) d x \\
= & \int_{\Omega}\left(a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}\left(u_{\varepsilon}\right)\right)-a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right)\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)\right. \\
& \left.-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}\right) d x+\eta_{2}(\varepsilon) \tag{3.15}
\end{align*}
$$

where,

$$
\begin{aligned}
\eta_{2}(\varepsilon)= & \int_{\Omega} a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)-T_{k}(u)\right) \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}\right) d x \\
& -\int_{\left\{\left|u_{\varepsilon}\right|>k\right\}} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla T_{k}(u) \varphi_{\lambda}^{\prime}\left(z_{\varepsilon}\right) d x
\end{aligned}
$$

which converges to 0 as $\varepsilon \rightarrow 0$. On the other hand,

$$
\begin{align*}
& \left|\int_{\left\{\left|u_{\varepsilon}\right| \leq k\right\}} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \varphi_{\lambda}\left(z_{\varepsilon}\right) d x\right| \\
\leq & \int_{\left\{\left|u_{\varepsilon}\right| \leq k\right\}} b(k)\left[c(x)+\sum_{i=1}^{N}\left|\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right|^{p} w_{i}\right]\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x \\
\leq & b(k) \int_{\left\{\left|u_{\varepsilon}\right| \leq k\right\}} c(x)\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x+\frac{b(k)}{\alpha} \int_{\left\{\left|u_{\varepsilon}\right| \leq k\right\}} a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \nabla u_{\varepsilon}\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x \\
= & \eta_{3}(\varepsilon)+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}\left(u_{\varepsilon}\right)\right) \nabla T_{k}\left(u_{\varepsilon}\right)\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x \\
= & \frac{b(k)}{\alpha} \int_{\Omega}\left(a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}\left(u_{\varepsilon}\right)\right)-a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right)\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)\right. \\
& \left.-T_{k}(u)\right)\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x+\eta_{4}(\varepsilon) \tag{3.16}
\end{align*}
$$

where

$$
\eta_{3}(\varepsilon)=b(k) \int_{\left\{\left|u_{\varepsilon}\right| \leq k\right\}} c(x)\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

and

$$
\begin{aligned}
\eta_{4}(\varepsilon)= & \eta_{3}(\varepsilon)+\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)-T_{k}(u)\right)\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x \\
& +\frac{b(k)}{\alpha} \int_{\Omega} a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}\left(u_{\varepsilon}\right)\right) \nabla T_{k}(u)\left|\varphi_{\lambda}\left(z_{\varepsilon}\right)\right| d x \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Note that, when $\lambda \geq\left(\frac{b(k)}{2 \alpha}\right)^{2}$ we have

$$
\varphi_{\lambda}^{\prime}(s)-\frac{b(k)}{\alpha}|\varphi(s)| \geq \frac{1}{2}
$$

Which combining with (3.14),(3.15) and (3.16) one obtains

$$
\begin{aligned}
& \int_{\Omega}\left(a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}\left(u_{\varepsilon}\right)\right)-a\left(x, T_{k}\left(u_{\varepsilon}\right), \nabla T_{k}(u)\right)\right) \nabla\left(T_{k}\left(u_{\varepsilon}\right)-T_{k}(u)\right) d x \\
& \leq \eta_{5}(\varepsilon)=2\left(\eta_{1}(\varepsilon)-\eta_{2}(\varepsilon)+\eta_{4}(\varepsilon)\right) \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Finally lemma 2.5 implies (3.10) for any fixed $k \geq\|\psi\|_{\infty}$.
Step (3) Passage to the limit. In view of (3.10) we have for a subsequence,

$$
\begin{equation*}
\nabla u_{\varepsilon} \rightarrow \nabla u \quad \text { a.e. in } \Omega \tag{3.17}
\end{equation*}
$$

which with (3.8) imply,

$$
\begin{gather*}
a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightarrow a(x, u, \nabla u) \quad \text { a.e. in } \Omega, \\
g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightarrow g(x, u, \nabla u) \text { a.e. in } \Omega, \tag{3.18}\\
g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} \rightarrow g(x, u, \nabla u) u \quad \text { a.e. in } \Omega .
\end{gather*}
$$

On the other hand, thanks to (2.14) and (3.7) we have $a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)$ is bounded in $\prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$ then by lemma 2.1 we obtain

$$
\begin{equation*}
a\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightharpoonup a(x, u, \nabla u) \quad \text { weakly in } \prod_{i=1}^{N} L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) . \tag{3.19}
\end{equation*}
$$

We shall prove that,

$$
\begin{equation*}
g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \rightarrow g(x, u, \nabla u) \quad \text { strongly in } L^{1}(\Omega) . \tag{3.20}
\end{equation*}
$$

By (3.18), to apply Vitali's theorem it suffices to prove that $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)$ is uniformly equi-integrable. Indeed, thanks to (2.17), (3.6) and (3.7) we obtain,

$$
\begin{equation*}
0 \leq \int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} d x \leq c_{0} \tag{3.21}
\end{equation*}
$$

where c_{0} is some positive constant. For any measurable subset E of Ω and any $m>0$ we have,

$$
\int_{E}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x=\int_{E \cap X_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x+\int_{E \cap Y_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x
$$

where,

$$
X_{m}^{\varepsilon}=\left\{x \in \Omega,\left|u_{\varepsilon}(x)\right| \leq m\right\}, \quad Y_{m}^{\varepsilon}=\left\{x \in \Omega,\left|u_{\varepsilon}(x)\right|>m\right\} .
$$

From these expressions, (2.18), and (3.21), we have

$$
\begin{align*}
& \int_{E}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x \\
& =\int_{E \cap X_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla T_{m}\left(u_{\varepsilon}\right)\right)\right| d x+\int_{E \cap Y_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)\right| d x \\
& \leq \int_{E \cap X_{m}^{\varepsilon}}\left|g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla T_{m}\left(u_{\varepsilon}\right)\right)\right| d x+\frac{1}{m} \int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} d x \tag{3.22}\\
& \leq b(m) \int_{E}\left(\sum_{i=1}^{N} w_{i}\left|\frac{\partial T_{m}\left(u_{\varepsilon}\right)}{\partial x_{i}}\right|^{p}+c(x)\right)+\frac{c_{0}}{m} .
\end{align*}
$$

Since the sequence $\left(\nabla T_{m}\left(u_{\varepsilon}\right)\right)$ strongly converges in $\prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right)$, then (3.22) implies the equi-integrability of $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right)$.

Moreover, since $g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) u_{\varepsilon} \geq 0$ a.e. in Ω, then by (3.18), (3.21) and Fatou's lemma, we have $g(x, u, \nabla u) u \in L^{1}(\Omega)$. On the other hand, for $v \in$ $L^{\infty}(\Omega)$, set $h=k+\|v\|_{\infty}$, then

$$
\begin{aligned}
\left|\frac{\partial T_{k}\left(v-u_{\varepsilon}\right)}{\partial x_{i}}\right| w_{i}^{1 / p} & =\chi_{\left\{\left|v-u_{\varepsilon}\right| \leq k\right\}}\left|\frac{\partial v}{\partial x_{i}}-\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right| w_{i}^{1 / p} \\
& \leq \chi_{\left\{\left|u_{\varepsilon}\right| \leq h\right\}}\left|\frac{\partial v}{\partial x_{i}}-\frac{\partial u_{\varepsilon}}{\partial x_{i}}\right| w_{i}^{1 / p} \\
& \leq\left|\frac{\partial v}{\partial x_{i}}\right| w_{i}^{1 / p}+\left|\frac{\partial T_{h}\left(u_{\varepsilon}\right)}{\partial x_{i}}\right| w_{i}^{1 / p}
\end{aligned}
$$

which implies, using Vitali's theorem with (3.10) and (3.17) that

$$
\begin{equation*}
\nabla T_{k}\left(v-u_{\varepsilon}\right) \rightarrow \nabla T_{k}(v-u) \quad \text { strongly in } \prod_{i=1}^{N} L^{p}\left(\Omega, w_{i}\right) \tag{3.23}
\end{equation*}
$$

for any $v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega)$. Thanks to lemma 3.1 and from (3.19), (3.20) and (3.23) we can pass to the limit in

$$
\left\langle A u_{\varepsilon}, T_{k}\left(v-u_{\varepsilon}\right)\right\rangle+\int_{\Omega} g_{\varepsilon}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) T_{k}\left(v-u_{\varepsilon}\right) \geq\left\langle f, T_{k}\left(v-u_{\varepsilon}\right)\right\rangle
$$

and we obtain,

$$
\begin{equation*}
\left\langle A u, T_{k}(v-u)\right\rangle+\int_{\Omega} g(x, u, \nabla u) T_{k}(v-u) \geq\left\langle f, T_{k}(v-u)\right\rangle \tag{3.24}
\end{equation*}
$$

for any $v \in W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega)$ and for all $k>0$.
Taking for any $v \in W_{0}^{1, p}(\Omega, w)$ and $v \geq \psi$ the test function $T_{m}(v)$ which belongs to $W_{0}^{1, p}(\Omega, w) \cap L^{\infty}(\Omega)$ for $m \geq\left\|\psi^{+}\right\|_{\infty}$ and passing to the limit in (3.24) as $m \rightarrow \infty$, then u is a solution of (3.4). Using again lemma 3.1 we obtain the desired result, i.e., u is a solution of (3.3).

Proof of lemma 3.2 By proposition 2.6 chapter $2[7]$, it is sufficient to show that B_{ε} is of the calculus of variations type in the sense of definition 2.1. Indeed put,

$$
b_{1}(u, v, \tilde{w})=\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \nabla \tilde{w} d x, \quad b_{2}(u, \tilde{w})=\int_{\Omega} g_{\varepsilon}(x, u, \nabla u) \tilde{w} d x
$$

Then the mapping $\tilde{w} \mapsto b_{1}(u, v, \tilde{w})+b_{2}(u, \tilde{w})$ is continuous in X. Then

$$
b_{1}(u, v, \tilde{w})+b_{2}(u, \tilde{w})=b(u, v, \tilde{w})=\left\langle B_{\varepsilon}(u, v), \tilde{w}\right\rangle, \quad B_{\varepsilon}(u, v) \in W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)
$$

and we have

$$
B_{\varepsilon}(u, u)=B_{\varepsilon} u .
$$

Using (2.14) and Hölder's inequality we can show that A is bounded as in [4], and thanks to (3.6) B_{ε} is bounded. Then, it is sufficient to check (2.6)-(2.9).

Next we show that (2.6) and (2.7) are true. By (2.15) we have,

$$
\left(B_{\varepsilon}(u, u)-B_{\varepsilon}(u, v), u-v\right)=b_{1}(u, u, u-v)-b_{1}(u, v, u-v) \geq 0 .
$$

The operator $v \rightarrow B_{\varepsilon}(u, v)$ is bounded hemicontinuous. Indeed, we have

$$
\begin{equation*}
a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \rightarrow a_{i}\left(x, u, \nabla v_{1}\right) \quad \text { strongly in } L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) \text { as } \lambda \rightarrow 0 . \tag{3.25}
\end{equation*}
$$

On the other hand, $\left(g_{\varepsilon}\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right)\right)_{\lambda}$ is bounded in $L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$ and $g_{\varepsilon}\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right) \rightarrow g_{\varepsilon}\left(x, u_{1}, \nabla u_{1}\right) \quad$ a.e. in Ω, hence lemma 2.1 gives

$$
\begin{gather*}
g_{\varepsilon}\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right) \rightharpoonup g_{\varepsilon}\left(x, u_{1}, \nabla u_{1}\right) \\
\text { weakly in } L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right) \text { as } \lambda \rightarrow 0 . \tag{3.26}
\end{gather*}
$$

Using (3.25) and (3.26) we can write

$$
b\left(u, v_{1}+\lambda v_{2}, \tilde{w}\right) \rightarrow b\left(u, v_{1}, \tilde{w}\right) \quad \text { as } \lambda \rightarrow 0 \quad \forall u, v_{i}, \tilde{w} \in X .
$$

Similarly we can prove (2.7).
Proof of assertion (2.8). Assume that $u_{n} \rightharpoonup u$ weakly in X and $\left(B\left(u_{n}, u_{n}\right)-\right.$ $\left.B\left(u_{n}, u\right), u_{n}-u\right) \rightarrow 0$. We have,

$$
\begin{aligned}
& \left(B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-u\right) \\
& \quad=\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}\left(x, u_{n}, \nabla u_{n}\right)-a_{i}\left(x, u_{n}, \nabla u\right)\right) \nabla\left(u_{n}-u\right) d x \rightarrow 0,
\end{aligned}
$$

then, by lemma $2.5, u_{n} \rightarrow u$ strongly in X, which gives

$$
b\left(u_{n}, v, \tilde{w}\right) \rightarrow b(u, v, \tilde{w}) \quad \forall \tilde{w} \in X
$$

i.e., $B_{\varepsilon}\left(u_{n}, v\right) \rightharpoonup B_{\varepsilon}(u, v)$ weakly in X^{*}. It remains to prove (2.9). Assume that

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { weakly in } X \tag{3.27}
\end{equation*}
$$

and that

$$
\begin{equation*}
B\left(u_{n}, v\right) \rightharpoonup \psi \quad \text { weakly in } X^{*} . \tag{3.28}
\end{equation*}
$$

Thanks to (2.13), (2.14) and (3.27) we obtain,

$$
a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow a_{i}(x, u, \nabla v) \quad \text { in } L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) \text { as } n \rightarrow \infty,
$$

then,

$$
\begin{equation*}
b_{1}\left(u_{n}, v, u_{n}\right) \rightarrow b_{1}(u, v, u) \tag{3.29}
\end{equation*}
$$

On the other hand, by Hölder's inequality,

$$
\begin{aligned}
\left|b_{2}\left(u_{n}, u_{n}-u\right)\right| & \leq\left(\int_{\Omega}\left|g_{\varepsilon}\left(x, u_{n}, \nabla u_{n}\right)\right|^{q^{\prime}} \sigma^{\frac{-q^{\prime}}{q}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}\left|u_{n}-u\right|^{q} \sigma d x\right)^{1 / q} \\
& \leq \frac{1}{\varepsilon}\left(\int_{\Omega_{\varepsilon}} \sigma^{\frac{-q^{\prime}}{q}} d x\right)^{1 / q^{\prime}}\left\|u_{n}-u\right\|_{L^{q}(\Omega, \sigma)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
b_{2}\left(u_{n}, u_{n}-u\right) \rightarrow 0 \text { as } n \rightarrow \infty, \tag{3.30}
\end{equation*}
$$

but in view of (3.28) and (3.29) we obtain

$$
b_{2}\left(u_{n}, u\right)=\left(B_{\varepsilon}\left(u_{n}, v\right), u\right)-b_{1}\left(u_{n}, v, u\right) \rightarrow(\psi, u)-b_{1}(u, v, u)
$$

and from (3.30) we have $b_{2}\left(u_{n}, u_{n}\right) \rightarrow(\psi, u)-b_{1}(u, v, u)$. Then,

$$
\left(B_{\varepsilon}\left(u_{n}, v\right), u_{n}\right)=b_{1}\left(u_{n}, v, u_{n}\right)+b_{2}\left(u_{n}, u_{n}\right) \rightarrow(\psi, u) .
$$

Now show that B_{ε} is coercive. Let $v_{0} \in K_{\psi}$. From Hölder's inequality, the growth condition (2.14) and the compact imbedding (2.13) we have

$$
\begin{aligned}
\left\langle A v, v_{0}\right\rangle & =\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, v, \nabla v) \frac{\partial v_{0}}{\partial x_{i}} d x \\
& \leq \sum_{i=1}^{N}\left(\int_{\Omega}\left|a_{i}(x, v, \nabla v)\right|^{p^{\prime}} w_{i}^{\frac{-p^{\prime}}{p}} d x\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}\left|\frac{\partial v_{0}}{\partial x_{i}}\right|^{p} w_{i} d x\right)^{1 / p} \\
& \leq c_{1}\left\|\left|v_{0}\right|\right\|\left(\int_{\Omega} k(x)^{p^{\prime}}+|v|^{q} \sigma+\sum_{j=1}^{N}\left|\frac{\partial v}{\partial x_{j}}\right|^{p} w_{j} d x\right)^{\frac{1}{p^{\prime}}} \\
& \leq c_{2}\left(c_{3}+\||v|\| \frac{q}{p^{\prime}}+\||v|\|^{p-1}\right)
\end{aligned}
$$

where c_{i} are various constants. Thanks to (2.16), we obtain

$$
\frac{\langle A v, v\rangle}{\||v|\|}-\frac{\left\langle A v, v_{0}\right\rangle}{\||v|\|} \geq \alpha\||v|\|^{p-1}-\||v|\|^{p-2}-\||v|\|^{\frac{q}{p^{\prime}}-1}-\frac{c}{\|v \mid\|}
$$

In view of (2.10) we have $p-1>\frac{q}{p^{\prime}}-1$. Then,

$$
\frac{\left\langle A v, v-v_{0}\right\rangle}{\||v|\|} \rightarrow \infty \quad \text { as } \quad\||v|\| \rightarrow \infty .
$$

Since $\left\langle G_{\varepsilon} v, v\right\rangle \geq 0$ and $\left\langle G_{\varepsilon} v, v_{0}\right\rangle$ is bounded, we have

$$
\frac{\left\langle B_{\varepsilon} v, v-v_{0}\right\rangle}{\||v|\|} \geq \frac{\left\langle A v, v-v_{0}\right\rangle}{\||v|\|}-\frac{\left\langle G_{\varepsilon} v, v_{0}\right\rangle}{\||v|\|} \rightarrow \infty \quad \text { as }\||v|\| \rightarrow \infty
$$

Remark 3.2 Assumption (2.10) appears to be necessary to prove the boundedness of $\left(u_{\varepsilon}\right)_{\varepsilon}$ in $W_{0}^{1, p}(\Omega, w)$ and the coercivity of the operator B_{ε}. While Assumption (2.11) is necessary to prove the boundedness of G_{ε} in $W_{0}^{1, p}(\Omega, w)$. Thus, when $g \equiv 0$, we don't need to assume (2.11).

References

[1] Y. Akdim, E. Azroul and A. Benkirane, Existence of solutions for quasilinear degenerated elliptic equations, Electronic J. Diff. Eqns., vol. 2001 N 71 (2001) 1-19.
[2] A. Bensoussan, L. Boccardo and F. Murat, On a non linear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré 5 N4 (1988), 347-364.
[3] A. Benkirane and A. Elmahi, Strongly nonlinear elliptic unilateral problems having natural growth terms and L^{1} data, Rendiconti di Matematica, Serie VII vol. 18, (1998), 289-303.
[4] P. Drabek, A. Kufner and V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[5] P. Drabek, A. Kufner and F. Nicolosi, Non linear elliptic equations, singular and degenerate cases, University of West Bohemia, (1996).
[6] P. Drabek and F. Nicolosi, Existence of Bounded Solutions for Some Degenerated Quasilinear Elliptic Equations, Annali di Mathematica pura ed applicata (IV), Vol. CLXV (1993), pp. 217-238.
[7] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).

Youssef Akdim (e-mail: y.akdim1@caramail.com)
Elhoussine Azroul (e-mail: elazroul@caramail.com)
Abdelmoujib Benkirane (e-mail: abenkirane@fsdmfes.ac.m)
Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B.P 1796 Atlas Fès, Maroc

[^0]: *Mathematics Subject Classifications: 35J15, 35J70, 35J85.
 Key words: Weighted Sobolev spaces, Hardy inequality, variational ineqality, strongly nonlinear degenerated elliptic operators, truncations.
 (C)2002 Southwest Texas State University.

 Published December 28, 2002.

