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Strongly nonlinear elliptic problem without

growth condition ∗

Aomar Anane & Omar Chakrone

Abstract

We study a boundary-value problem for the p-Laplacian with a non-
linear term. We assume only coercivity conditions on the potential and
do not assume growth condition on the nonlinearity. The coercivity is
obtained by using similar non-resonance conditions as those in [1].

1 Introduction

Consider the boundary-value problem

−∆pu = f(x, u) + h in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain of RN , −∆p : W 1,p
0 (Ω) → W−1,p′(Ω) is the p-

Laplacian operator defined by

∆pu ≡ div(|∇u|p−2∇u), 1 < p <∞.

The p-Laplacian is a degenerated quasilinear elliptic operator that reduces to
the classical Laplacian when p = 2. The notation 〈., .〉 stands hereafter for the
duality pairing between W−1,p′(Ω) and W 1,p

0 (Ω). While f : Ω × R → R is a
Carathéodory function and h ∈W−1,p′(Ω).

Consider the energy functional Φ: W 1,p
0 (Ω) → R associated with the problem

Φ(u) =
1
p

∫
Ω

|∇u|p dx−
∫

Ω

F (x, u) dx− 〈h, u〉,

where F (x, s) =
∫ s

0
f(x, t) dt. We are interested in conditions to be imposed on

the nonlinearity f in order that problem (1.1) admits at least one solution u(x)
for any given h. Such conditions are usually called non-resonance conditions.

When the nonlinearity satisfies a growth condition of the type

|f(x, s)| ≤ a|s|q−1 + b(x) for all s ∈ R, and a.e. in Ω, (1.2)
∗Mathematics Subject Classifications: 49R50, 74G65, 35D05.
Key words: p-Laplacian, growth condition.
c©2002 Southwest Texas State University.
Published December 28, 2002.

41



42 Strongly nonlinear elliptic problem without growth condition

with q < p∗ where the Sobolev exponent p∗ = Np
N−p when p < N and p∗ = +∞

when p ≥ N and b(x) ∈ L(p∗)′(Ω), the functional Φ is well defined and is of class
C1, l.s.c. and its critical points are weak solutions of (1.1) in the usual sense.

However, when this growth condition is not satisfied, Φ is not necessarily of
class C1 on W 1,p

0 (Ω) and may take infinite values. The first eigenvalue of the
p-Laplacian characterized by the variational formulation

λ1 = λ1(−∆p) = min
{∫

Ω
|∇u|p∫

Ω
|u|p

dx; u ∈W 1,p
0 (Ω) \ {0}

}
is known to be associated to a simple eigenfunction that does not change sign
[4].

A procedure used to treat (1.1) when the nonlinearity lies asymptotically on
the left of λ1 consists in supposing a “coercivity” condition on F of the type

lim sup
s→±∞

pF (x, s)
|s|p

< λ1 for almost every x ∈ Ω (1.3)

and minimizing Φ on W 1,p
0 (Ω). The minimum being a weak solution of (1.1)

in an appropriate sense [1, 2, 3]. Another way is to obtain a priori estimates
on the solutions of some equations approximating (1.1) and to show that their
weak limit is indeed a weak solution.

Note that with the help of the conditions (1.2) and (1.3), we know since the
work of Hammerstein (1930) that (1.1) admits a weak solution that minimizes
the functional Φ on W 1,p

0 (Ω). The condition (1.3) does not imply a growth
condition on f unless f(x, u) is convex in u (see for example [5]).

In [1], Anane and Gossez supposed only a one-sided growth condition with
respect to the Sobolev (conjugate) exponent that do not suffice to guarantee the
differentiability of Φ, which may even take infinite values. Nevertheless, they
showed that any minimum of Φ solves (1.1) in a suitable sense.

Here, we assume 1 < p <∞ and only that f maps L∞(Ω) into L1(Ω); i.e.,

sup
|s|≤R

|f(., s)| ∈ L1
loc(Ω), ∀R > 0 (1.4)

and a coercivity condition of the type (1.3). We prove that any minimum u of
Φ, which is not of class C1 on W 1,p

0 (Ω) and may take infinite values too, is a
weak solution of (1.1) in the sense∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u)v dx+ 〈h, v〉,

for v in a dense subspace of W 1,p
0 (Ω). This result is proved by Degiovanni-

Zani [2] in the case p = 2.
In the autonomous case f(x, s) = f(s), De Figueiredo and Gossez [6] have

proved the existence of solutions for any h ∈ L∞(Ω) by a topological method.
They supposed only a coercivity condition and established that∫

Ω

|∇u|p−2∇u∇v dx =
∫

Ω

f(x, u)v dx+ 〈h, v〉
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for all v ∈W 1,p
0 (Ω)∩L∞(Ω)∪ {u} but the solution obtained may not minimize

Φ. Indeed, an example is given in [6] in the case p = 2 and an other one is given
in [3] where p may be different from 2.

Note that in our case, the condition (1.4) implies no growth condition on f
as it may be seen in the following example.

Example Consider the function

f(x, s) =

d(x)
(

sin(πs
2 )− sign(s)

2

)
exp

(
2 cos(πs

2 )
π + |s|−1

2

)
if |s| ≥ 1

d(x) s
2 (10s2 − 9) if |s| ≤ 1 ,

where d(x) ∈ L1
loc(Ω) and d(x) ≥ 0 almost everywhere in Ω, so that

F (x, s) =

−d(x) exp
(

2 cos(πs
2 )

π

)
exp

(
|s|−1

2

)
if |s| ≥ 1

−d(x) s2

4 (−5s2 + 9) if |s| ≤ 1 .

Then F (x, s) ≤ 0 for all s ∈ R almost everywhere in Ω. So, Φ is coercive.
Nevertheless, as we can check easily, f satisfies no growth condition.

2 Theoretical approach

We will show that when (1.4) is fulfilled, any minimum u of φ is a weak solution
of (1.1) in an acceptable sense.

Definition The space L∞0 (Ω) is defined by

L∞0 (Ω) =
{
v ∈ L∞(Ω); v(x) = 0 a.e. outside a compact subset of Ω

}
.

For u ∈W 1,p
0 (Ω), we set

Vu =
{
v ∈W 1,p

0 (Ω) ∩ L∞0 (Ω); u ∈ L∞({x ∈ Ω; v(x) 6= 0})
}
.

Proposition 2.1 (Brezis-Browder [7]) If u ∈ W 1,p
0 (Ω), there exists a se-

quence (un)n ⊂W 1,p
0 (Ω) such that:

(i) (un)n ⊂W 1,p
0 (Ω) ∩ L∞0 (Ω).

(ii) |un(x)| ≤ |u(x)| and un(x).u(x) ≥ 0 a.e. in Ω.

(iii) un → u in W 1,p
0 (Ω), as n→∞.

The linear space Vu enjoys some nice properties.

Proposition 2.2 The space Vu is dense in W 1,p
0 (Ω). And if we assume that

(1.4) holds, then

Au =
{
ϕ ∈W 1,p

0 (Ω); f(x, u)ϕ ∈ L1(Ω)
}

is a dense subspace of W 1,p
0 (Ω) as Vu ⊂ Au. More precisely, Brezis-Browder’s

result holds true if we replace W 1,p
0 (Ω) ∩ L∞0 (Ω) by Vu.
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Proof It suffices to show that Vu is dense in W 1,p
0 (Ω) and that Vu ⊂ Au when

(1.4) holds.
The density of Vu in W 1,p

0 (Ω): We have to show that for any ϕ ∈ W 1,p
0 (Ω),

there exists a sequence (ϕn)n ⊂ Vu satisfying (ii) and (iii). This is done in two
steps. First, we show it is true for all ϕ ∈ W 1,p

0 (Ω) ∩ L∞0 (Ω). Then, using
Proposition 2.1, we show it is true in W 1,p

0 (Ω).
First Step: Suppose ϕ ∈ W 1,p

0 (Ω) ∩ L∞0 (Ω) and consider a sequence (Θn)n ⊂
C∞0 (R) such that:
(1) suppΘn ⊂ [−n, n],
(2) Θn ≡ 1 on [−n+ 1, n− 1],
(3) 0 ≤ Θn ≤ 1 on R and
(4) |Θ′

n(s)| ≤ 2.
The sequence we are looking for is obtained by setting

ϕn(x) = (Θn ◦ u)(x)ϕ(x) for a.e. x in Ω.

Indeed, let’s check the following three statements
(a) ϕn ∈ Vu,
(b) |ϕn(x)| ≤ |ϕ(x)| and ϕn(x)ϕ(x) ≥ 0 a.e. in Ω and
(c) ϕn → ϕ in W 1,p

0 (Ω).
For (a), since ϕ ∈ L∞0 (Ω), we have that ϕn ∈ L∞0 (Ω) and it’s clear by (4) that
ϕn ∈W 1,p

0 (Ω). Finally, by (1), u(x) ∈ [−n, n] for a.e. x in {x ∈ Ω; ϕn(x) 6= 0}.
The assumption (b) is a consequence of (3). For (c), by (2), ϕn(x) → ϕ(x) a.e.
in Ω and

∂ϕn

∂xi
(x) = Θ′

n(u(x))
∂u

xi
ϕ(x) + Θn(u(x))

∂ϕ

∂xi
→ ∂ϕ

∂xi
in Ω.

And by (4), ∣∣∣∂ϕn

∂xi
(x)

∣∣∣ ≤ 2
∣∣∣ ∂u
∂xi

(x)
∣∣∣|ϕ(x)|+

∣∣∣ ∂ϕ
∂xi

(x)
∣∣∣ ∈ Lp(Ω).

Finally, by the dominated convergence theorem we get (c).
Second Step: Suppose that ϕ ∈ W 1,p

0 (Ω). By Proposition 2.1, there is a
sequence (ψn)n ⊂W 1,p

0 (Ω) satisfying (i), (ii) and (iii).
For k = 1, 2, . . ., there is nk ∈ N such that ||ψnk

−ϕ||1,p ≤ 1/k. Since ψnk
∈

W 1,p
0 (Ω)∩L∞0 (Ω), by the first step, there is ϕk ∈ Vu such that |ϕk(x)| ≤ |ψnk

(x)|
and ϕk(x)ψnk

(x) ≥ 0 almost everywhere in Ω and ||ϕk − ψnk
||1,p ≤ 1/k, so

that (ϕk)k is the sequence we are seeking. Indeed, |ϕk(x)| ≤ |ψnk
(x)| ≤ |ϕ(x)|,

ϕk(x)ϕ(x) ≥ 0 a.e. in Ω and ||ϕk−ϕ(x)||1,p ≤ ||ϕk−ψnk
||1,p+||ψnk

−ϕ(x)||1,p ≤
2/k.
The inclusion Vu ⊂ Au: Indeed, for ϕ ∈ Vu, set E =

{
x ∈ Ω; ϕ(x) 6= 0

}
so

that
|f(x, u)ϕ| = |f(x, u)χEϕ(x)|

≤ max
{
|f(x, s)ϕ(x)|; |s| ≤ ||u||L∞(E)

}
where χE is the characteristic function of the set E. By (1.4), the last term lies
to L1(Ω), so that ϕ ∈ Au. �
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Theorem 2.3 Assume (1.4). If u ∈ W 1,p
0 (Ω) is a minimum of Φ such that

F (x, u) ∈ L1(Ω), then

(i)
∫
Ω
|∇u|p−2∇u∇φdx =

∫
Ω
f(x, u)φdx+ 〈h, φ〉 for all φ ∈ Au.

(ii) f(x, u) ∈ W−1,p′(Ω) in the sense that the mapping T : Vu → R : T (φ) =∫
Ω
f(x, u)φdx is linear, continuous and admits an unique extension T̃ to

the whole space W 1,p
0 (Ω).

(iii) 〈f(x, u), φ〉 =
∫
Ω
f(x, u)φdx ∀φ ∈ Au.

(iv) −∆pu = f(x, u) + h in W−1,p′(Ω).

Remark There are in In [1] some conditions that guarantee the existence of
a minimum u of Φ in W 1,p

0 (Ω) and consequently F (x, u) ∈ L1(Ω).

Proof of Theorem 2.3 We will prove that the assertion (i) holds for all
φ ∈ Vu as a first step, then prove (iii), (iv) and (i). Let φ ∈ Vu and s ∈ R such
that 0 < s < 1. There exists β = β(x, s, φ, u) ∈ [−1, 1] such that∣∣F (x, u+ sφ)− F (x, u)

s

∣∣ = |f(x, u+ βφ)φ|

≤ max
{
|f(x, t)φ(x)|; |t| ≤ ‖u‖L∞(E) + ‖φ‖L∞(Ω)

}
,

where E = {x ∈ Ω; φ(x) 6= 0 a.e. }. Since F (x, u) ∈ L1(Ω), by (1.4), we have
F (x, u+ sφ) ∈ L1(Ω) for all 0 < s < 1. On the other hand

lim
s→0

F (x, u(x) + sφ(x))− F (x, u(x))
s

= f(x, u(x))φ a.e. in Ω.

It follows from Lebesgue’s dominated convergence that

lim
s→0

F (x, u+ sφ)− F (x, u)
s

= f(x, u)φ strongly in L1(Ω).

Since u ∈W 1,p
0 (Ω) is a minimum point of Φ, we get

Φ(u+ sφ)− Φ(u)
s

≥ 0 for all 0 < s < 1,

then, we get (i) for all φ ∈ Vu.
The linear mapping defined by T (φ) =

∫
Ω
f(x, u)φ is continuous, because

for all φ ∈ Vu,

|T (φ)| =
∣∣ ∫

Ω

|∇u|p−2∇u∇φ− 〈h, φ〉
∣∣ ≤ (

‖u‖p/p′

1,p + ‖h‖W−1,p′ (Ω)

)
‖φ‖1,p.

By Proposition 2.2, T admits an unique extension T̃ to the whole spaceW 1,p
0 (Ω).

Henceforth, we will make the identification f(x, u) = T̃ . Since

〈−∆pu, φ〉 = 〈f(x, u), φ〉 − 〈h, φ〉 ∀φ ∈ Vu,
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we conclude (iv). Let φ ∈ W 1,p
0 (Ω) such that f(x, u)φ ∈ L1(Ω), i.e. φ ∈ Au.

By Proposition 2.2 there exists (φn) ⊂ Vu. We can suppose that φn → φ almost
everywhere, |f(x, u)φn| ≤ |f(x, u)φ| and f(x, u)φn → f(x, u)φ a.e.. By the
dominated convergence theorem,

f(x, u)φn → f(x, u)φ in L1(Ω).

Since 〈f(x, u), φn〉 =
∫
Ω
f(x, u)φn for all n ∈ N and f(x, u) ∈W−1,p′(Ω) we get

(iii). Finally, (i) is an immediate consequence of (iii) and (iv). �

3 Description of the space Au

Now, we will see some condition that guarantee some properties of Au.

Proposition 3.1 Assume (1.4). Let u be a minimum of Φ in W 1,p
0 (Ω) with

F (x, u) ∈ L1(Ω). And let φ ∈ W 1,p
0 (Ω), v ∈ L1(Ω) such that f(x, u(x))φ(x) ≥

v(x) or f(x, u(x))φ(x) ≤ v(x) a.e. in Ω, then φ ∈ Au.

Proof Suppose f(x, u(x))φ(x) ≥ v(x) a.e. in Ω (the same argument works if
f(x, u(x))φ(x) ≤ v(x) a.e. in Ω). By Proposition 2.2, there exists (φn) ⊂ Vu

such that φn → φ in W 1,p
0 (Ω), |φn| ≤ |φ| and φn(x)φ(x) ≥ 0 a.e. in Ω. We have

f(x, u(x))φn(x) = f+(x, u(x))φn(x)− f−(x, u(x))φn(x)

≥ −f+(x, u(x))φ−(x)− f−(x, u(x))φ+(x)

≥ −v−(x).

By Fatou lemma, we have

−∞ <

∫
Ω

f(x, u(x))φ(x) ≤ lim inf
n

∫
Ω

f(x, u(x))φn(x)

= lim inf
n

〈f(x, u), φn〉 < +∞,

which implies f(x, u)φ ∈ L1(Ω), i.e. u ∈ Au. �

Corollary 3.2 If η, η1 and η2 in L1
loc(Ω), such that one of the following con-

ditions is satisfied:

(1) f(x, u(x)) ≥ η(x) a.e. in Ω

(2) f(x, u(x)) ≤ η(x) a.e. in Ω

(3) f(x, u(x)) ≤ η1(x) a.e. in {x ∈ Ω; u(x) < 0} and f(x, u(x)) ≥ η2(x) a.e.
in {x ∈ Ω; u(x) > 0},

(4) f(x, u(x)) ≥ η1(x) a.e. in {x ∈ Ω; u(x) < 0} and f(x, u(x)) ≤ η2(x) a.e.
in {x ∈ Ω; u(x) > 0}.

Then f(x, u) ∈ L1
loc(Ω) and consequently L∞c (Ω) ∩W 1,p

0 (Ω) ⊂ Au.
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Proof Assume (3) (the same argument works for (4)). Let φ ∈ C∞c (Ω). We
set Ω1 = {x ∈ Ω; u(x) ≤ −1 a.e.}, Ω2 = {x ∈ Ω; |u(x)| ≤ 1 a.e.} and
Ω3 = {x ∈ Ω; u(x) ≥ 1 a.e.}. It suffices to prove that f(x, u)|φ|χΩi ∈ L1(Ω) for
i = 1, 2, 3. By (1.4) we have f(x, u)φχΩ2 ∈ L1(Ω). Let θ ∈ C∞(R) :

θ(s) =


1 if s ≥ 1,
0 ≤ θ(s) ≤ 1 if 0 ≤ s ≤ 1,
0 if s ≤ 0.

It is clear that (θ ◦ u)|φ| ∈W 1,p
0 (Ω) and that

f(x, u(x))(θ ◦ u(x))|φ(x)| ≥ (θ ◦ u(x))|φ(x)|η2(x) ∈ L1(Ω).

By Proposition 3.1, we have f(x, u)(θ ◦ u)|φ| ∈ L1(Ω), then f(x, u)φχΩ3 ∈
L1(Ω) (the same argument to prove f(x, u)φχΩ1 ∈ L1(Ω)). We conclude that
f(x, u)φ ∈ L1(Ω) for all φ ∈ C∞c (Ω), which implies f(x, u) ∈ L1

loc(Ω).
Now assume (1) (the same argument works for (2)). For all φ ∈ C∞c (Ω)

we have f(x, u)|φ| ≥ η(x)|φ| ∈ L1(Ω), then f(x, u)|φ| ∈ L1(Ω); therefore,
f(x, u)φ ∈ L1(Ω). Then we conclude that f(x, u) ∈ L1

loc(Ω). �
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