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Strongly nonlinear degenerated elliptic unilateral

problems via convergence of truncations ∗

Youssef Akdim, Elhoussine Azroul, & Abdelmoujib Benkirane

Abstract

We prove an existence theorem for a strongly nonlinear degenerated el-
liptic inequalities involving nonlinear operators of the form Au+g(x, u,∇u).
Here A is a Leray-Lions operator, g(x, s, ξ) is a lower order term satisfying
some natural growth with respect to |∇u|. There is no growth restrictions
with respect to |u|, only a sign condition. Under the assumption that the

second term belongs to W−1,p′(Ω, w∗), we obtain the main result via
strong convergence of truncations.

1 Introduction

Let Ω be a bounded open set of RN and p a real number such that 1 < p <∞.
Let w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions on Ω, i.e. each wi(x)
is a measurable a.e. strictly positive function on Ω, satisfying some integrability
conditions (see section 2). The aim of this paper, is to prove an existence
theorem for unilateral degenerate problems associated to a nonlinear operators
of the formAu+g(x, u,∇u). WhereA is a Leray-Lions operator fromW 1,p

0 (Ω, w)
into its dual W−1,p′(Ω, w∗), defined by,

Au = −div(a(x, u,∇u))

and where g is a nonlinear lower order term having natural growth with respect
to |∇u|. With respect to |u| we do not assume any growth restrictions, but we
assume a sign condition. Bensoussan, Boccardo and Murat have proved in the
second part of [2] the existence of at least one solution of the unilateral problem

〈Au, v − u〉+
∫

Ω

g(x, u,∇u)(v − u) dx ≥ 〈f, v − u〉 for all v ∈ Kψ

u ∈W 1,p
0 (Ω) u ≥ ψ a.e.

g(x, u,∇u) ∈ L1(Ω) g(x, u,∇u)u ∈ L1(Ω)
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26 Strongly nonlinear degenerated elliptic unilateral problems

where f ∈ W−1,p′(Ω) and Kψ = {v ∈ W 1,p
0 (Ω) ∩ L∞(Ω), v ≥ ψ a.e. Here ψ

is a measurable function on Ω such that ψ+ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). For that the

authors obtain the existence results by proving that the positive part u+
ε (resp.

u−ε ) of uε strongly converges to u+(resp. u−) in W 1,p
0 (Ω), where uε is a solution

of the approximate problem. In the present paper, we study the variational
degenerated inequalities. More precisely, we prove the existence of a solution
for the problem (3.3) (see section 3), by using another approach based on the
strong convergence of the truncations Tk(uε) in W 1,p

0 (Ω, w). Moreover, in this
paper, we assume only the weak integrability condition σ1−q′ ∈ L1

loc(Ω) (see
(2.11) below) instead of the stronger σ1−q′ ∈ L1(Ω) as in [1]. This can be done
by approximating Ω by a sequence of compact sets Ωε. Note that, in the non
weighted case the same result is proved in [3] where f ∈ L1(Ω). Let us point
out that other works in this direction can be found in [6, 1].

This paper is organized as follows: Section 2 contains some preliminaries
and basic assumptions. In section 3 we state and prove our main results.

2 Preliminaries and basic assumption

Let Ω be a bounded open subset of RN (N ≥ 1), let 1 < p < ∞, and let
w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions, i.e. every component
wi(x) is a measurable function which is strictly positive a.e. in Ω. Further, we
suppose in all our considerations that for 0 ≤ i ≤ N ,

wi ∈ L1
loc(Ω) (2.1)

w
− 1

p−1
i ∈ L1

loc(Ω) (2.2)

We define the weighted space Lp(Ω, γ) where γ is a weight function on Ω by,

Lp(Ω, γ) = {u = u(x), uγ1/p ∈ Lp(Ω)}

with the norm

‖u‖p,γ =
( ∫

Ω

|u(x)|pγ(x) dx
)1/p

.

We denote by W 1,p(Ω, w) the space of all real-valued functions u ∈ Lp(Ω, w0)
such that the derivatives in the sense of distributions satisfies

∂u

∂xi
∈ Lp(Ω, wi) for all i = 1, . . . , N,

which is a Banach space under the norm

‖u‖1,p,w =
( ∫

Ω

|u(x)|pw0(x) dx+
N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

. (2.3)

Since we shall deal with the Dirichlet problem, we shall use the space

X = W 1,p
0 (Ω, w) (2.4)
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defined as the closure of C∞0 (Ω) with respect to the norm (2.3). Note that,
C∞0 (Ω) is dense in W 1,p

0 (Ω, w) and (X, ‖.‖1,p,w) is a reflexive Banach space.
We recall that the dual space of weighted Sobolev spacesW 1,p

0 (Ω, w) is equiv-
alent to W−1,p′(Ω, w∗), where w∗ = {w∗i = w1−p′

i , ∀i = 0, . . . , N}, where p′ is
the conjugate of p i.e. p′ = p

p−1 (for more details we refer to [5]).

Definition 2.1 Let Y be a separable reflexive Banach space, the operator B
from Y to its dual Y ∗ is called of the calculus of variations type, if B is bounded
and is of the form

B(u) = B(u, u), (2.5)

where (u, v) → B(u, v) is an operator from Y ×Y into Y ∗ satisfying the following
properties:

∀u ∈ Y, v → B(u, v) is bounded hemicontinuous from Y into Y ∗

and (B(u, u)−B(u, v), u− v) ≥ 0,
(2.6)

∀v ∈ Y, u→ B(u, v) is bounded hemicontinuous from Y into Y ∗, (2.7)

if un ⇀ u weakly in Y and if (B(un, un)−B(un, u), un − u) → 0
then, B(un, v) ⇀ B(u, v) weakly in Y ∗, ∀v ∈ Y,

(2.8)

if un ⇀ u weakly in Y and if B(un, v) ⇀ ψ weakly in Y ∗,

then, (B(un, v), un) → (ψ, u).
(2.9)

Definition 2.2 Let Y be a reflexive Banach space, a bounded mapping B from
Y to Y ∗ is called pseudo-monotone if for any sequence un ∈ Y with un ⇀ u
weakly in Y and lim supn→∞〈Bun, un − u〉 ≤ 0, one has

lim inf
n→∞

〈Bun, un − v〉 ≥ 〈Bu, u− v〉 for all v ∈ Y.

We start by stating the following assumptions:

Assumption (H1) The expression

‖|u|‖X =
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

is a norm on X and it is equivalent to the norm (2.3). There exist a weight
function σ on Ω and a parameter q, such that

1 < q < p+ p′, (2.10)

σ1−q′ ∈ L1
loc(Ω), (2.11)

with q′ = q
q−1 . The Hardy inequality,

( ∫
Ω

|u(x)|qσ dx
)1/q

≤ c
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

, (2.12)
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holds for every u ∈ X with a constant c > 0 independent of u. Moreover, the
imbedding

X ↪→↪→ Lq(Ω, σ), (2.13)

expressed by the inequality (2.12) is compact.
Note that (X, ‖|.|‖X) is a uniformly convex (and thus reflexive) Banach

space.

Remark 2.1 If we assume that w0(x) ≡ 1 and in addition the integrability
condition: There exists ν ∈]Np ,∞[∩[ 1

p−1 ,∞[ such that

w−νi ∈ L1(Ω)

for all i = 1, . . . , N (which is stronger than (2.2)). Then

‖|u|‖X =
( N∑
i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
)1/p

is a norm defined on W 1,p
0 (Ω, w) and is equivalent to (2.3). Moreover

W 1,p
0 (Ω, w) ↪→↪→ Lq(Ω),

for all 1 ≤ q < p∗1 if pν < N(ν + 1) and for all q ≥ 1 if pν ≥ N(ν + 1), where
p1 = pν

ν+1 and p∗1 = Np1
N−p1 = Npν

N(ν+1)−pν is the Sobolev conjugate of p1 (see [5]).
Thus the hypotheses (H1) is verified for σ ≡ 1 and for all 1 < q < min{p∗1, p+p′}
if pν < N(ν + 1) and for all 1 < q < p+ p′ if pν ≥ N(ν + 1).

Let A be a nonlinear operator from W 1,p
0 (Ω, w) into its dual W−1,p′(Ω, w∗)

defined by,
Au = −div(a(x, u,∇u)),

where a : Ω × R × RN → RN is a Carathéodory vector function satisfying the
following assumptions:

Assumption (H2)

|ai(x, s, ξ)| ≤ βw
1/p
i (x)[k(x) + σ

1
p′ |s|

q
p′ +

N∑
j=1

w
1
p′

j (x)|ξj |p−1] for i = 1, . . . , N,

(2.14)

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, for all ξ 6= η ∈ RN , (2.15)

a(x, s, ξ).ξ ≥ α
N∑
i=1

wi|ξi|p, (2.16)

where k(x) is a positive function in Lp
′
(Ω) and α, β are strictly positive con-

stants.
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Assumption (H3) Let g(x, s, ξ) be a Carathéodory function satisfying the
following assumptions:

g(x, s, ξ)s ≥ 0 (2.17)

|g(x, s, ξ)| ≤ b(|s|)
( N∑
i=1

wi|ξi|p + c(x)
)
, (2.18)

where b : R+ → R+ is a continuous increasing function and c(x) is a positive
function which lies in L1(Ω). Now we recall some lemmas introduced in [1]
which will be used later.

Lemma 2.1 (cf. [1]) Let g ∈ Lr(Ω, γ) and let gn ∈ Lr(Ω, γ), with ‖gn‖r,γ ≤
c (1 < r < ∞). If gn(x) → g(x) a.e. in Ω, then gn ⇀ g weakly in Lr(Ω, γ),
where γ is a weight function on Ω.

Lemma 2.2 (cf. [1]) Assume that (H1) holds. Let F : R → R be uniformly
Lipschitzian, with F (0) = 0. Let u ∈ W 1,p

0 (Ω, w). Then F (u) ∈ W 1,p
0 (Ω, w).

Moreover, if the set D of discontinuity points of F ′ is finite, then

∂(F ◦ u)
∂xi

=

{
F ′(u) ∂u∂xi

a.e. in {x ∈ Ω : u(x) 6∈ D}
0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Lemma 2.3 (cf. [1]) Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), and let

Tk(u), k ∈ R+, is the usual truncation then Tk(u) ∈W 1,p
0 (Ω, w). Moreover, we

have
Tk(u) → u strongly in W 1,p

0 (Ω, w).

Lemma 2.4 Assume that (H1) holds. Let (un) be a sequence of W 1,p
0 (Ω, w)

such that un ⇀ u weakly in W 1,p
0 (Ω, w). Then, Tk(un) ⇀ Tk(u) weakly in

W 1,p
0 (Ω, w)

Proof. Since un ⇀ u weakly in W 1,p
0 (Ω, w) and by (2.13) we have for a sub-

sequence un → u strongly in Lq(Ω, σ) and a.e. in Ω. On the other hand,

‖|Tk(un)|‖pX =
N∑
i=1

∫
Ω

|∂Tk(un)
∂xi

|pwi =
N∑
i=1

∫
Ω

|T ′k(un)
∂un
∂xi

|pwi

≤
N∑
i=1

∫
Ω

|∂un
∂xi

|pwi = ‖|un|‖pX .

Then (Tk(un)) is bounded inW 1,p
0 (Ω, w), hence by using (2.13), Tk(un) ⇀ Tk(u)

weakly in W 1,p
0 (Ω, w).

Lemma 2.5 (cf. [1]) Assume that (H1) and (H2) are satisfied, and let (un)
be a sequence of W 1,p

0 (Ω, w) such that un ⇀ u weakly in W 1,p
0 (Ω, w) and∫

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u) dx→ 0.

Then un → u strongly in W 1,p
0 (Ω, w).
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3 Main result

Let ψ be a measurable function with values in R such that

ψ+ ∈W 1,p
0 (Ω, w) ∩ L∞(Ω). (3.1)

Set

Kψ = {v ∈W 1,p
0 (Ω, w) ∩ L∞(Ω) v ≥ ψ a.e.}. (3.2)

Note that (3.1) implies Kψ 6= ∅. Consider the nonlinear problem with Dirichlet
boundary conditions,

〈Au, v − u〉+
∫

Ω

g(x, u,∇u)(v − u) dx ≥ 〈f, v − u〉for all v ∈ Kψ

u ∈W 1,p
0 (Ω, w) u ≥ ψ a.e.

g(x, u,∇u) ∈ L1(Ω), g(x, u,∇u)u ∈ L1(Ω)

(3.3)

Then, the following result can be proved for a solution u of this problem.

Theorem 3.1 Assume that the assumptions (H1)–(H3) and (3.1) hold and let
f ∈W−1,p′(Ω, w∗). Then there exists at least one solution of (3.3).

Remark 3.1 1) Theorem 3.1 can be generalized in weighted case to an anal-
ogous statement in [2].

2) Note that in [1] the authors have assumed that σ1−q′ ∈ L1(Ω) which is
stronger than (2.11).

In the proof of theorem 3.1 we need the following lemma.

Lemma 3.1 Assume that f lies in W−1,p′(Ω, w∗). If u is a solution of (P),
then, u is also a solution of the variational inequality

〈Au, Tk(v − u)〉+
∫

Ω

g(x, u,∇u)Tk(v − u) dx ≥ 〈f, Tk(v − u)〉 ∀k > 0,

for all v ∈W 1,p
0 (Ω, w) v ≥ ψ a.e.

u ∈W 1,p
0 (Ω, w) u ≥ ψ a.e.

g(x, u,∇u) ∈ L1(Ω).

(3.4)

Conversely, if u is a solution of (3.4) then u is a solution of (3.3).

The proof of this lemma is similar to the proof of [3, Remark 2.2] for the
non weighted case.
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Proof of theorem 3.1 Step (1) The approximate problem and a priori
estimate. Let Ωε be a sequence of compact subsets of Ω such that Ωε increases
to Ω as ε→ 0. We consider the sequence of approximate problems,

〈Auε, v − uε〉+
∫

Ω

gε(x, uε,∇uε)(v − uε) dx ≥ 〈f, v − uε〉

v ∈W 1,p
0 (Ω, w) v ≥ ψ a.e.

uε ∈W 1,p
0 (Ω, w) uε ≥ ψ a.e.

(3.5)

where,

gε(x, s, ξ) =
g(x, s, ξ)

1 + ε|g(x, s, ξ)|
χΩε

(x),

and where χΩε
is the characteristic function of Ωε. Note that gε(x, s, ξ) satisfies

the following conditions,

gε(x, s, ξ)s ≥ 0, |gε(x, s, ξ)| ≤ |g(x, s, ξ)| and |gε(x, s, ξ)| ≤
1
ε
.

We define the operator Gε : X → X∗ by,

〈Gεu, v〉 =
∫

Ω

gε(x, u,∇u)v dx.

Thanks to Hölder’s inequality we have for all u ∈ X and v ∈ X,

|
∫

Ω

gε(x, u,∇u)v dx| ≤
( ∫

Ω

|gε(x, u,∇u)|q
′
σ−

q′
q dx

)1/q′( ∫
Ω

|v|qσ dx
)1/q

≤1
ε

( ∫
Ωε

σ1−q′ dx
)1/q′

‖v‖q,σ ≤ cε‖|v|‖.

(3.6)
The last inequality is due to (2.11) and (2.13).

Lemma 3.2 The operator Bε = A + Gε from X into its dual X∗ is pseudo-
monotone. Moreover, Bε is coercive, in the sense that: There exists v0 ∈ Kψ

such that
〈Bεv, v − v0〉

‖|v|‖
→ +∞ as ‖|v|‖ → ∞, v ∈ Kψ.

The proof of this lemma will be presented below. In view of lemma 3.2, (3.5)
has a solution by the classical result (cf. Theorem 8.1 and Theorem 8.2 chapter
2 [7]).

With v = ψ+ as test function in (3.5), we deduce that
∫
Ω
gε(x, uε,∇uε)(uε−

ψ+) ≥ 0, then, 〈Auε, uε〉 ≤ 〈f, uε − ψ+〉+ 〈Auε, ψ+〉, i.e.,∫
Ω

a(x, uε,∇uε)∇uε dx ≤ 〈f, uε − ψ+〉+
N∑
i=1

∫
Ω

ai(x, uε,∇uε)
∂ψ+

∂xi
dx,
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then,

α
N∑
i=1

∫
Ω

wi|
∂uε
∂xi

|p dx

= α‖|uε|‖p

≤ ‖f‖X∗(‖|uε|‖+ ‖|ψ+|‖) +

+
N∑
i=1

( ∫
Ω

|ai(x, uε,∇uε)|p
′
w1−p′
i dx

) 1
p′

( ∫
Ω

|∂ψ
+

∂xi
|pwi dx

)1/p

≤ ‖f‖X∗(‖|uε|‖+ ‖|ψ+|‖) +

+c
N∑
i=1

( ∫
Ω

(kp
′
+ |uε|qσ +

N∑
j=1

|∂uε
∂xj

|pwj) dx
)1/p′

‖|ψ+|‖.

Using (2.13) the last inequality becomes,

α‖|uε|‖p ≤ c1‖|uε|‖+ c2‖|uε|‖
q
p′ + c3‖|uε|‖p−1 + c4,

where ci are various positive constants. Then, thanks to (2.10) we can deduce
that uε remains bounded in W 1,p

0 (Ω, w), i.e.,

‖|uε|‖ ≤ β0, (3.7)

where β0 is some positive constant. Extracting a subsequence (still denoted by
uε) we get

uε ⇀ u weakly in X and a.e. in Ω.

Note that u ≥ ψ a.e.
Step (2) Strong convergence of Tk(uε). Thanks to (3.7) and (2.13) we can
extract a subsequence still denoted by uε such that

uε ⇀ u weakly in W 1,p
0 (Ω, w, )

uε → u a.e. in Ω.
(3.8)

Let k > 0 by lemma 2.4 we have

Tk(uε) ⇀ Tk(u) weakly in W 1,p
0 (Ω, w) as ε→ 0. (3.9)

Our objective is to prove that

Tk(uε) → Tk(u) strongly in W 1,p
0 (Ω, w) as ε→ 0. (3.10)

Fix k > ‖ψ+‖∞, and use the notation zε = Tk(uε) − Tk(u). We use, as a test
function in (3.5),

vε = uε − ηϕλ(zε) (3.11)

where ϕλ(s) = seλs
2

and η = e−4λk2
. Then we can check that vε is admisible

test function. So that

−〈Auε, ηϕλzε〉 −
∫

Ω

gε(x, uε,∇uε)ηϕλ(zε) dx ≥ −〈f, ηϕλ(zε)〉
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which implies that

〈Auε, ϕλ(zε)〉+
∫

Ω

gε(x, uε,∇uε)ϕλ(zε) dx ≤ 〈f, ϕλ(zε)〉. (3.12)

Since ϕλ(zε) is bounded in X and converges a.e. in Ω to zero and using (2.13),
we have ϕλ(zε) ⇀ 0 weakly in X as ε→ 0. Then

η1(ε) = 〈f, ϕλ(zε)〉 → 0, (3.13)

and since gε(x, uε,∇uε)ϕλ(zε) ≥ 0 in the subset {x ∈ Ω : |uε(x)| ≥ k} hence
(3.12) and (3.13) yield

〈Auε, ϕλ(zε)〉+
∫
{|uε|≤k}

gε(x, uε,∇uε)ϕλ(zε) dx ≤ η1(ε). (3.14)

We study each term in the left hand side of (3.14). We have,

〈Auε, ϕλ(zε)〉 =
∫

Ω

a(x, uε,∇uε)∇(Tk(uε)− Tk(u))ϕ′λ(zε) dx

=
∫

Ω

a(x, Tk(uε),∇Tk(uε))∇(Tk(uε)− Tk(u))ϕ′λ(zε) dx

−
∫
{|uε|>k}

a(x, uε,∇uε)∇Tk(u)ϕ′λ(zε) dx

=
∫

Ω

(a(x, Tk(uε),∇Tk(uε))− a(x, Tk(uε),∇Tk(u)))∇(Tk(uε)

− Tk(u))ϕ′λ(zε) dx+ η2(ε),
(3.15)

where,

η2(ε) =
∫

Ω

a(x, Tk(uε),∇Tk(u))∇(Tk(uε)− Tk(u))ϕ′λ(zε) dx

−
∫
{|uε|>k}

a(x, uε,∇uε)∇Tk(u)ϕ′λ(zε) dx,
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which converges to 0 as ε→ 0. On the other hand,

|
∫
{|uε|≤k}

gε(x, uε,∇uε)ϕλ(zε) dx|

≤
∫
{|uε|≤k}

b(k)[c(x) +
N∑
i=1

|∂uε
∂xi

|pwi]|ϕλ(zε)| dx

≤b(k)
∫
{|uε|≤k}

c(x)|ϕλ(zε)| dx+
b(k)
α

∫
{|uε|≤k}

a(x, uε,∇uε)∇uε|ϕλ(zε)| dx

=η3(ε) +
b(k)
α

∫
Ω

a(x, Tk(uε),∇Tk(uε))∇Tk(uε)|ϕλ(zε)| dx

=
b(k)
α

∫
Ω

(a(x, Tk(uε),∇Tk(uε))− a(x, Tk(uε),∇Tk(u)))∇(Tk(uε)

− Tk(u))|ϕλ(zε)| dx+ η4(ε)
(3.16)

where
η3(ε) = b(k)

∫
{|uε|≤k}

c(x)|ϕλ(zε)| dx→ 0 as ε→ 0

and

η4(ε) = η3(ε) +
b(k)
α

∫
Ω

a(x, Tk(uε),∇Tk(u))∇(Tk(uε)− Tk(u))|ϕλ(zε)| dx

+
b(k)
α

∫
Ω

a(x, Tk(uε),∇Tk(uε))∇Tk(u)|ϕλ(zε)| dx→ 0 as ε→ 0.

Note that, when λ ≥
(
b(k)
2α

)2

we have

ϕ′λ(s)−
b(k)
α

|ϕ(s)| ≥ 1
2
.

Which combining with (3.14),(3.15) and (3.16) one obtains∫
Ω

(
a(x, Tk(uε),∇Tk(uε))− a(x, Tk(uε),∇Tk(u))

)
∇(Tk(uε)− Tk(u)) dx

≤ η5(ε) = 2(η1(ε)− η2(ε) + η4(ε)) → 0 as ε→ 0.

Finally lemma 2.5 implies (3.10) for any fixed k ≥ ‖ψ‖∞.
Step (3) Passage to the limit. In view of (3.10) we have for a subsequence,

∇uε → ∇u a.e. in Ω, (3.17)

which with (3.8) imply,

a(x, uε,∇uε) → a(x, u,∇u) a.e. in Ω,
gε(x, uε,∇uε) → g(x, u,∇u)a.e. in Ω,

gε(x, uε,∇uε)uε → g(x, u,∇u)u a.e. in Ω.
(3.18)
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On the other hand, thanks to (2.14) and (3.7) we have a(x, uε,∇uε) is bounded
in

∏N
i=1 L

p′(Ω, w∗i ) then by lemma 2.1 we obtain

a(x, uε,∇uε) ⇀ a(x, u,∇u) weakly in
N∏
i=1

Lp
′
(Ω, w∗i ). (3.19)

We shall prove that,

gε(x, uε,∇uε) → g(x, u,∇u) strongly in L1(Ω). (3.20)

By (3.18), to apply Vitali’s theorem it suffices to prove that gε(x, uε,∇uε) is
uniformly equi-integrable. Indeed, thanks to (2.17), (3.6) and (3.7) we obtain,

0 ≤
∫

Ω

gε(x, uε,∇uε)uε dx ≤ c0, (3.21)

where c0 is some positive constant. For any measurable subset E of Ω and any
m > 0 we have,∫
E

|gε(x, uε,∇uε)| dx =
∫
E∩Xε

m

|gε(x, uε,∇uε)| dx+
∫
E∩Y ε

m

|gε(x, uε,∇uε)| dx

where,

Xε
m = {x ∈ Ω, |uε(x)| ≤ m}, Y εm = {x ∈ Ω, |uε(x)| > m}.

From these expressions, (2.18), and (3.21), we have∫
E

|gε(x, uε,∇uε)| dx

=
∫
E∩Xε

m

|gε(x, uε,∇Tm(uε))| dx+
∫
E∩Y ε

m

|gε(x, uε,∇uε)| dx

≤
∫
E∩Xε

m

|gε(x, uε,∇Tm(uε))| dx+
1
m

∫
Ω

gε(x, uε,∇uε)uε dx

≤b(m)
∫
E

(
N∑
i=1

wi|
∂Tm(uε)
∂xi

|p + c(x)) +
c0
m
.

(3.22)

Since the sequence (∇Tm(uε)) strongly converges in
∏N
i=1 L

p(Ω, wi), then (3.22)
implies the equi-integrability of gε(x, uε,∇uε).

Moreover, since gε(x, uε,∇uε)uε ≥ 0 a.e. in Ω, then by (3.18), (3.21) and
Fatou’s lemma, we have g(x, u,∇u)u ∈ L1(Ω). On the other hand, for v ∈
L∞(Ω), set h = k + ‖v‖∞, then

|∂Tk(v − uε)
∂xi

|w1/p
i = χ{|v−uε|≤k}|

∂v

∂xi
− ∂uε
∂xi

|w1/p
i

≤ χ{|uε|≤h}|
∂v

∂xi
− ∂uε
∂xi

|w1/p
i

≤ | ∂v
∂xi

|w1/p
i + |∂Th(uε)

∂xi
|w1/p
i



36 Strongly nonlinear degenerated elliptic unilateral problems

which implies, using Vitali’s theorem with (3.10) and (3.17) that

∇Tk(v − uε) → ∇Tk(v − u) strongly in
N∏
i=1

Lp(Ω, wi) (3.23)

for any v ∈W 1,p
0 (Ω, w) ∩ L∞(Ω). Thanks to lemma 3.1 and from (3.19), (3.20)

and (3.23) we can pass to the limit in

〈Auε, Tk(v − uε)〉+
∫

Ω

gε(x, uε,∇uε)Tk(v − uε) ≥ 〈f, Tk(v − uε)〉

and we obtain,

〈Au, Tk(v − u)〉+
∫

Ω

g(x, u,∇u)Tk(v − u) ≥ 〈f, Tk(v − u)〉 (3.24)

for any v ∈W 1,p
0 (Ω, w) ∩ L∞(Ω) and for all k > 0.

Taking for any v ∈ W 1,p
0 (Ω, w) and v ≥ ψ the test function Tm(v) which

belongs to W 1,p
0 (Ω, w) ∩ L∞(Ω) for m ≥ ‖ψ+‖∞ and passing to the limit in

(3.24) as m → ∞, then u is a solution of (3.4). Using again lemma 3.1 we
obtain the desired result, i.e., u is a solution of (3.3).

Proof of lemma 3.2 By proposition 2.6 chapter 2 [7], it is sufficient to show
that Bε is of the calculus of variations type in the sense of definition 2.1. Indeed
put,

b1(u, v, w̃) =
N∑
i=1

∫
Ω

ai(x, u,∇v)∇w̃ dx, b2(u, w̃) =
∫

Ω

gε(x, u,∇u)w̃ dx.

Then the mapping w̃ 7→ b1(u, v, w̃) + b2(u, w̃) is continuous in X. Then

b1(u, v, w̃) + b2(u, w̃) = b(u, v, w̃) = 〈Bε(u, v), w̃〉, Bε(u, v) ∈W−1,p′(Ω, w∗)

and we have
Bε(u, u) = Bεu.

Using (2.14) and Hölder’s inequality we can show that A is bounded as in [4],
and thanks to (3.6) Bε is bounded. Then, it is sufficient to check (2.6)-(2.9).

Next we show that (2.6) and (2.7) are true. By (2.15) we have,

(Bε(u, u)−Bε(u, v), u− v) = b1(u, u, u− v)− b1(u, v, u− v) ≥ 0.

The operator v → Bε(u, v) is bounded hemicontinuous. Indeed, we have

ai(x, u,∇(v1+λv2)) → ai(x, u,∇v1) strongly in Lp
′
(Ω, w∗i ) as λ→ 0. (3.25)

On the other hand, (gε(x, u1 + λu2,∇(u1 + λu2)))λ is bounded in Lq
′
(Ω, σ1−q′)

and gε(x, u1 + λu2,∇(u1 + λu2)) → gε(x, u1,∇u1) a.e. in Ω, hence lemma 2.1
gives

gε(x, u1 + λu2,∇(u1 + λu2)) ⇀ gε(x, u1,∇u1)

weakly in Lq
′
(Ω, σ1−q′) as λ→ 0.

(3.26)
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Using (3.25) and (3.26) we can write

b(u, v1 + λv2, w̃) → b(u, v1, w̃) as λ→ 0 ∀u, vi, w̃ ∈ X.

Similarly we can prove (2.7).
Proof of assertion (2.8). Assume that un ⇀ u weakly in X and (B(un, un) −
B(un, u), un − u) → 0. We have,

(B(un, un)−B(un, u), un − u)

=
N∑
i=1

∫
Ω

(ai(x, un,∇un)− ai(x, un,∇u))∇(un − u) dx→ 0,

then, by lemma 2.5, un → u strongly in X, which gives

b(un, v, w̃) → b(u, v, w̃) ∀w̃ ∈ X,

i.e., Bε(un, v) ⇀ Bε(u, v) weakly in X∗. It remains to prove (2.9). Assume
that

un ⇀ u weakly in X (3.27)

and that
B(un, v) ⇀ ψ weakly in X∗. (3.28)

Thanks to (2.13), (2.14) and (3.27) we obtain,

ai(x, un,∇v) → ai(x, u,∇v) in Lp
′
(Ω, w∗i ) as n→∞,

then,
b1(un, v, un) → b1(u, v, u). (3.29)

On the other hand, by Hölder’s inequality,

|b2(un, un − u)| ≤
(∫

Ω

|gε(x, un,∇un)|q
′
σ
−q′

q dx

)1/q′ (∫
Ω

|un − u|qσ dx
)1/q

≤1
ε

(∫
Ωε

σ
−q′

q dx

)1/q′

‖un − u‖Lq(Ω,σ) → 0 as n→∞,

i.e.,
b2(un, un − u) → 0 as n→∞, (3.30)

but in view of (3.28) and (3.29) we obtain

b2(un, u) = (Bε(un, v), u)− b1(un, v, u) → (ψ, u)− b1(u, v, u)

and from (3.30) we have b2(un, un) → (ψ, u)− b1(u, v, u). Then,

(Bε(un, v), un) = b1(un, v, un) + b2(un, un) → (ψ, u).
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Now show that Bε is coercive. Let v0 ∈ Kψ. From Hölder’s inequality, the
growth condition (2.14) and the compact imbedding (2.13) we have

〈Av, v0〉 =
N∑
i=1

∫
Ω

ai(x, v,∇v)
∂v0
∂xi

dx

≤
N∑
i=1

( ∫
Ω

|ai(x, v,∇v)|p
′
w

−p′
p

i dx
) 1

p′
( ∫

Ω

|∂v0
∂xi

|pwi dx
)1/p

≤ c1‖|v0|‖
( ∫

Ω

k(x)p
′
+ |v|qσ +

N∑
j=1

| ∂v
∂xj

|pwj dx
) 1

p′

≤ c2(c3 + ‖|v|‖
q
p′ + ‖|v|‖p−1),

where ci are various constants. Thanks to (2.16), we obtain

〈Av, v〉
‖|v|‖

− 〈Av, v0〉
‖|v|‖

≥ α‖|v|‖p−1 − ‖|v|‖p−2 − ‖|v|‖
q
p′−1 − c

‖|v|‖
.

In view of (2.10) we have p− 1 > q
p′ − 1. Then,

〈Av, v − v0〉
‖|v|‖

→ ∞ as ‖|v|‖ → ∞.

Since 〈Gεv, v〉 ≥ 0 and 〈Gεv, v0〉 is bounded, we have

〈Bεv, v − v0〉
‖|v|‖

≥ 〈Av, v − v0〉
‖|v|‖

− 〈Gεv, v0〉
‖|v|‖

→ ∞ as ‖|v|‖ → ∞.

Remark 3.2 Assumption (2.10) appears to be necessary to prove the bound-
edness of (uε)ε in W 1,p

0 (Ω, w) and the coercivity of the operator Bε. While
Assumption (2.11) is necessary to prove the boundedness of Gε in W 1,p

0 (Ω, w).
Thus, when g ≡ 0, we don’t need to assume (2.11).
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