A polyharmonic analogue of a Lelong theorem and polyhedric harmonicity cells *

Mohamed Boutaleb

Abstract

We prove a polyharmonic analogue of a Lelong theorem using the topological method presented by Siciak for harmonic functions. Then we establish the harmonicity cells of a union, intersection, and limit of domains of \mathbb{R}^{n}. We also determine explicitly all the extremal points and support hyperplanes of polyhedric harmonicity cells in \mathbb{C}^{2}.

1 Introduction

Throughout this paper, D denotes a domain (a connected open) in \mathbb{R}^{n} with $n \geq 2$, where D and ∂D are not empty. Since 1936, p-polyharmonic functions in D have been used in elasticity calculus [14]. These functions are C^{∞}-solutions of the partial differential equation

$$
\Delta^{p} f(x)=\sum_{|\alpha|=p} \frac{p!}{\alpha!} \frac{\partial^{2|\alpha|} f(x)}{\partial x_{1}^{2 \alpha_{1}} \ldots \partial x_{n}^{2 \alpha_{n}}}=0, \quad p \in N^{*}, \quad x \in D .
$$

To study the singularities of these functions in D, Aronzajn [1, 2] considered the connected component $\mathcal{H}(D)$, containing D, of the open set $\mathbb{C}^{n} \backslash \cup_{t \in \partial D} \Gamma(t)$, where $\Gamma(t)=\left\{w \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left(w_{j}-t_{j}\right)^{2}=0\right\} . \mathcal{H}(D)$ is called the harmonicity cell of D. Lelong [12, 13] proved that $\mathcal{H}(D)$ coincides with the set of points $w \in \mathbb{C}^{n}$ such that there exists a path γ satisfying: $\gamma(0)=w, \gamma(1) \in D$ and $T[\gamma(\tau)] \subset D$ for every τ in $[0,1]$, where T is the Lelong transformation, mapping points $w=x+i y \in \mathbb{C}^{n}$ to $(n-2)$-spheres $\mathbb{S}^{n-2}(x,\|y\|)$ of the hyperplane of \mathbb{R}^{n} defined by: $\langle t-x, y\rangle=0$. This work can be divided into three sections: the first one treats a result on polyharmonic functions, the second some general properties on $\mathcal{H}(D)$, and the last one deals with a geometrical description of polyhedric harmonicity cells in \mathbb{C}^{2}.

Pierre Lelong [11] proved in addition that for every bounded domain D of \mathbb{R}^{n}, there exists a harmonic function f in D such that its domain of holomorphy

[^0]$\left(X_{f}, \Phi\right)$ over \mathbb{C}^{n} satisfies $\Phi\left(X_{f}\right)=\mathcal{H}(D)$, see also [4]. A concise proof of this result is given in Siciak's paper [16] in the case of the Euclidean ball $B_{n}^{r}=$ $\left\{x \in \mathbb{R}^{n} ;\|x\|<1\right\}$. In [5], we established that the former method can be applied to arbitrary domains. Also, V.Avanissian noted in [4] that the equality: $\left(X_{f}, \Phi\right)=(\mathcal{H}(D), I d)$ holds in the following cases: D is starshaped with respect to some point x_{0} of D, or D is a C-domain (that is D contains the convex hull of any $(n-2)$ dimensional-sphere included in D), or $D \subset \mathbb{R}^{n}$ with n even and $n \geq 4$. The object of Section 2 is to use a topological argument [16] to prove an analogous result for polyharmonic functions in D. As a consequence of this generalization we shall get

For every integer $1 \leq p \leq\left[\frac{n}{2}\right]$ and suitable domain D (say D is a C-domain, or in particular a convex domain), the harmonicity cell $\mathcal{H}(D)$ is nothing else but the greatest (in the inclusion sense) domain of \mathbb{C}^{n} whose trace on \mathbb{R}^{n} is D and to which all p-polyharmonic functions in D extends holomorphically.

In Section 3, we establish the harmonicity cell of an intersection, a union, and a limit of domains of $\mathbb{R}^{n}, n \geq 2$. We give next in Section 4 some results about plane domains, prove the existence of polyhedric harmonicity cells in \mathbb{C}^{2}, and we calculate all extremal points of the harmonicity cell of a regular polygon. For an arbitrary convex polygon P_{n}, with n edges, we show that $\mathcal{H}\left(P_{n}\right)$ has exactly $2 n$ faces in \mathbb{R}^{4} completely determined by means of the n support lines of P_{n}. It is well known by [10] that if we are given a complex analytic homeomorphism $f: D_{1} \rightarrow D_{2}$, where D_{1}, D_{2} are domains of $\mathbb{R}^{2}, D_{1}, D_{2}$ not equal to \mathbb{R}^{2} and $\mathbb{R}^{2} \simeq \mathbb{C}$, then $\mathcal{H}\left(D_{1}\right)$ and $\mathcal{H}\left(D_{2}\right)$ are analytically homeomorphic in \mathbb{C}^{2}. The holomorphic map $J f: \mathcal{H}\left(D_{1}\right) \rightarrow \mathcal{H}\left(D_{\mathbf{2}}\right)$ defined by $w \mapsto w^{\prime}$ with:

$$
w_{1}^{\prime}=\frac{f\left(w_{1}+i w_{2}\right)+\overline{f\left(\bar{w}_{1}+i \overline{w_{2}}\right)}}{2}, \quad w_{2}^{\prime}=\frac{f\left(w_{1}+i w_{2}\right)-\overline{f\left(\bar{w}_{1}+i \overline{w_{2}}\right)}}{2 i}
$$

realizes this homeomorphism.
In proposition 4.4, we show the continuity, according to the compact uniform topology, of the above Jarnicki extension $f \mapsto J f$ and estimate $\|(J f)(w)\|, w \in$ $\mathcal{H}(D)$ by means of $\sup _{z \in D}|f(z)|$. As applications, we find the harmonicity cells of half strips and arbitrary convex plane polygonal domains (owing to an explicit calculation of their support function).

2 A polyharmonic analogue of Lelong theorem

Recall that any polyharmonic function u in D, being in particular analytic in D, has a holomorphic continuation \widetilde{u} in a corresponding domain D^{u} of \mathbb{C}^{n} whose trace with \mathbb{R}^{n} is D. Therefore, given any integer $p(0<p<+\infty)$ and any domain D of \mathbb{R}^{n}, one can associate a domain $\mathcal{N} \mathcal{H}(D)$ of \mathbb{C}^{n} (depending on D only) such that the whole class $H^{p}(D)$, of all p-polyharmonic functions in D, extends holomorphically to $\mathcal{N H}(D)$. This last complex domain, called the
kernel of $\mathcal{H}(D)$, coincides with the set of all $z \in \mathcal{H}(D)$ satisfying $C_{h}[T(z)] \subset D$, where $C_{h}[T(z)]$ denotes the convex hull of $T(z)$. For more details see [4].

Making use of a topological argument appearing in [16], we will show now the following theorem.

Theorem 2.1 Let D be a bounded domain of $\mathbb{R}^{n}, n \geq 2, D \neq \emptyset, \partial D \neq \emptyset$, and $\mathcal{H}(D)$ its harmonicity cell. Then for all integer $1 \leq p \leq\left[\frac{n}{2}\right]$, ([$\left.\frac{n}{2}\right]$ is the integer part of $\frac{n}{2}$) and all domains $\widetilde{\Omega} \supset \mathcal{H}(D)$ the problem for the $2 p$-order linear partial differential operator Δ^{p}

$$
\begin{gathered}
\Delta^{p} u=0 \quad \text { in } D \\
\overline{D_{1}} \widetilde{u}=\cdots=\overline{D_{n}} \widetilde{u}=0 \quad \text { in } \mathcal{H}(D)
\end{gathered}
$$

has a solution $h \in H^{p}(D)$ which cannot be holomorphically continued in $\widetilde{\Omega}$. Here $\Delta=\Delta_{x}=\partial_{x_{1} x_{1}}+\cdots+\partial_{x_{n} x_{n}}$ is the usual Laplacian of $\mathbb{R}^{n}, \overline{D_{j}}=\frac{\partial}{\partial \overline{z_{j}}}$, $j=1,2, \ldots, n$.

Proof Let $\xi \in \partial \mathcal{H}(D)$ and $1 \leq p \leq\left[\frac{n}{2}\right]$. Firstly, we will construct explicitly a p-polyharmonic function h_{ξ} in D whose holomorphic continuation $\widetilde{h_{\xi}}$ in $\mathfrak{N H}(D)$ extends to the whole of $\mathcal{H}(D)$; however $\widetilde{h_{\xi}}$ cannot be holomorphically continued in a neighborhood of ξ. Next, we will deduce by a topological reasoning the existence of a p-polyharmonic function h in D such that $\mathcal{H}(D)$ is the domain of holomorphy of \widetilde{h}.

Construction of h_{ξ}. 1) $D \subset \mathbb{C} \simeq \mathbb{R}^{2}$: by [12], the boundary point ξ belongs to some isotropic cone of vertex a $t \in \partial D$, i.e. $\xi \in \Gamma(t)$, or $t \in T(\xi)=$ $\left\{\xi_{1}+i \xi_{2}, \overline{\xi_{1}}+i \overline{\xi_{2}}\right\}$.
a) If $t=\xi_{1}+i \xi_{2}$, we consider the function

$$
\widetilde{h_{\xi}}(z)=\operatorname{Ln}\left\{\left[\left(\xi_{1}+i \xi_{2}\right)-\left(z_{1}+i z_{2}\right)\right]\left[\overline{\left(\xi_{1}+i \xi_{2}\right)-\left(\overline{z_{1}}+i \overline{z_{2}}\right)}\right]\right\},
$$

where the branch is chosen such that $\widetilde{h_{\xi}}$ is real in D. Note that $\widetilde{h_{\xi}}$ is holomorphic in $\mathcal{H}(D)$, its restriction $\left.\widetilde{\left(h_{\xi}\right.} \mid D\right)(x)=2 \operatorname{Ln}\|x-t\|$, where $x=x_{1}+i x_{2}$ is harmonic in D, and $\lim _{z \rightarrow \xi}\left|\widetilde{h_{\xi}}(z)\right|=\infty$. Hence $\widetilde{h_{\xi}}$ cannot be holomorphically continued beyond ξ.
b) If $t=\overline{\xi_{1}}+i \overline{\xi_{2}}$, the function

$$
\widetilde{h_{\xi}}(z)=\operatorname{Ln}\left\{\left[\left(\overline{\xi_{1}}+i \overline{\xi_{2}}\right)-\left(z_{1}+i z_{2}\right)\right]\left[\overline{\left(\overline{\xi_{1}}+i \overline{\xi_{2}}\right)-\left(\overline{z_{1}}+i \overline{z_{2}}\right)}\right]\right\},
$$

satisfies the same requirements of (a). 2) $D \subset \mathbb{R}^{n}, n \geq 3$:
a) Suppose n even ≥ 4. There exists by [12] a point $t \in \partial D$ such that $\sum_{j=1}^{n}\left(\xi_{j}-\right.$ $\left.t_{j}\right)^{2}=0$. Consider then $\widetilde{h_{\xi}^{p}}: \mathcal{H}(D) \rightarrow \mathbb{C}, z=\left(z_{1}, \ldots, z_{n}\right) \mapsto \widetilde{h_{\xi}^{p}}(z)$ with

$$
\widetilde{h_{\xi}^{p}}(z)= \begin{cases}\frac{1}{\left[\left(z_{1}-t_{1}\right)^{2}+\ldots\left(z_{n}-t_{n}\right)^{2}\right]^{\frac{n}{2}-p}} & \text { when } 1 \leq p \leq \frac{n}{2}-1 \\ \operatorname{Ln} \sum_{j=1}^{n}\left(z_{j}-t_{j}\right)^{2} & \text { when } p=\frac{n}{2}\end{cases}
$$

(The branch is chosen in the complex logarithm such that $\left(\widetilde{h_{\xi}} \mid D\right)$ is real in $D)$. Since $\mathcal{H}\left(D\right.$ is the connected component containing D of $\mathbb{C}^{n} \backslash \cup_{t \in \partial D}\{z \in$ $\left.\mathbb{C}^{n} \sum_{j=1}^{n}\left(z_{j}-t_{j}\right)^{2}=0\right\}$, we see that $\widetilde{h_{\xi}^{p}}$ is defined and holomorphic in $\mathcal{H}(D)$ and that $\lim _{z \rightarrow \xi}\left|\widetilde{h_{\xi}^{p}}(z)\right|=\infty$. It remains thus to prove that the restriction $\widetilde{h_{\xi}^{p}} \mid D$ is actually p-polyharmonic in D.
2.a.i: $\quad 1 \leq p \leq \frac{n}{2}-1$. Since for every $x \in D:\left(\widetilde{h_{\xi}^{p}} \mid D\right)(x)=1 /\left(r^{n-2 p}\right)$ depends only on $r=\|x-t\|$ the proof can be carried out directly. Indeed, it is simplest to introduce polar coordinates with t as origin and to use

$$
\Delta^{p}=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} B\right)^{p}
$$

where B is the Beltrami operator containing only derivatives with respect to the angles variables. Now by induction on $q=1,2, \ldots$ we find after some calculus that for an arbitrary (complex) α,

$$
\Delta^{q}\left(r^{\alpha}\right)=\alpha(\alpha+n-2)(\alpha-2)(\alpha+n-4) \ldots(\alpha-2 q+2)(\alpha+n-2 q) r^{\alpha-2 q}
$$

Observe that if $\alpha=2 p-n$ we obtain

$$
\Delta^{q}\left(r^{2 p-n}\right)=(2 p-n)(2 p-2) \ldots(2 p-n-2 q+2)(2 p-2 q) r^{2 p-n-2 q}
$$

which gives respectively for $q=p$ and $q=p-1$:

$$
\begin{aligned}
\Delta^{p}\left(r^{2 p-n}\right) & =0 \\
\Delta^{p-1}\left(r^{2 p-n}\right) & =(2 p-n)(2 p-2)(2 p-n-2)(2 p-4) \ldots(4-n) 2 r^{2-n}
\end{aligned}
$$

Note that $\Delta^{p-1}\left(r^{2 p-n}\right) \neq 0$ if n is even and greater than or equal to 6 ; in addition, the case $n=4$ involves $p=1$, and so the last equality holds since $\Delta\left(\frac{1}{r^{2}}\right)=0, \Delta^{0}\left(\frac{1}{r^{2}}\right)=1$.
2.a.ii: $\quad p=\frac{n}{2}: \quad$ Since for every $x \in D$, the restriction $\widetilde{h_{\xi}^{p}} \mid D: x \mapsto 2 \operatorname{Ln} r$, where $r=\|x-t\|$, is a radial function, we use the same process to verify that $\operatorname{Ln} r$ is a $\frac{n}{2}$-polyharmonic function in $\mathbb{R}^{n}-\{0\}$ for all $n=2 p \geq 4$. As $\Delta(\operatorname{Ln} r)=(2 p-2) r^{-2}$, and $\Delta^{q}(\operatorname{Ln} r)=(2 q-2) \Delta^{q-1}\left(r^{-2}\right)$, we can make use of the corresponding formula of 2.a.(i) with $\alpha=-2$ to have

$$
\Delta^{q}(\operatorname{Ln} r)=(-1)^{q-1} 2^{q}(q-1)[(q-1)!](n-4)(n-6) \ldots(n-2 q) \frac{1}{r^{2 q}}
$$

The last equality holds actually for all $n \geq 2$ and $q \geq 1$ since by the case (1) above this result is true for $n=2$. Observe that if $n=2 p \geq 4$ one obtains

$$
\Delta^{q}(\operatorname{Ln} r)=(-1)^{q-1} 2^{q}(q-1)[(q-1)!](2 p-4) \ldots(2 p-2 q) \frac{1}{r^{2 q}} \quad \text { in } \quad \mathbb{R}^{2 p}-\{0\}
$$

Thus $\Delta^{q}(\operatorname{Ln} r) \neq 0$ for $q=1,2, \ldots, p-1$, and $\Delta^{q}(\operatorname{Ln} r)=0$ if $q=p$.
b) Suppose n is odd, $n \geq 3$. We consider again

$$
\widetilde{h_{\xi}^{p}}(z)=\frac{1}{\left[\left[\xi_{1}-z_{1}\right)^{2}+\cdots+\left[\xi_{n}-z_{n}\right)^{2}\right]^{\frac{n}{2}-p}}
$$

with $1 \leq p \leq\left[\frac{n}{2}\right]-1$, where the chosen branch is such that $\widetilde{h_{\xi}^{p}} \mid D,(x)>0$ in D. Note that $\widetilde{h_{\xi}^{p}}(z)$ is holomorphic in $\mathcal{H}(D)$ and infinite in any neighborhood of ξ. By a similar calculus, we find for every $x \in D$,

$$
\begin{gathered}
\Delta^{p}\left[\widetilde{h_{\xi}^{p}} \mid D(x)\right]=0 \\
\Delta^{p-1}\left[\widetilde{h_{\xi}^{p}} \mid D(x)\right] \neq 0
\end{gathered}
$$

Existence of h : In the following we shall make use of the lemma.
Lemma 2.2 Let $\mathcal{O}[\mathcal{H}(D)]$ denote the Fréchet space of all holomorphic functions on $\mathcal{H}(D)$, if it is endowed with the topology (τ) of uniform convergence on compact subsets of $\mathcal{H}(D)$. Then for all integer $p=1,2, \ldots$, the set

$$
\mathcal{O}^{p}[\mathcal{H}(D)]=\left\{F \in \mathcal{O}[\mathcal{H}(D)] ; F \mid D \in H^{p}(D)\right\}
$$

is a close subspace of $\mathcal{O}[\mathcal{H}(D)]$, and therefore it is itself a Fréchet space.
Proof Let us consider F_{1}, F_{2}, \ldots a sequence in $\mathcal{O}^{p}[\mathcal{H}(D)] \subset \mathcal{O}[\mathcal{H}(D)]$ converging to a function F, uniformly on every compact K^{\prime} of $\mathcal{H}(D)$. It is well known by a theorem of Weierstrass that F is also holomorphic in $\mathcal{H}(D)$, it remains thus to verify that $\Delta^{p}(F \mid D)=0, p=1,2, \ldots$ By [7], page 161 , for all multi-index $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}: D^{\beta} F_{j} \rightarrow D^{\beta} F$, uniformly on every compact K^{\prime} of $\mathcal{H}(D)$; in particular we also have $\left(D^{\beta} F_{j}\right)\left|D \rightarrow\left(D^{\beta} F\right)\right| D$ uniformly on any compact $K \subset D$ since we may treat all $K^{\prime} \cap \mathbb{R}^{n} \neq \emptyset$ as compact subsets of the real subspace in the complex $\left(z_{1}, \ldots, z_{n}\right)$-space. Now, note that

$$
\begin{aligned}
\left(D^{\beta} F_{j}\right) \mid D & =\left(D_{z}^{\beta} F_{j}\right) \mid D \\
& =\left(\frac{\partial^{|\beta|} F_{j}}{\partial z_{1}^{\beta_{1}} \ldots \partial z_{n}^{\beta_{n}}}\right) \left\lvert\, D=\frac{\partial^{|\beta|}}{\partial x_{1}^{\beta_{1}} \ldots \partial x_{n}^{\beta_{n}}}\left(F_{j} \mid D\right)=D_{x}^{\beta}\left(F_{j} \mid D\right)\right.,
\end{aligned}
$$

where $z_{j}=x_{j}+i y_{j}, j=1, \ldots, n$. Then for $q=1,2, \ldots, p-1$, the sequence

$$
\begin{aligned}
\left(\Delta_{z}^{q} F_{j}\right) \mid D & =\left[\left(\sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j}^{2}}\right)^{q} F_{j}\right]\left|D=\left(\sum_{|\alpha|=q} \frac{q!}{\alpha!} D_{z}^{2 \alpha} F_{j}\right)\right| D \\
& =\sum_{|\alpha|=q} \frac{q!}{\alpha!} D_{x}^{2 \alpha}\left(F_{j} \mid D\right)=\Delta_{x}^{q}\left(F_{j} \mid D\right)
\end{aligned}
$$

being a finite sum of derivatives $\left(D^{\beta} F_{j}\right) \mid D$, we have $\Delta_{x}^{q}\left(F_{j} \mid D\right) \rightarrow \Delta_{x}^{q}(F \mid D)$, uniformly on every compact K of D. Putting $F_{j} \mid D=f_{j}$ and $F \mid D=f$, we have also for every $x \in D: \lim _{j \rightarrow \infty}\left[\Delta^{q} f_{j}(x)\right]=\Delta^{q} f(x), q=1,2, \ldots, p-1$. Since each f_{j} is supposed p-polyharmonic in D for $1 \leq p \leq\left[\frac{n}{2}\right]$, we have $f_{j} \in \mathbf{C}_{\mathbb{R}}^{2 p}(D)$ and f_{j} satisfies the appropriate mean value property, see [4]:

$$
\begin{equation*}
\lambda\left(f_{j}, x, R\right)=f_{j}(x)+\sum_{q=1}^{p-1} a_{q} R^{2 q} \Delta^{q} f_{j}(x) \tag{2.1}
\end{equation*}
$$

for all $\mathrm{x} \in D$, and $R>0$ so small that $B_{n}^{r}(x, R)=\left\{y \in \mathbb{R}^{n} ;\|y-x\|<R\right\} \subset D$, where $\lambda\left(f_{j}, x, R\right)$ denotes the integral mean values over the surface $\partial B_{n}^{r}(x, R)$:

$$
\lambda\left(f_{j}, x, R\right)=\frac{\Gamma\left(\frac{n}{2}\right)}{2 \sqrt{\pi^{n}}} \int_{\|a\|=1} f_{j}(x+R a) d \sigma(a)
$$

with $d \sigma(a)$ an element of surface differential on the sphere $S^{n-1}(O, 1)$ and $a_{q}=$ $\Gamma\left(\frac{n}{2}\right) /\left(2^{2 q} q!\Gamma\left(q+\frac{n}{2}\right)\right)$. As f_{j} converges to f uniformly on the compact set $S^{n-1}(x, R)$, the limit process applied to (2.1) yields of course (2.1) for f :

$$
\lambda(f, x, R)=f(x)+\sum_{q=1}^{p-1} a_{q} R^{2 q} \Delta^{q} f(x)
$$

that is, $f=\lim _{j \rightarrow \infty} f_{j}$ has the mean value property (2.1) in D. Thus f is p-polyharmonic in D.

To prove the existence of the aforesaid function h, let $z^{(1)}, \ldots, z^{(j)}$. be a denumerable dense subset of the compact set $\partial \mathcal{H}(D)$. For every $(j, k) \in \mathbb{N}^{*^{2}}$, let $B_{n}^{c}\left(z^{(j)}, \frac{1}{k}\right)=\left\{w \in \mathbb{C}^{n} ;\left\|w-z^{(j)}\right\|<\frac{1}{k}\right\}$ denote the hermitian ball of \mathbb{C}^{n} centered at $z^{(j)}$ and of radius $\frac{1}{k}$, and put

$$
\mathcal{H}_{j, k}(D)=\mathcal{H}(D) \cup B_{n}^{c}\left(z^{(j)}, \frac{1}{k}\right)
$$

Due to the density of $\left\{z^{(j)}\right\}_{j \in N^{*}}$ in $\partial \mathcal{H}(D)$, it is enough to prove the existence of a function belonging to $\mathcal{O}^{p}[\mathcal{H}(D)]$ which cannot be holomorphically continued beyond $\mathcal{H}(D)$. This amounts to show the existence of a functions belonging to $\mathcal{O}^{p}[\mathcal{H}(D)]$ which cannot be holomorphically continued to any domain $\mathcal{H}_{j, k}(D)$. Thanks to the construction step, for all $j, k \in \mathbb{N}^{*}$ and every $p=1,2, \ldots,\left[\frac{n}{2}\right]$, we have:

$$
\mathcal{O}^{p}[\mathcal{H}(D)] \backslash \mathbf{R}_{j, k}\left\{\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]\right\} \neq \emptyset
$$

where $\mathbf{R}_{j, k}$ denotes the restriction mapping from $\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]$ to $\mathcal{O}^{p}[\mathcal{H}(D)]$, and $\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]$ the space of all holomorphic functions in $\mathcal{H}_{j, k}(D)$ whose trace on \mathbb{R}^{n} is p-polyharmonic in D. The spaces $\mathcal{O}^{p}[\mathcal{H}(D)]$ and $\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]$ being Fréchet spaces by the Lemma above, and the linear and continuous mapping $\mathbf{R}_{j, k}$ being not onto, we deduce owing to a Banach Theorem [14] that the range of $\mathbf{R}_{j, k}$ is a subset of the first category of $\mathcal{O}^{p}[\mathcal{H}(D)]$; that is,

$$
\mathbf{R}_{j, k}\left\{\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]\right\}=\cup_{m=1}^{\infty} X_{j, k}^{m}
$$

where $X_{j, k}^{m}, m=1,2, \ldots$ are subsets of $\mathcal{O}^{p}[\mathcal{H}(D)]$ satisfying $\left(\overline{X_{j, k}^{m}}\right)^{0}=\emptyset$, with respect to the topology (τ). Observe that

$$
\cup_{j, k=1}^{\infty} \mathbf{R}_{j, k}\left\{\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]\right\}=\cup_{j, k=1}^{\infty}\left(\cup_{m=1}^{\infty} X_{j, k}^{m}\right)=\cup_{j, k, m=1}^{\infty} X_{j, k}^{m}
$$

is also of the first category in $\mathcal{O}^{p}[\mathcal{H}(D)]$. Since $\mathcal{O}^{p}[\mathcal{H}(D)]$ is in particular a Baire space, we have, of course,

$$
\mathcal{O}^{p}[\mathcal{H}(D)] \backslash \cup_{j, k, m=1}^{\infty} X_{j, k}^{m}=\mathcal{O}^{p}[\mathcal{H}(D)] \backslash \cup_{j, k=1}^{\infty} \mathbf{R}_{j, k}\left\{\mathcal{O}^{p}\left[\mathcal{H}_{j, k}(D)\right]\right\} \neq \emptyset
$$

so we can pick up an element h of $\mathcal{O}^{p}[\mathcal{H}(D)]$ which cannot be continued holomorphically through $\partial \mathcal{H}(D)$.

Corollary 2.3 Let D be a C-domain of $\mathbb{R}^{n}(n \geq 2)$, or D be a convex domain of \mathbb{R}^{n}. Then for every integer p, $\left(1 \leq p \leq\left[\frac{n}{2}\right]\right.$, the integer part of $\left.\frac{n}{2}\right)$, the harmonicity cell of D satisfies

$$
\begin{equation*}
\mathcal{H}(D)=\left[\cap_{u \in H^{p}(D)} D^{u}\right]^{0} \tag{2.2}
\end{equation*}
$$

where $H^{p}(D)=\left\{u \in \mathbf{C}^{\infty}(D) ; \Delta^{p} u=0\right.$ in $\left.D\right\}$ and D^{u} is the complex domain of \mathbb{C}^{n} to which a polyharmonic function u extends holomorphically.

Proof By [4] Lemma 1.1.2, each p-polyharmonic function u in $D, p \in \mathbb{N}^{*}$, is the restriction of a holomorphic function \widetilde{u} in $D^{u} \subset \mathbb{C}^{n}$ such that $D^{u} \cap \mathbb{R}^{n}=$ D. The former property is actually a consequence of the analyticity of u. In addition, the p-polyharmonicity of u implies more precisely that the kernel of $\mathcal{H}(D)$ is included in D^{u} (see [4] Theorem 5.2.6). If u wanders through the whole class $H^{p}(D)$, we obtain: $\mathcal{N} \mathcal{H}(D) \subset\left[\cap_{u \in H^{p}(D)} D^{u}\right]^{0}$ (note here that the kernel of a harmonicity cell is a connected open of $\left.\mathbb{C}^{n}\right)$.

Inversely, due to Theorem 2.1 above, we can associate to every $1 \leq p_{0} \leq$ $\left[\frac{n}{2}\right]$ a function $f_{p_{0}} \in H^{p_{0}}(D)$ satisfying $D^{f_{p_{0}}}=\mathcal{H}(D)$. So, if $1 \leq p \leq\left[\frac{n}{2}\right]$ we get obviously the inclusion: $\left[\cap_{u \in H^{p}(D)} D^{u}\right]^{0} \subset D^{f_{p_{0}}}$. Hence, one deduces $\mathcal{N H}(D) \subset\left[\cap_{u \in H^{p}(D)} D^{u}\right]^{0} \subset \mathcal{H}(D)$. Now the assumption on D guarantees that $\mathcal{N H}(D)=\mathcal{H}(D)$; the desired equality follows.

Observe that it is an unexpected result that the right-hand side of Equality (2.2) does not depend on the choice of p. This allows us thus to give the following result.

Corollary 2.4 For every bounded domain D of \mathbb{R}^{n}, $n \geq 2$, with $D \neq \emptyset$, and $\partial D \neq \emptyset$, we have

$$
\mathcal{H}(D)=\cap_{1 \leq p \leq\left[\frac{n}{2}\right]}\left[\cap_{u \in H^{p}(D)} D^{u}\right]^{0} .
$$

Remark 2.5 Putting $p=1$ in Corollary 2.3, we find again an Avanissian s' result (cf. [4] p.67): Let $\mathbf{A}(D)(\mathbf{H} a(D))$ be the class of all real analytic (harmonic) functions on $D \subset \mathbb{R}^{n}$. For $f \in \mathbf{A}(D)$, we denote $\tilde{f}: D^{f} \rightarrow \mathbb{C}$ the holomorphic extension of f to the maximal domain D^{f} of \mathbb{C}^{n} (in the inclusion meaning). Then the sets: $A=\cap_{f \in \mathbf{A}(D)} D^{f}$ and $B=\cap_{f \in \mathbf{H a}(D)} D^{f}$ satisfy $\stackrel{\circ}{A}=\emptyset, \stackrel{\circ}{B}=\mathcal{H}(D)$.

3 Some properties of harmonicity cells

In [4], Avanissian established the following general results about the operation $D \mapsto \mathcal{H}(D)$; see also [13].

Proposition 3.1 The harmonicity cells of domains of $\mathbb{R}^{n}, n \geq 2$, satisfy
a) If $D_{1} \cap D_{2}=\emptyset, \mathcal{H}\left(D_{1}\right) \cap \mathcal{H}\left(D_{2}\right)=\emptyset$; if $D_{1} \subset D_{2}, \mathcal{H}\left(D_{1}\right) \subset \mathcal{H}\left(D_{2}\right)$.
b) $\mathcal{H}\left(\cup_{\nu \in J} D_{\nu}\right)=\cup_{\nu \in J} \mathcal{H}\left(D_{\nu}\right)$ for every exhaustive increasing family of domains D_{ν}.
c) $\mathcal{H}(D) \cap \mathbb{R}^{n}=D ; \mathcal{H}(D)$ is symmetric with respect to \mathbb{R}^{n}; and if D is convex then so is $\mathcal{H}(D)$.
d) If D is starshaped at a_{0}, then $\mathcal{H}(D)$ is starshaped at a_{0} and $\mathcal{H}(D)=\{z \in$ $\left.\mathbb{C}^{n} ; T(z) \subset D\right\}$.
e) $\partial D \subset \partial \mathcal{H}(D)$; if $z \in \overline{\mathcal{H}(D)}, T(z) \subset \bar{D}$; and if $z \in \partial \mathcal{H}(D), T(z) \cap \partial D \neq$ \emptyset.
f) $\delta[\mathcal{H}(D)] \leq 2\left[\frac{n}{2 n+2}\right]^{\frac{1}{2}} \delta(D)$, where $\delta(D)$ denotes the diameter of D.
g) $\mathcal{H}(D)$ may be explicitly obtained when D is a ball, a cube, or a difference of two balls.
h) If $n=2$ and $\mathbb{R}^{2} \simeq \mathbb{C}, \mathcal{H}(D)=\left\{z \in \mathbb{C}^{2} ; z_{1}+i z_{2} \in D, \overline{z_{1}}+i \overline{z_{2}} \in D\right\}$.

In the following, we establish supplementary results. Let \mathfrak{D}^{n} denote henceforth the family of all domains D of $\mathbb{R}^{n}, D \neq \emptyset, \partial D \neq \emptyset$, and \mathfrak{C}_{s}^{n} the family of all domains of \mathbb{C}^{n} which are symmetric with respect to $\mathbb{R}^{n}=\left\{x+i y \in \mathbb{C}^{n}\right.$; $y=0\}$.

Proposition 3.2 The mapping $\mathcal{H}: D \in \mathfrak{D}^{n} \mapsto \mathcal{H}(D) \in \mathfrak{C}_{s}^{n}$ satisfies:
a) \mathcal{H} is injective ; $\mathcal{H}(D)$ is bounded if and only if D is bounded.
b) For every compact set $K \subset \mathcal{H}(D)$, there exists a domain $D_{1} \in \mathfrak{D}^{n}$ such that D_{1} is relatively compact in D and $K \subset \mathcal{H}\left(D_{1}\right)$.
c) If $D_{1}, D_{2} \in \mathfrak{D}^{2}$ are such that $D_{1} \cap D_{2}$ is connected then $\mathcal{H}\left(D_{1} \cap D_{2}\right)=$ $\mathcal{H}\left(D_{1}\right) \cap \mathcal{H}\left(D_{2}\right)$. If $\left(D_{j}\right)_{j \in J}$ is a family of starshaped domains in $\mathbb{R}^{n}(n \geq 2)$ such that $\cap_{j \in J} D_{j}$ is a starshaped domain, or if $\left(D_{j}\right)_{j \in J}$ is a family of convex domains in \mathbb{R}^{n} such that $\cap_{j \in J} D_{j}$ is open, then $\mathcal{H}\left(\cap_{j \in J} D_{j}\right)=$ $\cap_{j \in J} \mathcal{H}\left(D_{j}\right)$.
d) If $D_{1}, D_{2} \in \mathfrak{D}^{2}$ with $D_{1} \cap D_{2} \neq \emptyset$ then $\mathcal{H}\left(D_{1} \cup D_{2}\right) \supset \mathcal{H}\left(D_{1}\right) \cup \mathcal{H}\left(D_{2}\right)$, and the equality holds if and only if $D_{1} \subset D_{2}$ or $D_{2} \subset D_{1}$. More generally, if $\left(D_{j}\right)_{j \in J} \subset \mathfrak{D}^{n}(n \geq 2)$ is such that $D_{i} \cap D_{j} \neq \emptyset$ for all $i, j \in J$ then $\mathcal{H}\left(\cup_{j \in J} D_{j}\right) \supset \cup_{j \in J} \mathcal{H}\left(D_{j}\right)$. The equality holds if $\cup_{j \in J} D_{j}=D_{j_{0}}$ for a certain $j_{0} \in J$.

Proof a) By Proposition 3.1, \mathcal{H} is well defined on \mathfrak{D}^{n} with values in \mathfrak{C}_{s}^{n}; and if two harmonicity cells $\mathcal{H}(D)$ and $\mathcal{H}\left(D^{\prime}\right)$ coincide in \mathbb{C}^{n}, then their traces on \mathbb{R}^{n} coincide also, that is $D=D^{\prime}$. Besides, suppose that for some $R>0$, $D \subset B_{n}^{r}(0, R)=\left\{x \in \mathbb{R}^{n} ;\|x\|<R\right\}$. Then $\mathcal{H}(D) \subset \mathcal{H}\left[B_{n}^{r}(0, R)\right]=L B(0, R)=$ $\left\{z \in \mathbb{C}^{n} ; L(z)<R\right\}$ (the Lie ball of \mathbb{C}^{n}), see $[3,5,9]$, where

$$
L(z)=\left[\|z\|^{2}+\sqrt{\|z\|^{4}-\left|\sum_{j=1}^{n} z_{j}^{2}\right|^{2}}\right]^{1 / 2}
$$

Since $\|z\| \leq L(z)$, we have $L B(0, R) \subset B_{n}^{c}(0, R)=\left\{z \in \mathbb{C}^{n} ;\|z\|<R\right\}$ and $\mathcal{H}(D)$ is bounded in \mathbb{C}^{n}. The converse is obvious since $D \subset \mathcal{H}(D)$.
b) Let us consider an increasing exhaustive family $\left(D_{\nu}\right)_{\nu \in J}$ (J is a fixed indices set) of bounded domains $D_{\nu} \in \mathfrak{D}^{n}$ such that $D=\cup_{\nu \in J} D_{\nu}$. Due to 3.1.b, the family $\left(\mathcal{H}\left(D_{\nu}\right)\right)_{\nu \in J}$ of harmonicity cells of $\left(D_{\nu}\right)_{\nu \in J}$ is also increasing, exhaustive and satisfies $\mathcal{H}(D)=\cup_{\nu \in J} \mathcal{H}\left(D_{\nu}\right)$. We then have: $K \subset \cup_{\nu \in J} \mathcal{H}\left(D_{\nu}\right)$. since K is a compact set, we can extract from this open covering of K, a finite subcovering of $K: K \subset \cup_{k=1}^{n} \mathcal{H}\left(D_{\nu_{k}}\right)$. Afterwards we have by 3.1.a: $\cup_{k=1}^{n} \mathcal{H}\left(D_{\nu_{k}}\right) \subset$ $\mathcal{H}\left(\cup_{k=1}^{n} D_{\nu_{k}}\right)$ and $K \subset \mathcal{H}\left(\cup_{k=1}^{n} D_{\nu_{k}}\right)$. Seeing that D^{\prime} is a relatively compact domain in D and taking $D^{\prime}=\cup_{k=1}^{n} D_{\nu_{k}}$, we obtain the desired result.
c) The inclusion $\mathcal{H}\left(D_{i} \cap D_{j}\right) \subset \mathcal{H}\left(D_{i}\right) \cap \mathcal{H}\left(D_{j}\right)$ is obvious from $D_{i} \cap D_{j} \subset D_{i}$, $D_{i} \cap D_{j} \subset D_{j}$. If $w \in \mathcal{H}\left(D_{i}\right) \cap \mathcal{H}\left(D_{j}\right), T(w) \subset D_{i} \cap D_{j}$, that is $w \in \mathcal{H}\left(D_{i} \cap D_{j}\right)$. By similar arguments we obtain the general case.
d) $D_{1} \cap D_{2} \neq \emptyset$ guarantees that $D_{1} \cup D_{2} \in \mathfrak{D}^{n}$. Since $D_{i} \subset D_{1} \cup D_{2}, i=1,2$, $\mathcal{H}\left(D_{1}\right) \cup \mathcal{H}\left(D_{2}\right) \subset \mathcal{H}\left(D_{1} \cup D_{2}\right)$. Suppose now that D_{1} is neither included in D_{2}, nor D_{2} in D_{1}. If a and b are arbitrarily chosen in $D_{1} \backslash D_{2}$ and $D_{2} \backslash D_{1}$ respectively, and if $\mathbb{R}^{2} \simeq \mathbb{C}$, then the point $w=\left(\frac{a+\bar{b}}{2}, \frac{a-\bar{b}}{2 i}\right)$ of \mathbb{C}^{2} satisfies $T(w)=\{a, b\} \subset D_{1} \cup D_{2}$. Now, the last hypothesis on D_{1} and D_{2} involves that $w \notin \mathcal{H}\left(D_{1}\right) \cup \mathcal{H}\left(D_{2}\right)$. Besides, as $D_{i} \cap D_{j} \neq \emptyset$ we have $\cup_{j \in J} D_{j} \in \mathfrak{D}^{n}$ and thus this union does possess a harmonicity cell in \mathbb{C}^{n}. The given inclusion is evident since $D_{i} \subset \cup_{j \in J} D_{j}$. Suppose in addition that $D_{j_{0}}=\cup_{j \in J} D_{j}$. From $\mathcal{H}\left(D_{j_{0}}\right) \subset \cup_{j \in J} \mathcal{H}\left(D_{j}\right)$ and $\mathcal{H}\left(\cup_{j \in J} D_{j}\right) \supset \cup_{j \in J} \mathcal{H}\left(D_{j}\right)$, we deduce the equality $\mathcal{H}\left(\cup_{j \in J} D_{j}\right)=\cup_{j \in J} \mathcal{H}\left(D_{j}\right)$.

Corollary 3.3 If $\left(D_{j}\right)_{j \geq 1}$ is a monotonous sequence in \mathfrak{D}^{n}, so is $\left(\mathcal{H}\left(D_{j}\right)\right)_{j \geq 1}$ in \mathfrak{C}_{s}^{n}; and writing $D=\lim _{j \rightarrow \infty} D_{j}$, we have $\lim _{n \rightarrow \infty} \mathcal{H}\left(D_{n}\right)=\mathcal{H}(D)$ under the assumptions that: $\cup_{j \geq 1} D_{j} \neq \mathbb{R}^{n}$ if the sequence $\left(D_{j}\right)_{j \geq 1}$ is increasing, and that $\cap_{j \in J} D_{j} \in \mathfrak{D}^{n}$ in the decreasing case.

Proof If the sequence is increasing then $\liminf _{n \rightarrow \infty} D_{n}=\cup_{n \geq 1}\left(\cap_{k \geq n} D_{k}\right)=$ $\cup_{n>1} D_{n}, \lim \sup _{n \rightarrow \infty} D_{n}=\cap_{n \geq 1}\left(\cup_{k \geq n} D_{k}\right)=\cap_{n \geq 1}\left(\cup_{k \geq n} D_{k}\right)=\cup_{k>1} D_{k}$, so $\lim _{n \rightarrow \infty} D_{n}=\cup_{n \geq 1} D_{n}$. Since $\cup_{n \geq 1} D_{n} \neq \emptyset$ and $\cup_{n \geq 1} D_{n} \neq \mathbb{R}^{n}$, we deduce that $\lim _{n \geq 1} D_{n}$ is an element of \mathfrak{D}^{n}.

Next, $\left(\mathcal{H}\left(D_{n}\right)\right)_{n \geq 1}$ being also increasing, $\lim _{n \rightarrow \infty} \mathcal{H}\left(D_{n}\right)=\cup_{n \geq 1} \mathcal{H}\left(D_{n}\right)$. Now by 3.2.d: $\cup_{n \geq 1} \mathcal{H}\left(D_{n}\right) \subset \mathcal{H}\left(\cup_{n \geq 1} D_{n}\right)$. Moreover, if $w_{0} \in \mathcal{H}\left(\cup_{n \geq 1} D_{n}\right)$ one has $T\left(w_{0}\right) \subset \cup_{n \geq 1} D_{n}$; then by 3.2.b and the fact that $T(z)$ is a compact set for every $z \in \mathbb{C}^{n}$, there exists $n_{0} \geq 0$ such that $T\left(w_{0}\right) \subset D_{n_{0}}$ i.e. $w_{0} \in \mathcal{H}\left(D_{n_{0}}\right) \subset \cup_{n \geq 1} \mathcal{H}\left(D_{n}\right)$. Thus $\mathcal{H}\left(\lim _{n \rightarrow \infty} D_{n}\right) \subset \lim _{n \rightarrow \infty} \mathcal{H}\left(D_{n}\right)$, which involves the aforesaid equality. In case of a decreasing sequence $\left(D_{n}\right)_{n \geq 1}$ one has $\lim \inf _{n \rightarrow \infty} D_{n}=\cup_{n \geq 1}\left(\cap_{k \geq n} D_{k}\right)=\cup_{n \geq 1}\left(\cap_{k \geq 1} D_{k}\right)=\cap_{k \geq 1} D_{k}$, and $\lim \sup _{n \rightarrow \infty} D_{n}=\cap_{n \geq 1}\left(\cup_{k \geq n} D_{k}\right)=\cap_{n \geq 1} D_{n} . \quad$ So $\lim _{n \rightarrow \infty} D_{n}=\cap_{n \geq 1} D_{n}$, which is in \mathfrak{D}^{n} by hypothesis. Now, $\left(\mathcal{H}\left(D_{n}\right)\right)_{n \geq 1}$ being decreasing one also has: $\lim _{n \rightarrow \infty} \mathcal{H}\left(D_{n}\right)=\mathcal{H}\left(\lim _{n \rightarrow \infty} D_{n}\right)$.

Corollary 3.4 The mapping $D \mapsto \mathcal{H}(D)$ is not a surjective operator: The unit hermitian ball $B_{n}^{c}=\left\{z \in \mathbb{C}^{n} ;\|z\|<1\right\}$ does not represent a harmonicity cell in

\mathbb{C}^{n}.

Proof. Since $B_{n}^{c} \cap \mathbb{R}^{n}=B_{n}^{r}=\left\{x \in \mathbb{R}^{n} ;\|x\|<1\right\}$ is a convex domain of \mathbb{R}^{n} (according to the induced topology), we have to find a point $w_{0} \in B_{n}^{c}$ for which the Lelong sphere $T\left(w_{0}\right)$ is not contained into B_{n}^{r}. For, put $w_{0}=\rho(i, 1, \ldots, 1) \in$ \mathbb{C}^{n} where $\rho>0$ is small enough for w_{0} to belong at B_{n}^{c} and for $T\left(w_{0}\right)$ to contain a certain $\xi_{0} \in \mathbb{R}^{n}$ with $\left\|\xi_{0}\right\| \geq 1$. Taking $[n+2 \sqrt{n-1}]^{-1 / 2}<\rho<1 / n$ and writing $w_{0}=x_{0}+i y_{0}$ we see that a ξ_{0} satisfying

$$
\left[\left\langle\xi_{0}-x_{0}, y_{0}\right\rangle=0, \quad\left\|\xi_{0}-x_{0}\right\|=\left\|y_{0}\right\|, \quad \text { and } \quad\left\|\xi_{0}\right\| \geq 1\right]
$$

that is,

$$
\rho \xi_{1}=0, \quad \xi_{1}^{2}+\left(\xi_{2}-\rho\right)^{2}+\ldots\left(\xi_{n}-\rho\right)^{2}=\rho^{2} \quad \text { and } \quad \xi_{1}^{2}+\cdots+\xi_{n}^{2} \geq 1
$$

is given by: $\xi_{0}=\rho\left[1+(n-1)^{\frac{-1}{2}}\right](0,1, \ldots, 1)$.
Remark 3.5 Due to propositions 3.1 and 3.2 above, the definition of a harmonicity cell may be naturally extended to arbitrary open sets of \mathbb{R}^{n} for $n \geq 1$ as follows $\mathcal{H}(\emptyset)=\emptyset, \mathcal{H}\left(\mathbb{R}^{n}\right)=\mathbb{C}^{n}, \mathcal{H}(] a, b[)=\mathbb{C}$ for $] a, b[\subset \mathbb{R}$, and $\mathcal{H}(O)=$ $\cup_{i \in I} \mathcal{H}\left(O_{i}\right)$, where O is an open set of $\mathbb{R}^{n},\left(O_{i}\right)_{i \in I}$ the family of the connected components of O.

Remark 3.6 Some properties are not always preserved by $D \mapsto \mathcal{H}(D)$; this is especially the case if:
(i) D is simply connected in \mathbb{R}^{n} with $n \geq 3$. Indeed, the two domains $D=$ $\mathbb{R}^{n}-\{0\}$ and $\mathcal{H}(D)=\mathbb{C}^{n}-\left\{z \in \mathbb{C}^{n} ; z_{1}^{2}+\cdots+z_{n}^{2}=0\right\}$, having 0 and \mathbb{Z} respectively as fundamental groups, they offer then an example of a not simply connected harmonicity cell corresponding to a real simply connected domain; for $\pi_{1}[\mathcal{H}(D)]=\mathbb{Z}$, see $[6]$.
(ii) D is strictly convex in \mathbb{R}^{n} with $n \geq 2$. An example is given by the harmonicity cell of the unit ball B_{n}^{r} of \mathbb{R}^{n}. If $\mathcal{E}(\bar{V})$ denotes the set of all extremal points of a convex V we have $\mathcal{E}\left(\overline{B_{n}^{r}}\right)=\partial B_{n}^{r}$ since these two sets coincide with the unit Euclidean sphere S^{n-1} of \mathbb{R}^{n}. Nevertheless, by [9]: $\mathcal{E}\left(\overline{\mathcal{H}\left(B_{n}^{r}\right)}\right)=\partial^{\vee}\left[\mathcal{H}\left(B_{n}^{r}\right)\right]=\left\{w=x e^{i \theta} \in \mathbb{C}^{n} ; x \in S^{n-1}, \theta \in \mathbb{R}\right\}$, where $\partial^{\vee} U$ denotes the Silov boundary of $U \subset \mathbb{C}^{n}$; thus: $\mathcal{E}\left(\overline{\mathcal{H}\left(B_{n}^{r}\right)}\right) \neq \partial\left[\mathcal{H}\left(B_{n}^{r}\right)\right]$.
(iii) D is partially - circled in $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}, n \geq 2$, that is (for instance): $z \in$ $D \Rightarrow\left(z_{1}, \ldots, z_{n-1}, e^{i \theta} z_{n}\right) \in D$, for all $\theta \in \mathbb{R}$. Indeed if $D=B_{n}^{c}=\{z \in$ $\left.\mathbb{C}^{n} ;\|z\|<1\right\}, \mathcal{H}\left(B_{n}^{c}\right)$ is not partially - circled in $\mathbb{C}^{2 n}$ with respect to $w_{2 n}$ since $w_{0}=\sqrt{1+2 n}(1, \ldots, 1) \in \mathbb{C}^{2 n}$ satisfies $L\left(w_{0}\right)=\sqrt{2 n /(1+2 n)}<1$, but $L\left[(2 n+1)^{\frac{-1}{2}}, \ldots,(2 n+1)^{\frac{-1}{2}}, i(2 n+1)^{\frac{-1}{2}}\right]=[2 n+2 \sqrt{2 n-2}]^{\frac{1}{2}}(2 n+$ 1) $)^{\frac{-1}{2}}>1$. On the other hand, B_{n}^{c} is even circled (at the origin).

4 Harmonicity cells of polygonal plane domains

The case $n=2$ is rather special since the Lelong map T is given by: $T(z)=$ $\left\{z_{1}+i z_{2}, \overline{z_{1}}+i \overline{z_{2}}\right\}$, where $z \in \mathbb{C}^{2}$ and $\mathbb{R}^{2} \simeq \mathbb{C}$. So, in [5], we have determined explicitly the harmonicity cells of some plane domains and shed light on the close connection between the set $\mathcal{E}(\bar{D})$, of all the extremal points of a convex domain D of \mathbb{R}^{2}, and the set $\mathcal{E}(\overline{\mathcal{H}(D)})$, see also [4]. We will give now some properties and constructions which are proper to the complex plane. More precisions on the Jarnicki extension given in Section 1 will also be established.

Proposition 4.1 The operator $\mathcal{H}: \mathfrak{D}^{2} \rightarrow \mathfrak{C}_{s}^{2}$ satisfies
a) If D is circled at $z_{0} \in \mathbb{C}$, balanced at $z_{0} \in D$, or simply connected, then so is $\mathcal{H}(D)$ respectively.
b) If P_{n}^{a} is an arbitrary convex polygon with n edges, then the harmonicity cell $\mathcal{H}\left(P_{n}^{a}\right)$ is of polyhedric form in \mathbb{C}^{2} with $2 n$ faces and n^{2} vertices. Furthermore, identifying \mathbb{C}^{2} with \mathbb{R}^{4} by writing $y=\left(x_{3}, x_{4}\right)$ and $x+i y=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, each support line of P_{n}^{a} defined, for a certain $j=1, \ldots, n$, by $a_{j} x_{1}+b_{j} x_{2}-\alpha_{j}=0,\left(a_{j}, b_{j}, \alpha_{j} \in \mathbb{R}\right)$, generates two support hyperplanes of $\mathcal{H}\left(P_{n}^{a}\right)$ of respective equations:
$a_{j} x_{1}+b_{j} x_{2}+b_{j} x_{3}-a_{j} x_{4}-\alpha_{j}=0 \quad$ and $\quad a_{j} x_{1}+b_{j} x_{2}-b_{j} x_{3}+a_{j} x_{4}-\alpha_{j}=0$.
c) Let P_{n}^{r} denote the regular polygon which vertices are $\omega_{k}=e^{2 i k \pi / n}, k=$ $0, \ldots, n-1$. Then

$$
\begin{aligned}
\mathcal{H}\left(P_{n}^{r}\right)= & \left\{w=x+i y \in \mathbb{C}^{2}: x_{1} \cos (2 k+1) \frac{\pi}{n}+x_{2} \sin (2 k+1) \frac{\pi}{n}\right. \\
& +\sqrt{\|y\|^{2}-\left[y_{1} \cos (2 k+1) \frac{\pi}{n}+y_{2} \sin (2 k+1) \frac{\pi}{n}\right]^{2}}<\cos \frac{\pi}{n}, \\
& k=0, \ldots, n-1\} .
\end{aligned}
$$

d) The n^{2} vertices of $\overline{\mathcal{H}\left(P_{n}^{r}\right)}$ are given by $\omega_{k m}=x_{k m}+i y_{k m}$ and $\overline{\omega_{k m}}=$ $x_{k m}-i y_{k m},(0 \leq k \leq m \leq n-1)$, where

$$
\begin{gathered}
x_{k m}=\frac{1}{2}\left(\cos \frac{2 k \pi}{n}+\cos \frac{2 m \pi}{n}, \sin \frac{2 k \pi}{n}+\sin \frac{2 m \pi}{n}\right), \\
y_{k k}=0, k=0, \ldots, n-1, \\
y_{k m}=\frac{\sin \pi(m-k) / n}{\sqrt{2}[1-\cos 2 \pi(m-k) / n]^{1 / 2}} \\
\times\left(\sin \frac{2 \pi m}{n}-\sin \frac{2 \pi k}{n}, \cos \frac{2 \pi k}{n}-\cos \frac{2 \pi m}{n}\right) .
\end{gathered}
$$

Proof a) For $\theta \in \mathbb{R}, z_{0}=a+i b \in \mathbb{C}$, and $w=\left(w_{1}, w_{2}\right) \in \mathcal{H}(D)$, we see that $z_{0}+e^{i \theta} w$ remains in $\mathcal{H}(D)$. Since $T\left(z_{0}+e^{i \theta} w\right)=\left\{a+e^{i \theta} w_{1}+i\left(b+e^{i \theta} w_{2}\right)\right.$, $\left.a+e^{-i \theta} \overline{w_{1}}+i\left(b+e^{-i \theta} \overline{w_{2}}\right)\right\}=\left\{z_{0}+e^{i \theta}\left(w_{1}+i w_{2}\right), z_{0}+e^{-i \theta}\left(\overline{w_{1}}+i \overline{w_{2}}\right)\right\}$, and as D is circled with respect to z_{0}, we have $T\left(z_{0}+e^{i \theta} w\right) \subset D$. If the above circled domain D is supposed starshaped at z_{0} too, then $\mathcal{H}(D)$ is also starshaped at z_{0} (by 3.1.d) that is, $\mathcal{H}(D)$ is balanced at z_{0}. Let $D \in \mathcal{D}^{2}$ be a simply connected domain and f a holomorphic one-one map sending D onto $B=\{z \in \mathbb{C} ;|z|<1\}$. By Jarnicki Theorem, f extends to a holomorphic homeomorphism $J f: \mathcal{H}(D) \rightarrow \mathcal{H}(B)$. Now, by [4], $\mathcal{H}(B)$ is the unit disk of $\left(\mathbb{C}^{2}, L\right)$, where L is the Lie norm; this means that $\mathcal{H}(B)$ is convex and in particular simply connected. Since $J f$ is a homeomorphism, $\mathcal{H}(D)$ is also simply connected.
b) Suppose that P_{n}^{a} is defined by:

$$
P_{n}^{a}=\left\{x=x_{1}+i x_{2} \in \mathbb{R}^{2} ;\left\langle x, V^{j}\right\rangle<\alpha_{j}, j=1, \ldots, n\right\}
$$

with given vectors $V^{j}=\left(a_{j}, b_{j}\right) \in \mathbb{R}^{2}$ and scalars $\alpha_{j} \in \mathbb{R}$. By 3.1.d, one has $w=$ $x+i y \in \mathcal{H}\left(P_{n}^{a}\right) \Longleftrightarrow x+T(i y) \subset P_{n}^{a} \Longleftrightarrow x+\xi \in P_{n}^{a}, \forall \xi \in T(i y) \Longleftrightarrow\left\langle x, V^{j}\right\rangle+$ $\max _{\xi \in T(i y)}\left\langle\xi, V^{j}\right\rangle<\alpha_{j}, j=1, \ldots, n$. Since $T(i y)=\left\{\left(-y_{2}, y_{1}\right),\left(y_{2},-y_{1}\right)\right\}$, we have

$$
\mathcal{H}\left(P_{n}^{a}\right)=\left\{w=x+i y \in \mathbb{C}^{2} ;\left\langle w, U^{j}\right\rangle<\alpha_{j} \text { and }\left\langle w, W^{j}\right\rangle<\alpha_{j}, j=1, \ldots, n\right\}
$$

where $w=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), y=\left(x_{3}, x_{4}\right), U^{j}=\left(a_{j}, b_{j},-b_{j}, a_{j}\right)$, and $W^{j}=$ $\left(a_{j}, b_{j}, b_{j},-a_{j}\right)$, while \langle,$\rangle denotes the usual scalar product in \mathbb{R}^{4}$. From the expression above, we deduce that the harmonicity cell of an arbitrary convex polygon (not necessarily bounded) with n edges is a polyhedron of $\mathbb{C}^{2} \simeq \mathbb{R}^{4}$ having $2 n$ faces and by [5], n^{2} vertices.
c) For the regular polygon P_{n}^{r}, we have also another expression of its harmonicity cell. Indeed, if $\mathbb{C} \simeq \mathbb{R}^{2}$, we put $\omega_{n}=\omega_{0}, \omega_{k}=\left(\cos \frac{2 k \pi}{n}, \sin \frac{2 k \pi}{n}\right)$, and $V^{k}=$ $\omega_{k+1}-\omega_{k}=\left(a_{k}, b_{k}\right), k=0, \ldots, n-1$. By (b) we have

$$
\mathcal{H}\left(P_{n}^{r}\right)=\left\{x \in \mathbb{R}^{2} ;\left\langle x, V^{k}\right\rangle+\max _{\xi \in T(i y)}\left\langle\xi, V^{k}\right\rangle<\cos \frac{\pi}{n}, k=0, \ldots, n-1\right\}
$$

By the method of Lagrange multipliers [4], we find $\max _{\xi \in T(i y)}\left\langle\xi, V^{k}\right\rangle=\left[\|y\|^{2}-\right.$ $\left.\left\langle y, V^{k}\right\rangle^{2}\right]^{1 / 2}$; the announced expression of $\mathcal{H}\left(P_{n}^{r}\right)$ follows.
d) Applying the following two lemmas proved in [5], (see also [4]) we obtain all the extremal points of $\overline{\mathcal{H}\left(P_{n}^{r}\right)}$ by means of those of $\overline{P_{n}^{r}}$

Lemma 4.2 If D is a non empty convex domain of $\mathbb{R}^{n}, n \geq 2, \partial D \neq \emptyset$, then $\mathcal{E}(\overline{D)} \subset \mathcal{E}(\overline{\mathcal{H}(D)})$.

Lemma 4.3 Let D be a non empty convex domain, $\partial D \neq \emptyset$, in $\mathbb{C} \simeq \mathbb{R}^{2}$.
a) Every point $w \in \mathcal{E}(\overline{\mathcal{H}(D)})$ satisfies $T(w) \subset \mathcal{E}(\overline{D)}$.
b) Conversely, given arbitrary points a and b of $\mathcal{E}(\overline{D)}$, there exists $w \in \mathcal{E}(\overline{\mathcal{H}(D)})$ such that $T(w)=\{a, b\}$.

Let U, V be two domains of $\mathbb{C}^{n}, n \geq 1$. we denote $\operatorname{hom}(U, V)$ the set of all holomorphic homeomorphisms $F: U \rightarrow V$, and $\operatorname{hom}_{r}\left(\mathcal{H}(D), \mathcal{H}\left(D^{\prime}\right)\right)$ the set of all $F \in \operatorname{hom}\left(\mathcal{H}(D), \mathcal{H}\left(D^{\prime}\right)\right)$ of which the restriction $\left.F\right|_{D}$ belongs to $\operatorname{hom}\left(D, D^{\prime}\right)$, where $D, D^{\prime} \in \mathcal{D}^{2}$ and $\mathbb{C} \simeq \mathbb{R}^{2}$.

Proposition 4.4 Let $D, D^{\prime} \subset \mathbb{C}$ be two non empty domains with $D \neq \mathbb{C}$, $D^{\prime} \neq \mathbb{C}$. The Jarnicki extension J is an injective continuous mapping from $\operatorname{hom}\left(D, D^{\prime}\right)$ onto $\operatorname{hom}_{r}\left(\mathcal{H}(D), \mathcal{H}\left(D^{\prime}\right)\right)$ according to the compact uniform topology (τ).

Furthermore, $\operatorname{hom}_{r}\left(\mathcal{H}(D), \mathcal{H}\left(D^{\prime}\right)\right) \simeq \operatorname{hom}\left(D, D^{\prime}\right)$ (topologically homeomorphic); and for a holomorphic homeomorphism $f: D \rightarrow D^{\prime}$ we have the estimate

$$
\|J f(w)\| \leq \sup _{z \in D}|f(z)|, \quad \text { for every } w \in \mathcal{H}(D)
$$

Proof If f and f^{\prime} are such that $J f=J f^{\prime}$ on $\mathcal{H}(D)$ then by [10], $f=(J f) \mid D=$ $\left(J f^{\prime}\right) \mid D=f^{\prime}$ on D. Let $\left(f_{n}\right)_{n \geq 1}$ be a convergent sequence in ($\left.\operatorname{hom}\left(D, D^{\prime}\right), \tau\right)$. By 3.2.b,to test $\left(J f_{n}\right)_{n \geq 1}$ for compact uniform convergence in the harmonicity cell of D it is not really necessary to check uniform convergence on every compact set K in $\mathcal{H}(D)$ - checking it on the closed harmonicity cells $\overline{\mathcal{H}\left(D_{0}\right)}$ where D_{0} is an arbitrary relatively compact domain in D is enough. Now if $w_{0} \in \mathcal{H}\left(D_{0}\right)$ with $w_{0}=\left(w_{1}^{0}, w_{2}^{0}\right)$:

$$
\left\|J f_{n}\left(w_{0}\right)-J f\left(w_{0}\right)\right\|^{2}=A_{n}^{2}(w)+B_{n}^{2}(w)
$$

where $f=\lim _{n \rightarrow \infty} f_{n}$, and

$$
\begin{gathered}
\left.\left.A_{n}=\frac{1}{2} \right\rvert\,\left[f_{n}\left(w_{1}^{0}+i w_{2}^{0}\right)-f\left(w_{1}^{0}+i w_{2}^{0}\right)\right]+\left[\overline{f_{n}\left(\overline{w_{1}^{0}}+i \overline{w_{2}^{0}}\right)}-\overline{f\left(\overline{w_{1}^{0}}+i \overline{w_{2}^{0}}\right.}\right)\right] \mid \\
\left.\left.\left.B_{n=}=\frac{1}{2} \right\rvert\,\left[f_{n}\left(w_{1}^{0}+i w_{2}^{0}\right)-f\left(w_{1}^{0}+i w_{2}^{0}\right)\right]-\left[\overline{f_{n}\left(\overline{w_{1}^{0}}+i \overline{w_{2}^{0}}\right.}\right)-\overline{f\left(\overline{w_{1}^{0}}+i \overline{w_{2}^{0}}\right.}\right)\right] .
\end{gathered}
$$

Both A_{n} and B_{n} are bounded above by $\left.\frac{1}{2} \sup _{w \in \mathcal{H}\left(D_{0}\right)} \right\rvert\, f_{n}\left(w_{1}+i w_{2}\right)-f\left(w_{1}+\right.$ $\left.i w_{2}\right)\left|+\frac{1}{2} \sup _{w \in \mathcal{H}\left(D_{0}\right)}\right| f_{n}\left(\overline{w_{1}}+i \overline{w_{2}}\right)-f\left(\overline{w_{1}}+i \overline{w_{2}}\right)$. By 3.1.h: $w \in \mathcal{H}\left(D_{0}\right)$ if and only if $w_{1}+i w_{2} \in D_{0}$ and $\overline{w_{1}}+i \overline{w_{2}} \in D_{0}$. Thus:

$$
\begin{aligned}
& A_{n} \leq \sup _{z \in D_{0}}\left|f_{n}(z)-f(z)\right|, \quad B_{n} \leq \sup _{z \in D_{0}}\left|f_{n}(z)-f(z)\right|, \\
& \sup _{w \in \overline{\mathcal{H}\left(D_{0}\right)}}\left\|J f_{n}(w)-J f(w)\right\| \leq \sqrt{2} \sup _{z \in \overline{D_{0}}}\left|f_{n}(z)-f(z)\right| .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \sup _{z \in \overline{D_{0}}}\left|f_{n}(z)-f(z)\right|=0$, we have $J f_{n} \rightarrow J f$, according to (τ). The mapping $J: \operatorname{hom}\left(D, D^{\prime}\right) \rightarrow \operatorname{hom}_{r}\left(\mathcal{H}(D), \mathcal{H}\left(D^{\prime}\right)\right)$ is continuous and injective. To see that this mapping is onto, take $F \in \operatorname{hom}_{r}\left(\mathcal{H}(D), \mathcal{H}\left(D^{\prime}\right)\right)$ and observe that (by [10]) $J(F \mid D$) and F are both holomorphic homeomorphisms from $\mathcal{H}(D)$ onto $\mathcal{H}\left(D^{\prime}\right)$ having the same restriction on $D:(J(F \mid D))|D=F| D$. So by the uniqueness principle of analytic extension in $\mathbb{C}^{n}: J(F \mid D)=F$. Conversely, putting: $R=J^{-1}$ and making use of 3.1.c, e and 3.2.b, we have
for every $D_{0} \subset D$ with $\overline{D_{o}}$ compact: $\sup _{\overline{\mathcal{H}\left(D_{0}\right)}}\left\|F_{n}-F\right\| \geq \sup _{\overline{D_{0}}}\left|R F_{n}-R F\right|$, which implies that R is also continuous. Finally, we have

$$
\begin{aligned}
\|J f(w)\|^{2} & =\frac{1}{4}\left|f\left(w_{1}+i w_{2}\right)+\overline{f\left(\overline{w_{1}}+i \overline{w_{2}}\right)}\right|^{2}+\frac{1}{4}\left|f\left(w_{1}+i w_{2}\right)-\overline{f\left(\overline{w_{1}}+i \overline{w_{2}}\right)}\right|^{2} \\
& =\frac{1}{2}\left[\left|f\left(w_{1}+i w_{2}\right)\right|^{2}+\left|f\left(\overline{w_{1}}+i \overline{w_{2}}\right)\right|^{2}\right] \\
& \leq \frac{1}{2}\left[\left(\sup _{\bar{D}}|f|\right)^{2}+\left(\sup _{\bar{D}}|f|\right)^{2}\right]=\left(\sup _{\bar{D}}|f|\right)^{2} .
\end{aligned}
$$

Remark 4.5 The notion of harmonicity cells has a functorial aspects; indeed let \mathfrak{D}^{2} still denote the category of all domains D of $\mathbb{R}^{2} \simeq \mathbb{C}, D \neq \emptyset, \partial D \neq \emptyset$ with arrows in $\operatorname{hom}\left(D_{1}, D_{2}\right)$, and \mathfrak{C}_{s}^{2} the category of all domains U of \mathbb{C}^{2} which are symmetric with respect to \mathbb{R}^{2}, with arrows F in $\operatorname{hom}\left(U_{1}, U_{2}\right)$. Then, by the uniqueness theorem of holomorphic continuation in \mathbb{C}^{n}, to the composition: $D_{1} \xrightarrow{f} D_{2} \xrightarrow{g} D_{3}$ corresponds $\mathcal{H}\left(D_{1}\right) \xrightarrow{J f} \mathcal{H}\left(D_{2}\right) \xrightarrow{J g} \mathcal{H}\left(D_{3}\right)$ such that: $J(g \circ f)=$ $(J g) \circ(J f)$; next $f=I d$ in Jarnicki Theorem (Section 1) gives:
$J I d_{D}=I d_{\mathcal{H}(D)}$. This means that the operator: $D \in \mathfrak{D}^{2} \mapsto \mathcal{H}(D) \in \mathfrak{C}_{s}^{2}$ and $f \in \operatorname{hom}\left(D_{1}, D_{2}\right) \mapsto \mathcal{H}(f)=J f \in \operatorname{hom}\left[\mathcal{H}\left(D_{1}\right), \mathcal{H}\left(D_{2}\right)\right]$ may be considered as a covariant functor between the said categories. The representability of this functor and its classifying object will be discussed in a further paper.

Example If V is an arbitrary half strip of \mathbb{R}^{2}, there exists an usual transformation f, mapping V onto $V^{\prime}=\left\{x \in \mathbb{R}^{2}: x_{1}>a, k_{1}<x_{2}<k_{2}\right\}$, for some $a>0, k_{1}, k_{2} \in \mathbb{R}$. Now by $[4,7]$, we have for all convex domains U of \mathbb{R}^{n} ($n \geq 2$):

$$
\mathcal{H}(U)=\left\{w=x+i y \in \mathbb{C}^{n} ; \max _{t \in T(i y)}\left[\max _{\xi \in S^{n-1}}\left(\langle x+t, \xi\rangle-\sup _{u \in U}\langle\xi, u\rangle\right)\right]<0\right\}
$$

This formula gives $\mathcal{H}(U)$ by means of the support function of $U: \delta_{U}(\xi)=$ $\sup _{u \in U}\langle\xi, u\rangle$. Making use of the fact that the function $u \mapsto \xi_{1} u_{1}+\xi_{2} u_{2}$, being harmonic in V^{\prime}, attains its supremum at some point of ∂V^{\prime}. We find by simple calculations that

$$
\delta_{V^{\prime}}(\xi)= \begin{cases}+\infty & \text { if } \xi_{1}>0 \\ a \xi_{1}+k_{2} \xi_{2} & \text { if } \xi_{1} \leq 0 \text { and } \xi_{2} \geq 0 \\ a \xi_{1}+k_{1} \xi_{2} & \text { if } \xi_{1} \leq 0 \text { and } \xi_{2} \leq 0\end{cases}
$$

where $\xi \in \Gamma$, the unit circle of \mathbb{C}. Next, to search the supremum on Γ of the function $g\left(\xi_{1}, \xi_{2}\right)=\langle x+t, \xi\rangle-\delta_{V^{\prime}}(\xi)$, we restrict the study to $\left\{\xi \in \Gamma: \xi_{1} \leq 0\right\}$. Since $g\left(\xi_{1}, \xi_{2}\right)=g\left(\xi_{1}, \pm \sqrt{1-\xi_{1}^{2}}\right)$, with $\xi_{1} \in[-1,0]$, we put

$$
g_{1}\left(\xi_{1}\right)=g\left(\xi_{1}, \sqrt{1-\xi_{1}^{2}}\right)=\alpha_{1} \xi_{1}+\alpha_{2} \sqrt{1-\xi_{1}^{2}} \quad \text { and } \quad g_{2}\left(\xi_{1}\right)=\alpha_{1} \xi_{1}-\beta \sqrt{1-\xi_{1}^{2}}
$$

where $\alpha_{1}=x_{1}+t_{1}-a, \alpha_{2}=x_{2}-t_{2}-k_{2}, \beta=x_{2}-t_{2}-k_{1}$. One obtains that $g_{1}^{\prime}\left(\xi_{1}\right)=0$ if $\xi_{1}= \pm \alpha_{1} / \sqrt{\alpha_{1}^{2}+\alpha_{2}^{2}}$ (when $\alpha_{1} \neq 0$ or $\alpha_{2} \neq 0$). In addition, the study of variations of $g_{1}\left(\xi_{1}\right)$, in $-1 \leq \xi_{1} \leq 0$, in each of the three cases: $\alpha_{1} \leq 0$, ($\alpha_{1} \geq 0$ and $\alpha_{2} \leq 0$), and ($\alpha_{1} \geq 0$ and $\alpha_{2} \geq 0$) leads to $\max _{-1 \leq \xi_{1} \leq 0} g_{1}\left(\xi_{1}\right)=$ $\max \left(-\alpha_{1}, \alpha_{2}\right)$. Obviously, this equality holds even if $\alpha_{1}=\alpha_{2}=0$. A similar calculus for $g_{2}\left(\xi_{1}\right)$ gives $\max _{-1 \leq \xi_{1} \leq 0} g_{2}\left(\xi_{1}\right)=\max \left(-\beta,-\alpha_{2}\right)$. Putting $\gamma=\max ($ $\left.-\alpha_{1}, \alpha_{2}\right), \delta=-\min \left(\beta, \alpha_{2}\right)$, and as $T(i y)=\left\{\left(-y_{2}, y_{1}\right),\left(y_{2},-y_{1}\right)\right\}$, we obtain the equivalence

$$
\max (\gamma, \delta)<0 \Leftrightarrow\left\{\begin{array}{l}
a-x_{1}+y_{2}<0, x_{2}+y_{1}-k_{2}<0, k_{1}-x_{2}-y_{1}<0 \\
a-x_{1}-y_{2}<0, x_{2}-y_{1}-k_{2}<0, k_{1}-x_{2}+y_{1}<0
\end{array}\right.
$$

At last, writing $\min (u, v)=\frac{1}{2}(u+v-|u-v|)$, and by the Jarnicki extension $f \mapsto J f=\widetilde{f}$ (see section 1), we deduce $\mathcal{H}(V)=(\widetilde{f})^{-1}\left[\mathcal{H}\left(V^{\prime}\right)\right]$, where

$$
\mathcal{H}\left(V^{\prime}\right)=\left\{w=x+i y \in \mathbb{C}^{2} ;\left|y_{1}\right|<\frac{k_{2}-k_{1}}{2}-\left|x_{2}-\frac{k_{1}+k_{2}}{2}\right|,\left|y_{2}\right|<x_{1}-a\right\}
$$

Example The harmonicity cell of an arbitrary convex polygon P_{n}^{\prime} may be explicited by means of the n vertices $\omega_{0}^{\prime}, \ldots, \omega_{n-1}^{\prime}$. For, put $\alpha=\frac{\omega_{0}^{\prime}+\omega_{2}^{\prime}}{2}$ and consider the translation $\tau_{-\alpha}: z \mapsto z-\alpha$. The domain $P_{n}=\tau_{-\alpha}\left(P_{n}^{\prime}\right)$ is also a convex polygon, with $O \in P_{n}$ and n vertices $\omega_{0}, \ldots, \omega_{n-1}$, given by $\omega_{k}=$ $\omega_{k}^{\prime}-\alpha$. Making use of (d) and (h) in Proposition 3.1, we find after calculus and simplifications:

$$
\begin{aligned}
\mathcal{H}\left(P_{n}\right)=\{ & w=x+i y \in \mathbb{C}^{2}: \operatorname{sgn}\left(\operatorname{Im} \overline{\omega_{k}} \omega_{k+1}\right) \operatorname{Im} \bar{x}\left(\omega_{k+1}-\omega_{k}\right) \\
& +\sqrt{|y|^{2}\left|\omega_{k+1}-\omega_{k}\right|^{2}-\operatorname{Im}^{2} \bar{y}\left(\omega_{k+1}-\omega_{k}\right)} \\
& \left.<\left|\operatorname{Im} \overline{\omega_{k}} \omega_{k+1}\right|, k=0,1, \ldots, n-1\right\}
\end{aligned}
$$

with $\mathbb{R}^{2} \simeq \mathbb{C}, \operatorname{Im} z$ is the imaginary part of z, and $\operatorname{sgn} \alpha$ is the sign of α. Note that $P_{n}^{\prime}=\tau_{\alpha} P_{n}$ means that $\left[w^{\prime} \in \mathcal{H}\left(P_{n}^{\prime}\right)\right]$ if and only if $\left[w^{\prime}-\alpha \in \mathcal{H}\left(P_{n}\right)\right]$. If now $P_{n, r}^{\prime}$ is some regular polygon, it is enough to consider its circumscribed circle $\mathcal{C}(\beta, R)$, centered at $\beta \in \mathbb{R}^{2}$, with radius $R>0$. Next, applying successively the translation $\tau_{-\beta}$, the homothety $h_{\frac{1}{R}}$ and a suitable rotation ρ_{θ}, we obtain $P_{n}^{r}=\rho_{\theta} h_{1 / R} \tau_{-\beta} P_{n, r}^{\prime}$ which is studied in Proposition 4.1.c. Note that the same process applies to arbitrary regular polyhedrons in $\mathbb{R}^{n}, n \geq 3$.

References

[1] N. Aronszajn: Sur les décompositions des fonctions analytiques uniformes et sur leurs applications, Acta. math. 65 (1935) 1-156.
[2] N. Aronszajn, M. C. Thomas, J. L.Leonard: Polyharmonic functions, Clarendon. Press. Oxford(1983).
[3] V. Avanissian: Sur les fonctions harmoniques d'ordre quelconque et leur prolongement analytique dans \mathbb{C}^{n}. Séminaire P. Lelong-H.Skoda, Lecture Notes in Math, $n^{0} 919$, Springer-Verlag, Berlin (1981) 192-281.
[4] V. Avanissian: Cellule d'harmonicité et prolongement analytique complexe, Travaux en cours, Hermann, Paris (1985).
[5] M. Boutaleb: Sur la cellule d'harmonicité de la boule unité de \mathbb{R}^{n} - Doctorat de 3^{0} cycle, U.L.P. Strasbourg, France (1983).
[6] E. Brieskorn: Beispiele zur Differentialtopologie von Singularitäten, Inv.Math. 2 (1966) 1-14.
[7] R.Coquereaux, A.Jadczyk: Conformal Theories, Curved phase spaces, Relativistic wavelets and the Geometry of complex domains, Centre de physique théorique, Section 2, Case 907. Luminy, 13288. Marseille, France (1990).
[8] M. Hervé: Les fonctions analytiques, Presses Universitaires de France (1982), Paris.
[9] L. K. Hua: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Transl of Math. Monographs 6, Amer. Math. Soc. Provid. R. I.(1963).
[10] M. Jarnicki: Analytic Continuation of harmonic functions, Zesz. Nauk. U J, Pr. Mat 17, (1975) 93-104.
[11] P. Lelong: Sur la définition des fonctions harmoniques d'ordre infini, C. R. Acad. Sci. Paris 223 (1946) 372-374.
[12] P. Lelong: Prolongement analytique et singularités complexes des fonctions harmoniques, Bull. Soc. Math. Belg. 7 (1954-55) 10-23.
[13] P. Lelong: Sur les singularités complexes d'une fonction harmonique, C. R. Acad. Sci. Paris 232 (1951) 1895-1897.
[14] M. Nicolesco: Les fonctions polyharmoniques, Hermann Paris(1936).
[15] W. Rudin: Functional Analysis, Mc Graw Hill (1973).
[16] J. Siciak, Holomorphic continuation of harmonic functions. Ann. Pol. Math. XXIX (1974) 67-73.1.

Mohamed Boutaleb

Département de Mathématiques et Informatique
Faculté des Sciences Dhar-Mahraz
B. P. 1796 Atlas, Fès, Maroc
e-mail: mboutalebmoh@yahoo.fr

[^0]: *Mathematics Subject Classifications: 31A30, 31B30, 35J30.
 Key words: Harmonicity cells, polyharmonic functions, extremal points,
 Lelong transformation.
 © 2002 Southwest Texas State University.
 Published December 28, 2002.

