2002-Fez conference on Partial Differential Equations,
Electronic Journal of Differential Equations, Conference 09, 2002, pp 65-76. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

Stationary Solutions for a Schrödinger-Poisson System in \mathbb{R}^{3} *

Khalid Benmlih

Abstract

Under appropriate, almost optimal, assumptions on the data we prove existence of standing wave solutions for a nonlinear Schrödinger equation in the entire space \mathbb{R}^{3} when the real electric potential satisfies a linear Poisson equation.

1 Introduction

Consider the time-dependent system which couples the Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u=-\frac{1}{2} \Delta u+(V+\widetilde{V}) u \tag{1.1}
\end{equation*}
$$

with initial value $u(x, 0)=u(x)$, and the Poisson equation

$$
\begin{equation*}
-\Delta V=|u|^{2}-n^{*} \tag{1.2}
\end{equation*}
$$

The dopant-density n^{*} and the effective potential \widetilde{V} are given time-independent reals functions. There are many papers dealing with the physical problem modelled by this system from which we mention Markowich, Ringhofer \& Schmeiser [8]; Illner, Kavian \& Lange [3]; Nier [9]; Illner, Lange, Toomire \& Zweifel [4], and references therein.

In this work we are mainly concerned with the proof of standing waves (actually ground states) of (1.1)-(1.2) in the entire space \mathbb{R}^{3}, i.e. solutions of the form

$$
u(x, t)=e^{i \omega t} u(x)
$$

with real number ω (frequency) and real wave function u. Hence we are interested in the stationary system

$$
\begin{gather*}
-\frac{1}{2} \Delta u+(V+\widetilde{V}) u+\omega u=0 \quad \text { in } \mathbb{R}^{3} \tag{1.3}\\
-\Delta V=|u|^{2}-n^{*} \quad \text { in } \mathbb{R}^{3} \tag{1.4}
\end{gather*}
$$

[^0]under appropriate, almost optimal, assumptions on \widetilde{V} and n^{*}. We suppose first that $\widetilde{V} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right)$ and $n^{*} \in L^{6 / 5}\left(\mathbb{R}^{3}\right)$.

Let us remark that if V_{0} is such that $-\Delta V_{0}=-n^{*}$ then $\left(0, V_{0}\right)$ is a solution of the system (1.3)-(1.4). But here, we deal with solutions (u, V) in $H^{1}\left(\mathbb{R}^{3}\right) \times$ $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ such that $u \not \equiv 0$.
F. Nier [9] has studied the system (1.3)-(1.4). He has showed the existence of a solution for small data i.e. when $\|\tilde{V}\|_{L^{2}}$ and $\left\|n^{*}\right\|_{L^{2}}$ are small enough. Conversely to our approach here, he has began by solving (1.3) for a fixed V and investigate the Poisson equation then obtained.

In this paper we solve first explicitly the Poisson equation (1.4) for a fixed u in $H^{1}\left(\mathbb{R}^{3}\right)$. Next we substitute this solution $V=V(u)$ in the Schrödinger equation (1.3) and look into the solvability of

$$
\begin{equation*}
-\frac{1}{2} \Delta u+(V(u)+\widetilde{V}) u+\omega u=0 \quad \text { in } \mathbb{R}^{3} \tag{1.5}
\end{equation*}
$$

Using the explicit formula of $V(u)$, this equation appears as a Hartree equation studied by P.L. Lions [6] in the case where $n^{*} \equiv 0$ and $\widetilde{V}(x):=-2 /|x|$. The fact that \widetilde{V} in [6] converges to zero at infinity plays a crucial role to prove existence of solutions. However, in this paper we show that a slight modification of the arguments used in that paper allows us to prove existence of a ground state in the case \widetilde{V} satisfying (1.7), (1.9) and n^{*} not necessarily zero (but satisfying (1.8) and (1.9) as below).

Before giving our hypotheses on \widetilde{V} and n^{*} let us define a decomposition which will be useful in the sequel.

Definition 1.1 We say that g satisfies the decomposition (1.6) if:
(i) $g \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right)$,
(ii) $g \geq 0$, and
(iii) There exists $\left.q_{0} \in[3 / 2, \infty]: \forall \lambda>0 \exists g_{1 \lambda} \in L^{q_{0}}\left(\mathbb{R}^{3}\right), q_{\lambda} \in\right] 3 / 2, \infty[$ and $g_{2 \lambda} \in L^{q_{\lambda}}\left(\mathbb{R}^{3}\right)$ such that

$$
\begin{equation*}
g=g_{1 \lambda}+g_{2 \lambda} \quad \text { and } \quad \lim _{\lambda \rightarrow 0}\left\|g_{1 \lambda}\right\|_{L^{q_{0}}}=0 \tag{1.6}
\end{equation*}
$$

For convenience, we use throughout this paper the following notations:

- $\|$.$\| denotes the norm \|.\|_{L^{2}}$ on $L^{2}\left(\mathbb{R}^{3}\right)$,
- \mathbb{I}_{A} denotes the characteristic function of the set $A \subset \mathbb{R}^{3}$,
- $[F \leq \lambda]$ denotes the set $\{x ; F(x) \leq \lambda\}$ for a function F and $\lambda \in \mathbb{R}$.

Let us give now two examples of functions satisfying the conditions in Definition 1.1.

Example 1.2 The following two functions satisfy the decomposition (1.6):
(i) $g(x):=1 /|x|^{\alpha}$ for some $0<\alpha<2$.
(ii) $|g|$ where g is a function in $L^{r}\left(\mathbb{R}^{3}\right)$ for some $r>3 / 2$.

Proof. To prove (i) we write, for $\lambda>0$,

$$
\frac{1}{|x|^{\alpha}}:=\underbrace{\frac{1}{|x|^{\alpha}} \mathbb{I}_{[|x|>1 / \lambda]}}_{g_{1 \lambda}}+\underbrace{\frac{1}{|x|^{\alpha}} \mathbb{I}_{[|x| \leq 1 / \lambda]}}_{g_{2 \lambda}} .
$$

Elementary calculations give

$$
\left\|g_{1 \lambda}\right\|_{L^{q_{0}}}^{q_{0}}=\frac{4 \pi}{\alpha q_{0}-3}(\lambda)^{\alpha q_{0}-3} \quad \text { and } \quad\left\|g_{2 \lambda}\right\|_{L^{q}}^{q}=\frac{4 \pi}{3-\alpha q}\left(\frac{1}{\lambda}\right)^{3-\alpha q}
$$

Hence it suffices to choose any finite numbers q_{0}, q such that $3 / 2<q<3 / \alpha<$ q_{0}.
To show (ii) write, as above,

$$
|g|:=\underbrace{|g| \mathbb{I}_{[|g| \leq \lambda]}}_{g_{1 \lambda}}+\underbrace{|g| \mathbb{I}_{[|g|>\lambda]}}_{g_{2 \lambda}} .
$$

It is clear that $\left\|g_{1 \lambda}\right\|_{L^{\infty}} \leq \lambda\left(q_{0}=\infty\right)$ and $\left\|g_{2 \lambda}\right\|_{L^{r}} \leq\|g\|_{L^{r}}\left(q_{\lambda}=r\right)$.
Hypotheses. In what follows we assume that

$$
\begin{equation*}
\widetilde{V}^{+} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right) \quad \text { and } \quad \tilde{V}^{-} \text {satisfies the decomposition (1.6) } \tag{1.7}
\end{equation*}
$$

where $\widetilde{V}^{+}(x):=\max (\widetilde{V}(x), 0)$ and $\widetilde{V}^{-}(x):=\max (-\widetilde{V}(x), 0)$. We suppose also that

$$
\begin{equation*}
n^{*} \in L^{1} \cap L^{6 / 5}\left(\mathbb{R}^{3}\right) \tag{1.8}
\end{equation*}
$$

and finally if we denote by

$$
\varrho(x):=2 \widetilde{V}(x)-\frac{1}{2 \pi} \int_{\mathbb{R}^{3}} \frac{n^{*}(y)}{|x-y|} d y
$$

we assume that

$$
\begin{equation*}
\inf \left\{\int_{\mathbb{R}^{3}}\left(|\nabla \varphi|^{2}+\varrho(x) \varphi^{2}\right) d x, \int_{\mathbb{R}^{3}}|\varphi|^{2}=1\right\}<0 \tag{1.9}
\end{equation*}
$$

Remark that in the case of [6] (where $n^{*} \equiv 0$ and $\widetilde{V}(x):=-2 /|x|$), all the three hypotheses above are satisfied. Indeed, (1.7) and (1.8) follow from (i) of Example 1.2. Moreover, if we consider $\Phi(x):=e^{-2|x|}$ then it verifies

$$
-\Delta \Phi-4 \frac{\Phi}{|x|}=-4 \Phi
$$

and consequently

$$
\inf \left\{\int_{\mathbb{R}^{3}}|\nabla \varphi|^{2}-4 \int_{\mathbb{R}^{3}} \frac{\varphi^{2}}{|x|} d x, \int_{\mathbb{R}^{3}}|\varphi|^{2}=1\right\}<0
$$

i.e.(1.9) is satisfied also.

Our main result is the following. We prove that the Schrödinger-Poisson system (1.3)-(1.4) has a ground state, minimizing the energy functional corresponding to (1.5), given by (see Lemma 2.2):

$$
E(\varphi):=\frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla \varphi|^{2} d x+\frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla V(\varphi)|^{2} d x+\frac{1}{2} \int_{\mathbb{R}^{3}} \widetilde{V} \varphi^{2} d x+\frac{\omega}{2} \int_{\mathbb{R}^{3}} \varphi^{2} d x
$$

Theorem 1.3 Under the assumptions (1.7), (1.8), and (1.9) there exists $\omega_{*}>0$ such that for all $0<\omega<\omega_{*}$ the equation (1.5) has a nonnegative solution $u \not \equiv 0$ which minimizes the functional E :

$$
E(u)=\min _{\varphi \in H^{1}\left(\mathbb{R}^{3}\right)} E(\varphi) .
$$

The remainder of this paper is organized as follows: In section 2 we present some preliminary lemmas which will be useful in the sequel. In section 3, we conclude by proving our main result.

2 Preliminary results

In this section we present a few preliminary lemmas which shall be required in several proofs. Recall (cf. [7, Theorem I.1] or [10, p.151]) that $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ is the completion of $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ for the norm

$$
\|\varphi\|_{\mathcal{D}^{1,2}}=\left(\int_{\mathbb{R}^{3}}|\nabla \varphi|^{2} d x\right)^{1 / 2}
$$

By a Sobolev inequality, $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ is continuously embedded in $L^{6}\left(\mathbb{R}^{3}\right)$, an equivalent characterization is

$$
\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right):=\left\{\varphi \in L^{6}\left(\mathbb{R}^{3}\right) ;|\nabla \varphi| \in L^{2}\left(\mathbb{R}^{3}\right)\right\}
$$

For the solvability of the Poisson equation (1.3) we state the following lemma.

Lemma 2.1 For all $f \in L^{6 / 5}\left(\mathbb{R}^{3}\right)$, the equation

$$
\begin{equation*}
-\Delta W=f \quad \text { in } \mathbb{R}^{3} \tag{2.1}
\end{equation*}
$$

has a unique solution $W \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ given by

$$
\begin{equation*}
W(f)(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{f(y)}{|x-y|} d y \tag{2.2}
\end{equation*}
$$

Proof. The existence and the uniqueness of the solution of (2.1) follow from corollary 3.1.4 of reference [5], by minimizing on $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ the functional

$$
J(v)=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla v|^{2} d x-\int_{\mathbb{R}^{3}} f v d x
$$

For this, using Hölder's and Sobolev's inequalities we check easily that J is coercive (that is $J\left(v_{n}\right) \rightarrow+\infty$ as $\left\|v_{n}\right\|_{\mathcal{D}^{1,2}} \rightarrow \infty$), strictly convex, lower semicontinuous and C^{1} on $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$. Hence J attains its minimum at $W \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ which is the unique solution of (2.1).

By uniqueness, W is the Newtonian potential of f and has (cf. [1, p.235]) an explicit formula given by (2.2). Furthermore, multiplying (2.1) by W and integrating we obtain

$$
\|\nabla W\|^{2}=\int_{\mathbb{R}^{3}} f(x) W(x) d x
$$

After using Hölder and Sobolev inequalities we get

$$
\begin{equation*}
\|\nabla W\| \leq S_{*}^{1 / 2}\|f\|_{L^{6 / 5}} \tag{2.3}
\end{equation*}
$$

where S_{*} is the best Sobolev constant in

$$
\begin{equation*}
\|v\|_{L^{6}\left(\mathbb{R}^{3}\right)}^{2} \leq S_{*}\|\nabla v\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \tag{2.4}
\end{equation*}
$$

Hence the linear mapping $f \mapsto W$ is continuous from $L^{6 / 5}\left(\mathbb{R}^{3}\right)$ into $\mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$.

Now in order to find a solution of equation (1.5), we are going to show that the operator

$$
v \mapsto-\frac{1}{2} \Delta v+\left(W\left(|v|^{2}-n^{*}\right)+\widetilde{V}\right) v+\omega v
$$

is the derivative of a functional $I: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ and hence equation (1.5) has a variational structure. To this end, we have the following lemma (see also [3])

Lemma 2.2 Let $n^{*} \in L^{6 / 5}\left(\mathbb{R}^{3}\right)$. For $\varphi \in H^{1}\left(\mathbb{R}^{3}\right)$ we denote by $V(\varphi):=$ $W\left(|\varphi|^{2}-n^{*}\right)$ the unique solution of (2.1) when $f:=|\varphi|^{2}-n^{*}$. Define

$$
I(\varphi):=\frac{1}{4} \int_{\mathbb{R}^{3}}|\nabla V(\varphi)|^{2} d x
$$

Then I is C^{1} on $H^{1}\left(\mathbb{R}^{3}\right)$ and its derivative is given by

$$
\begin{equation*}
\left\langle I^{\prime}(\varphi), \psi\right\rangle=\int_{\mathbb{R}^{3}} V(\varphi) \varphi \psi d x \quad \forall \psi \in H^{1}\left(\mathbb{R}^{3}\right) \tag{2.5}
\end{equation*}
$$

Proof. Note that if $\varphi \in H^{1}\left(\mathbb{R}^{3}\right)$ then, by interpolation, $|\varphi|^{2} \in L^{6 / 5}\left(\mathbb{R}^{3}\right)$. So taking $f=|\varphi|^{2}-n^{*}$ and multiplying the equation (2.1) by $V(\varphi):=W\left(|\varphi|^{2}-n^{*}\right)$ we deduce that $\|\nabla V(\varphi)\|^{2}=\int f(x) V(\varphi)(x) d x$, and hence in view of (2.2) we get

$$
\begin{equation*}
I(\varphi)=\frac{1}{16 \pi} \iint \frac{\left(|\varphi|^{2}-n^{*}\right)(x)\left(|\varphi|^{2}-n^{*}\right)(y)}{|x-y|} d x d y \tag{2.6}
\end{equation*}
$$

Using this expression, we show easily that (2.5) holds for the Gâteaux differential of I i.e. for all $\varphi, \psi \in H^{1}\left(\mathbb{R}^{3}\right)$

$$
\lim _{t \rightarrow 0^{+}} \frac{I(\varphi+t \psi)-I(\varphi)}{t}=\int_{\mathbb{R}^{3}} V(\varphi) \varphi \psi d x
$$

and that the mapping $\varphi \mapsto \varphi V(\varphi)$ is continuous on $H^{1}\left(\mathbb{R}^{3}\right)$. Thus I is Frechet differentiable and C^{1} on $H^{1}\left(\mathbb{R}^{3}\right)$ and its derivative satisfies (2.5).

At certain steps of our proof of Theorem 1.3, we need some estimates for which we will use the next inequalities.

Lemma 2.3 (i) If $\theta \in L^{r}\left(\mathbb{R}^{3}\right)$ for some $r \geq 3 / 2$ then $\forall \delta>0, \exists C_{\delta}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \theta(x)|\varphi(x)|^{2} d x \leq \delta\|\nabla \varphi\|^{2}+C_{\delta}\|\varphi\|^{2} \quad \forall \varphi \in H^{1}\left(\mathbb{R}^{3}\right) \tag{2.7}
\end{equation*}
$$

(ii) For all $\varphi \in \mathcal{D}^{1,2}\left(\mathbb{R}^{3}\right)$ and $y \in \mathbb{R}^{3}$ one has

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \frac{|\varphi(x)|^{2}}{|x-y|^{2}} d x \leq 4\|\nabla \varphi\|^{2} \tag{2.8}
\end{equation*}
$$

(iii) For any $\delta>0$ and all $y \in \mathbb{R}^{3}$

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \frac{|\varphi(x)|^{2}}{|x-y|} d x \leq \delta\|\nabla \varphi\|^{2}+\frac{4}{\delta}\|\varphi\|^{2} \quad \forall \varphi \in H^{1}\left(\mathbb{R}^{3}\right) \tag{2.9}
\end{equation*}
$$

Proof. In order to prove (i) we show first that (2.7) holds for any $\theta \in L^{\infty}+L^{3 / 2}$ and conclude since $L^{r}\left(\mathbb{R}^{3}\right) \subset L^{\infty}\left(\mathbb{R}^{3}\right)+L^{3 / 2}\left(\mathbb{R}^{3}\right)$ for all $r \geq 3 / 2$. Let $\theta=\theta_{1}+\theta_{2}$ with $\theta_{1} \in L^{\infty}$ and $\theta_{2} \in L^{3 / 2}$. Then for each $\lambda>0$ we have

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} \theta(x)|\varphi(x)|^{2} d x & \leq\left\|\theta_{1}\right\|_{L^{\infty}}\|\varphi\|^{2}+\lambda \int_{\left[\left|\theta_{2}\right| \leq \lambda\right]}|\varphi|^{2} d x+\int_{\left[\left|\theta_{2}\right|>\lambda\right]}\left|\theta_{2} \| \varphi\right|^{2} d x \\
& \leq\left(\left\|\theta_{1}\right\|_{L^{\infty}}+\lambda\right)\|\varphi\|^{2}+\left\|\theta_{2}\right\|_{L^{3 / 2}\left(\left[\left|\theta_{2}\right|>\lambda\right]\right)}\|\varphi\|_{L^{6}}^{2} \\
& \leq\left(\left\|\theta_{1}\right\|_{L^{\infty}}+\lambda\right)\|\varphi\|^{2}+S_{*}\left\|\theta_{2}^{\lambda}\right\|_{L^{3 / 2}}\|\nabla \varphi\|^{2}
\end{aligned}
$$

where S_{*} is the best Sobolev constant in (2.4) and θ_{2}^{λ} denotes $\theta_{2}^{\lambda}:=\theta_{2} \mathbb{I}_{\left[\left|\theta_{2}\right|>\lambda\right]}$. It is clear that $\left|\theta_{2}^{\lambda}\right| \leq\left|\theta_{2}\right|$ for all $\lambda>0$ and that $\theta_{2}^{\lambda} \rightarrow 0$ pointwise a.e. when $\lambda \rightarrow+\infty$. Since $\theta_{2} \in L^{3 / 2}$ then by Lebesgue convergence theorem we infer that $\left\|\theta_{2}^{\lambda}\right\|_{L^{3 / 2}}$ converges to zero. Hence for any $\delta>0$ there exists $K_{\delta}>0$ such that if $\lambda \geq K_{\delta}$ one has $S_{*}\left\|\theta_{2}^{\lambda}\right\|_{L^{3 / 2}} \leq \delta$. Choosing $C_{\delta}:=\left\|\theta_{1}\right\|_{L^{\infty}}+K_{\delta}$ we deduce that (2.7) holds for all $\theta \in L^{\infty}\left(\mathbb{R}^{3}\right)+L^{3 / 2}\left(\mathbb{R}^{3}\right)$.

Regarding (ii), (2.8) is the classical Hardy inequality (see [2]).
Finally, to show (iii) for all $\delta>0$ and any $y \in \mathbb{R}$, we write

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} \frac{|\varphi(x)|^{2}}{|x-y|} d x & =\int_{|x-y|<\frac{\delta}{4}} \frac{|\varphi(x)|^{2}}{|x-y|^{2}}|x-y| d x+\int_{|x-y| \geq \frac{\delta}{4}} \frac{|\varphi(x)|^{2}}{|x-y|} d x \\
& \leq \frac{\delta}{4} \int_{\mathbb{R}^{3}} \frac{|\varphi(x)|^{2}}{|x-y|^{2}} d x+\frac{4}{\delta} \int_{\mathbb{R}^{3}}|\varphi(x)|^{2} d x
\end{aligned}
$$

and (2.9) holds by using Hardy inequality (2.8).
Remark 2.4 Note that \widetilde{V}^{-}satisfies the inequality (2.7) i.e. $\forall \delta>0 \exists C_{\delta}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} \widetilde{V}^{-}(x)|\varphi(x)|^{2} d x \leq \delta\|\nabla \varphi\|^{2}+C_{\delta}\|\varphi\|^{2} \quad \forall \varphi \in H^{1}\left(\mathbb{R}^{3}\right) . \tag{2.10}
\end{equation*}
$$

Indeed, by (1.7) \widetilde{V}^{-}satisfies the decomposition (1.6). Then for a fixed $\lambda>0$ we have

$$
\tilde{V}^{-}=\tilde{V}_{1 \lambda}^{-}+\widetilde{V}_{2 \lambda}^{-}
$$

where for $i=1,2, \widetilde{V}_{i \lambda}^{-} \in L^{s}\left(\mathbb{R}^{3}\right)$ for some $s \in[3 / 2, \infty]\left(s=q_{0}\right.$ or $\left.s=q_{\lambda}\right)$. Hence by Lemma 2.3 each $\widetilde{V}_{i \lambda}^{-}$satisfies the inequality (2.7) and consequently \widetilde{V}^{-}also.

To finish this section we state the following convergence Lemma.
Lemma 2.5 Let $\psi \in L^{r}\left(\mathbb{R}^{3}\right)$ for some $r>3 / 2$. If $v_{n} \rightharpoonup 0$ weakly in $H^{1}\left(\mathbb{R}^{3}\right)$ then

$$
\int_{\mathbb{R}^{3}} \psi(x) v_{n}^{2}(x) d x \rightarrow 0 \quad \text { as } \quad n \rightarrow+\infty
$$

Proof. Consider the subset of $\mathbb{R}^{3}, A_{\lambda}:=[|\psi|>\lambda]$ and a compact subset K of A_{λ} suitably chosen later. We write

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}|\psi|(x) v_{n}^{2}(x) d x & =\int_{\mathbb{R}^{3}-A_{\lambda}}|\psi| v_{n}^{2} d x+\int_{A_{\lambda}-K}|\psi| v_{n}^{2} d x+\int_{K}|\psi| v_{n}^{2} d x \\
& \leq \lambda\left\|v_{n}\right\|^{2}+\|\psi\|_{L^{r}\left(A_{\lambda}-K\right)}\left\|v_{n}\right\|_{L^{2 r^{\prime}}\left(\mathbb{R}^{3}\right)}^{2}+\|\psi\|_{L^{r}\left(\mathbb{R}^{3}\right)}\left\|v_{n}\right\|_{L^{2 r^{\prime}}(K)}^{2} \\
& \leq \lambda C_{0}+C_{1}\|\psi\|_{L^{r}\left(A_{\lambda}-K\right)}+\|\psi\|_{L^{r}(K)}\left\|v_{n}\right\|_{L^{2 r^{\prime}}(K)}^{2}
\end{aligned}
$$

where $\frac{1}{r^{\prime}}+\frac{1}{r}=1$. In the last inequality we used that $\left(v_{n}\right)_{n}$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$ (note that $2<2 r^{\prime}<6$). For a given arbitrary $\delta>0$, we fix first λ such that $\lambda C_{0} \leq \frac{\delta}{3}$. Next we choose a compact subset $K \subset A_{\lambda}$ such that

$$
C_{1}\|\psi\|_{L^{r}\left(A_{\lambda}-K\right)} \leq \frac{\delta}{3}
$$

and finally since $v_{n} \rightharpoonup 0$ in $H^{1}\left(\mathbb{R}^{3}\right)$ and $2<2 r^{\prime}<6$ then up a subsequence $\left\|v_{n}\right\|_{L^{2 r^{\prime}(K)}}^{2}$ converges to 0 and therefore there exists $N_{\delta} \in \mathbb{N}$ such that for all $n \geq N_{\delta}$ we get

$$
\|\psi\|_{L^{r}(K)}\left\|v_{n}\right\|_{L^{2 r^{\prime}}(K)}^{2} \leq \frac{\delta}{3}
$$

which completes the proof.

3 Proof of Theorem 1.3

Now we are in position to prove our main result. To this end, we shall minimize the energy functional

$$
E(\varphi):=\frac{1}{4} \int|\nabla \varphi|^{2} d x+I(\varphi)+\frac{1}{2} \int \widetilde{V} \varphi^{2} d x+\frac{\omega}{2} \int \varphi^{2} d x
$$

whose critical points correspond, on account of Lemma 2.2, to solutions of (1.5). Using (2.6), we may decompose $E(\varphi)$ as

$$
\begin{equation*}
E(\varphi)=E_{1}(\varphi)-E_{2}(\varphi)+E_{3}(\varphi)+E(0) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
E_{1}(\varphi) & :=\frac{1}{4} \int|\nabla \varphi|^{2} d x+\frac{1}{2} \int \widetilde{V}^{+} \varphi^{2} d x+\frac{\omega}{2} \int \varphi^{2} d x \\
E_{2}(\varphi) & :=\frac{1}{2} \int \tilde{V}^{-} \varphi^{2} d x+\frac{1}{8 \pi} \iint \frac{n^{*}(y)}{|x-y|} \varphi^{2}(x) d x d y \\
E_{3}(\varphi) & :=\frac{1}{16 \pi} \iint \frac{\varphi^{2}(x) \varphi^{2}(y)}{|x-y|} d x d y \\
E(0) & :=\frac{1}{16 \pi} \iint \frac{n^{*}(x) n^{*}(y)}{|x-y|} d x d y
\end{aligned}
$$

The proof of Theorem 1.3 is divided into the four following Lemmas:
Lemma 3.1 Let $\omega>0$ and $c \in \mathbb{R}$. If the set $[E \leq c]$ is bounded in $L^{2}\left(\mathbb{R}^{3}\right)$ then it is also bounded in $H^{1}\left(\mathbb{R}^{3}\right)$.

Proof. By the expression $(3.1), E(\varphi) \leq c$ implies in particular

$$
\begin{equation*}
\frac{1}{4}\|\nabla \varphi\|^{2}-E_{2}(\varphi) \leq c_{0} \tag{3.2}
\end{equation*}
$$

where $c_{0}:=c-E(0)$ and since the other terms are nonnegative. To estimate $E_{2}(\varphi)$ we use (2.9) which gives for any $\delta>0$,

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{n^{*}(y)}{|x-y|} \varphi^{2}(x) d x d y \leq\left(\delta\|\nabla \varphi\|^{2}+\frac{4}{\delta}\|\varphi\|^{2}\right)\left\|n^{*}\right\|_{L^{1}}
$$

Using this inequality, Remark 2.4 and choosing δ such that $\delta\left(\frac{1}{2}+\frac{\left\|n^{*}\right\|_{L^{1}}}{8 \pi}\right)<\frac{1}{8}$ we obtain

$$
\begin{equation*}
E_{2}(\varphi) \leq \frac{1}{8}\|\nabla \varphi\|^{2}+K_{0}\|\varphi\|^{2} \tag{3.3}
\end{equation*}
$$

where K_{0} is a positive constant. In Consequence (3.2) gives

$$
\frac{1}{8}\|\nabla \varphi\|^{2} \leq K_{0}\|\varphi\|^{2}+c_{0}
$$

Lemma 3.2 For all $\omega>0$ and $c \in \mathbb{R}$ the set $[E \leq c]$ is bounded in $L^{2}\left(\mathbb{R}^{3}\right)$.
Proof. Assume by contradiction that there exists a sequence $\left(u_{j}\right)_{j} \subset H^{1}\left(\mathbb{R}^{3}\right)$ such that $E\left(u_{j}\right) \leq c$ and $\left\|u_{j}\right\| \rightarrow+\infty$. Let $v_{j}:=u_{j} /\left\|u_{j}\right\|$ then $\left\|v_{j}\right\|=1$ and from $E\left(u_{j}\right) \leq c$ we get

$$
\begin{equation*}
\frac{1}{4} \int\left|\nabla v_{j}\right|^{2} d x-E_{2}\left(v_{j}\right)+E_{3}\left(v_{j}\right)\left\|u_{j}\right\|^{2}+\frac{\omega}{2} \leq \frac{c_{0}}{\left\|u_{j}\right\|^{2}} . \tag{3.4}
\end{equation*}
$$

By using the estimate (3.3) for $\varphi:=v_{j}$ we obtain

$$
\begin{equation*}
\frac{1}{8}\left\|\nabla v_{j}\right\|^{2}+E_{3}\left(v_{j}\right)\left\|u_{j}\right\|^{2}+\frac{\omega}{2} \leq \frac{c_{0}}{\left\|u_{j}\right\|^{2}}+K_{0} \tag{3.5}
\end{equation*}
$$

Since ω and $E_{3}\left(v_{j}\right)$ are nonnegative, this inequality implies that $\left(v_{j}\right)_{j}$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$ and that $E_{3}\left(v_{j}\right)\left\|u_{j}\right\|^{2}$ is also bounded; i.e.

$$
\left(\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{v_{j}^{2}(x) v_{j}^{2}(y)}{|x-y|} d x d y\right)\left\|u_{j}\right\|^{2} \leq c_{1} .
$$

Let then $v \in H^{1}\left(\mathbb{R}^{3}\right)$ be such that for a subsequence of v_{j}, noted again v_{j}, we have $v_{j} \rightharpoonup v$ weakly in $H^{1}\left(\mathbb{R}^{3}\right), v_{j} \rightarrow v$ pointwise almost everywhere and v_{j}^{2} converging to v^{2} strongly in $L_{\text {loc }}^{p}\left(\mathbb{R}^{3}\right)$ for any $1 \leq p<3$. By Fatou's Lemma we deduce that

$$
\begin{aligned}
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{v^{2}(x) v^{2}(y)}{|x-y|} d x d y & \leq \liminf _{j \rightarrow+\infty} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{v_{j}^{2}(x) v_{j}^{2}(y)}{|x-y|} d x d y \\
& \leq \liminf _{j \rightarrow+\infty} \frac{c_{1}}{\left\|u_{j}\right\|^{2}}=0
\end{aligned}
$$

and therefore $v \equiv 0$. On the other hand, it follows from (3.4) that

$$
\begin{equation*}
\frac{\omega}{2}-E_{2}\left(v_{j}\right) \leq \frac{c_{0}}{\left\|u_{j}\right\|^{2}} \tag{3.6}
\end{equation*}
$$

Set

$$
\begin{equation*}
h(x):=\widetilde{V}^{-}(x)+V^{*}(x) \tag{3.7}
\end{equation*}
$$

where $V^{*}(x):=\frac{1}{4 \pi} \int \frac{n^{*}(y)}{|x-y|} d y$ is the Newtonian potential of n^{*} given by Lemma 2.1. Then (3.6) is equivalent to

$$
\begin{equation*}
\omega-\int_{\mathbb{R}^{3}} h(x) v_{j}^{2}(x) d x \leq \frac{2 c_{0}}{\left\|u_{j}\right\|^{2}} \tag{3.8}
\end{equation*}
$$

Using successively the hypothesis (1.7) and Lemma 2.5 we may show that

$$
\begin{equation*}
\int_{\mathbb{R}^{3}} h(x) v_{j}^{2}(x) d x \rightarrow 0 \quad \text { as } j \rightarrow+\infty \tag{3.9}
\end{equation*}
$$

Passing to the limit in (3.8) we infer that $\omega \leq 0$ which is a contradiction. In conclusion, any $\left(u_{j}\right)_{j} \subset H^{1}\left(\mathbb{R}^{3}\right)$ such that $E\left(u_{j}\right) \leq c$ is bounded in $L^{2}\left(\mathbb{R}^{3}\right)$.
Lemma 3.3 For any $\omega>0$ the functional E is weakly lower semi-continuous on $H^{1}\left(\mathbb{R}^{3}\right)$ and attains its minimum on $H^{1}\left(\mathbb{R}^{3}\right)$ at $u \geq 0$.

Proof. First, to show that the functional E is weakly lower semi-continuous, remark that in the expression (3.1) the term E_{1} and E_{3} are continuous and convex (therefore weakly lower semi-continuous). Then we just have to prove that $u \mapsto \int_{\mathbb{R}^{3}} h(x) u^{2}(x) d x$ is weakly sequentially continuous on $H^{1}\left(\mathbb{R}^{3}\right)$ where h is defined by (3.7). Consider $u_{j} \rightharpoonup u$ weakly in $H^{1}\left(\mathbb{R}^{3}\right)$ and write

$$
\int h(x) u_{j}^{2}(x) d x=\int h(x)\left(u_{j}-u\right)^{2} d x+2 \int h(x) u\left(u_{j}-u\right) d x+\int h(x) u^{2} d x
$$

Taking $\left(u_{j}-u\right)$ instead of v_{j} in (3.9) we infer that

$$
\int_{\mathbb{R}^{3}} h(x)\left(u_{j}-u\right)^{2} d x \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

Moreover, similarly to the proof of (3.9) we show that

$$
\int_{\mathbb{R}^{3}} h(x) u\left(u_{j}-u\right) d x \rightarrow 0 \quad \text { as } j \rightarrow \infty
$$

and consequently

$$
\int_{\mathbb{R}^{3}} h(x) u_{j}^{2}(x) d x \rightarrow \int_{\mathbb{R}^{3}} h(x) u^{2}(x) d x \quad \text { as } \quad j \rightarrow \infty
$$

This means that $u \mapsto \int_{\mathbb{R}^{3}} h(x) u^{2}(x) d x$ is weakly sequentially continuous on $H^{1}\left(\mathbb{R}^{3}\right)$ and therefore E is weakly lower semi-continuous on $H^{1}\left(\mathbb{R}^{3}\right)$.

Next, if we denote $\mu:=\inf \left\{E(\varphi) ; \varphi \in H^{1}\left(\mathbb{R}^{3}\right)\right\}$ and $\left(u_{n}\right)_{n} \subset H^{1}\left(\mathbb{R}^{3}\right)$ a minimizing sequence then by Lemmas 3.1 and $3.2,\left(u_{n}\right)_{n}$ is bounded in $H^{1}\left(\mathbb{R}^{3}\right)$ and therefore there exists $u \in H^{1}\left(\mathbb{R}^{3}\right)$ such that $u_{n} \rightharpoonup u$ weakly in $H^{1}\left(\mathbb{R}^{3}\right)$. The functional E being weakly lower semi-continuous on $H^{1}\left(\mathbb{R}^{3}\right)$ we have

$$
E(u) \leq \liminf _{n \rightarrow+\infty} E\left(u_{n}\right)=\mu
$$

and consequently $E(u)=\mu$. Since E is C^{1} on $H^{1}\left(\mathbb{R}^{3}\right)$ then $E^{\prime}(u)=0$ and in view of Lemma 2.2, u is a solution of the equation (1.5).

Let us remark finally that by a simple inspection we have $E(|u|) \leq E(u)$ and therefore we may assume that $u \geq 0$.

Lemma 3.4 There exists $\omega_{*}>0$ such that if $0<\omega<\omega_{*}$ then $E(u)<E(0)$ and thus $u \not \equiv 0$.

Proof. Assuming (1.9), there exist $\mu_{1}<0$ and $\varphi_{1} \in H^{1}\left(\mathbb{R}^{3}\right)$ such that $\int\left|\varphi_{1}\right|^{2}=1$ and

$$
\int_{\mathbb{R}^{3}}\left|\nabla \varphi_{1}\right|^{2} d x+\int_{\mathbb{R}^{3}} \varrho(x) \varphi_{1}^{2}(x) d x<\mu_{1} .
$$

From (3.1) we observe that

$$
\int_{\mathbb{R}^{3}}|\nabla \varphi|^{2} d x+\int_{\mathbb{R}^{3}} \varrho(x) \varphi^{2}(x) d x=4 E_{1}(\varphi)-4 E_{2}(\varphi)-2 \omega \int_{\mathbb{R}^{3}} \varphi^{2}(x) d x
$$

Then the last inequality gives

$$
E_{1}(\varphi)-E_{2}(\varphi)-\frac{\omega}{2}<\frac{\mu_{1}}{4} .
$$

Now, for $t>0$ and using again (3.1) we compute easily

$$
\begin{aligned}
E\left(t \varphi_{1}\right)-E(0) & =t^{2} E_{1}\left(\varphi_{1}\right)-t^{2} E_{2}\left(\varphi_{1}\right)+t^{4} E_{3}\left(\varphi_{1}\right) \\
& <\frac{t^{2}}{4}\left[\left(\mu_{1}+2 \omega\right)+4 t^{2} E_{3}\left(\varphi_{1}\right)\right] .
\end{aligned}
$$

Hence, if $\left(\mu_{1}+2 \omega\right)<0$ there exists $t_{*}>0$ small enough such that for all $0<t \leq t_{*}$,

$$
\left(\mu_{1}+2 \omega\right)+4 t^{2} E_{3}\left(\varphi_{1}\right)<0
$$

In other words, setting $\omega_{*}:=-\mu_{1} / 2$ then if $0<\omega<\omega_{*}$ we have $E\left(t \varphi_{1}\right)<E(0)$ for $0<t \leq t_{*}$. Since $E(u):=\inf \left\{E(\varphi) ; \varphi \in H^{1}\left(\mathbb{R}^{3}\right)\right\}$, this implies that $E(u)<$ $E(0)$ and consequently $u \not \equiv 0$. The proof of Theorem 1.3 is thus complete.

Remark 3.5 If n^{*} is nonnegative then we may replace the assumption (1.9) by the next one

$$
\inf \left\{\int|\nabla \varphi|^{2} d x+2 \int \widetilde{V}(x) \varphi^{2} d x ; \int|\varphi|^{2}=1\right\}<0
$$

which does not depend on n^{*} and implies obviously (1.9).
Acknowledgments. The author acknowledges the hospitality of Laboratoire de Mathématiques Appliquées de Versailles (France) where a part of this work was done. He is grateful to Otared Kavian for very valuable discussions and suggestions.

References

[1] D. Gilbard \& N.S. Trudinger: Elliptic Partial Differential Equations of Second Order; 2nd edition, Springer, Berlin 1983.
[2] G.H. Hardy, J.E. Littlewood \& G. Pólya : Inequalities; Cambridge University Press, London 1952.
[3] R. Illner, O. Kavian \& H. Lange: Stationary solutions of quasi-linear Schrödinger-Poisson systems, J. Differential equations 145(1998), 1-16.
[4] R. Illner, H. Lange, B. Toomire \& P. Zweifel: On quasi-linear SchrödingerPoisson systems; Math. Meth. Appl. Sci., 20 (1997), 1223-1238.
[5] O. Kavian: Introduction à la Théorie des Points Critiques. Springer-Verlag, Berlin, 1993.
[6] P. L. Lions: Some remarks on Hartree equation; Nonlinear Anal., Theory Methods Appl. 5 (1981), 1245-1256.
[7] P. L. Lions: The concentration-compactness principle in the calculus of variations, the limit case, Part 1; Revista Mathematica Iberoamericana, 1 (1985), 145-201.
[8] P. A. Markowich, C. Ringhofer \& C. Schmeiser: Semiconductor Equations ; Springer, Wien 1990.
[9] F. Nier: Schrödinger-Poisson systems in dimension $d \leq 3$, the whole space case; Proceedings of the Royal Society of Edinburgh, 123A (1993), 11791201.
[10] M. Struwe: Variational methods, Application to nonlinear PDE \& Hamiltonian systems; 2nd edition, Springer, Berlin 1996.

Khalid Benmlih
Department of Economic Sciences, University of Fez
P.O. Box 42A, Fez, Morocco.

E-mail: kbenmlih@hotmail.com

[^0]: *Mathematics Subject Classifications: 35J50, 35Q40.
 Key words: Schrödinger equation, Poisson equation, standing wave solutions, variational methods.
 © 2002 Southwest Texas State University.
 Published December 28, 2002.

