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Function spaces of BMO and Campanato type ∗

Azzeddine El Baraka

Abstract

To obtain the Littlewood-Paley characterization for Campanato spaces
L2,λ modulo polynomials (which contain as special case the John and
Nirenberg space BMO), we define and study a scale of function spaces on
Rn. We discuss the real interpolation of these spaces and some embed-
dings between these spaces and the classical spaces. These embeddings
cover some classical results obtained by Campanato, Strichartz, Stein and
Zygmund.

1 Introduction

In this work, we introduce and study a scale of function spaces on Rn. The
homogeneous version of these spaces contains Campanato spaces L2,λ and John
and Nirenberg space BMO = Lp,n. It is classical that the homogeneous
space of Triebel-Lizorkin Ḟ s

p,q(Rn) coincides with BMO modulo polynomials
for some values of p, q and s. Namely, BMO = Ḟ 0

∞,2 [13, chapter 5] and
Is(BMO) = Ḟ s

∞,2, where Is = F−1(|.|−sF) is the Riesz potential operator.
The spaces Is(BMO) were studied by Strichartz [12]. We use a Littlewood-
Paley partition to define these spaces denoted by Lλ,s

p,q (Rn) and their homo-
geneous version L̇λ,s

p,q (Rn). These spaces allow us to give the Littlewood-Paley
characterization of Campanato spaces L2,λ and more generally of Is(L2,λ) mod-
ulo polynomials (cf. Theorem 2.3). If we denote Ls

p the local approximation
Campanato spaces defined for instance in the book [14, Definition 1.7.2. (5)]
for s ≥ −n/p and 1 ≤ p < +∞, then we recall that Ls

p = Cs for any s > 0,

L
−n/p
p = Lp and L0

p = bmo the local version of BMO, cf. [4], [10], [15] and [14]
for the proof and more references. The spaces of Campanato Lp,λ considered
here (Definition 1.4) coincide with the local approximation Campanato spaces
Ls

p with s = (λ − n)/p for −n
p < s < 0 (ie. 0 < λ < n) which are themselves

equal to Morrey spaces. The characterization given here is of interest for Ls
2

spaces in the case −n/2 < s < 0.
Next we give a result concerning the real interpolation of these spaces, and

we extend some injections due to Strichartz [12] and Stein and Zygmund [11]

∗Mathematics Subject Classifications: 46E35, 46B70.
Key words: BMO-space, Campanato spaces, Real interpolation, Sobolev embeddings.
c©2002 Southwest Texas State University.
Published December 28, 2002.

109



110 Function spaces of BMO and Campanato type

by showing some embeddings between the spaces Lλ,s
p,q (Rn) and Triebel-Lizorkin

ones F s
p,q(Rn) and Besov-Peetre ones Bs

p,q(Rn), and on the other hand between
the same spaces Lλ,s

p,q (Rn) and Hölder-Zygmund ones Cs(Rn). Such embeddings
shed some light on duals of the closure of Schwartz space S(Rn) in BMO and
in Campanato spaces L2,λ (Corollary 2.13). To define the spaces we will need
the following partition of unity: we denote x ∈ Rn and ξ its dual variable. Let
ϕ ∈ C∞

0 (Rn), ϕ ≥ 0, ϕ equal to 1 on |ξ| ≤ 1, and equal to 0 on |ξ| ≥ 2.
Let θ(ξ) = ϕ(ξ) − ϕ(2ξ), supp θ ⊂ { 1

2 ≤ |ξ| ≤ 2}. For j ∈ Z we set ∆̇ju =
θ(2−jDx)u, ∆0u = ϕ(Dx)u and if j ≥ 1 we set also ∆ju = ∆̇ju.

Remark 1.1 We recall that if u ∈ S ′(Rn) then u =
∑

k≥0 ∆ku and u =∑
k∈Z ∆̇ku modulo polynomials.

Now we give the definition of the nonhomogeneous spaces.

Definition 1.2 Let s ∈ R, λ ≥ 0, 1 ≤ p < +∞ and 1 ≤ q < +∞. The space
Lλ,s

p,q (Rn) denotes the set of all tempered distributions u ∈ S ′(Rn) such that

‖u‖Lλ,s
p,q (Rn) =

(
sup
B

1
|B|λ/n

∑
j≥J+

2jqs‖∆ju‖q
Lp(B)

)1/q

< +∞ (1.1)

where J+ = max(J, 0), |B| is the measure of B and the supremum is taken over
all J ∈ Z and all balls B of Rn of radius 2−J .

When p = q, the space Lλ,s
p,p(Rn) is denoted Lp,λ,s(Rn). Note that the space

Lλ,s
p,q (Rn) equipped with the norm (1.1) is a Banach space.

To define the homogeneous spaces we recall the notation of [13]: Z ′(Rn) :=
S ′(Rn)/P is the space of all tempered distributions modulo the set P of poly-
nomials of Rn with complex coefficients.

Definition 1.3 Let s ∈ R, λ ≥ 0, 1 ≤ p < +∞ and 1 ≤ q < +∞. The dotted
space L̇λ,s

p,q (Rn) denotes the set of all u ∈ Z ′(Rn) such that

‖u‖L̇λ,s
p,q (Rn) =

(
sup
B

1
|B|λ/n

∑
j≥J

2jqs‖∆̇ju‖q
Lp(B)

)1/q

< +∞ (1.2)

where the supremum is taken over all J ∈ Z and all balls B of Rn of radius 2−J .

The space L̇λ,s
p,p(Rn) will be denoted L̇p,λ,s(Rn). If P is a polynomial of

P(Rn) and u ∈ S ′(Rn), it follows immediately that

‖u + P‖L̇λ,s
p,q (Rn) = ‖u‖L̇λ,s

p,q (Rn)

This shows that the norm (1.2) is well defined. Further, the space L̇λ,s
p,q (Rn)

equipped with this norm is a Banach space.
Now we recall the definition of Campanato spaces and BMO.
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Definition 1.4 Let λ ≥ 0 and 1 ≤ p < +∞. (i) We say u ∈ Lp,λ(Rn) if
u ∈ Lp

loc(Rn) and

‖u‖Lp,λ(Rn) =
(

sup
B

1
|B|λ/n

∫
B

|u−mBu|pdx
)1/p

< +∞

where mBu = 1
|B|

∫
B

u(y)dy is the mean value of u and the supremum is taken
over all the balls B of Rn. The space Lp,λ(Rn) is a Banach space modulo
constants and is equal to {0} for λ > n + p.
Let us denote BMO the space L2,n(Rn). Note that BMO is equal to Lp,n(Rn)
for any 1 ≤ p < +∞, cf. [10].
(ii) For 0 ≤ λ < n + p, we define the space L̇p,λ(Rn) as the set of all equiv-
alence classes modulo P of elements of Lp,λ(Rn), equipped with the norm
‖U‖L̇p,λ(Rn) = ‖u‖Lp,λ(Rn) where u is the unique (modulo constants) element
of Lp,λ(Rn) belonging to the class U .

2 Results

The following proposition yields the dyadic characterization of L̇2,λ(Rn).

Proposition 2.1 Let 0 ≤ λ < n + 2. The space L̇2,λ,0(Rn) coincides alge-
braically and topologically with Campanato space L̇2,λ(Rn).

This proposition allows us to deduce the link between the discrete scale built
on L̇2,λ(Rn) and the continuous scale.

Corollary 2.2 Let 0 ≤ λ < n + 2 and m ∈ N.

(i) L̇2,λ,m(Rn) ↪→ Ḣ2,λ,m := {u ∈ L̇2,λ(Rn); Dαu ∈ L̇2,λ(Rn), |α| ≤ m}.

(ii) Ḣ2,λ,m
⋂

Ḣm+λ/2(Rn) ↪→ L̇2,λ,m(Rn), here Ḣm+λ/2(Rn) is the classical
homogeneous Sobolev space.

Therefore, Ḣ2,λ,m
⋂

Ḣm+λ/2(Rn) ≡ L̇2,λ,m(Rn)
⋂

Ḣm+λ/2(Rn).

To state a more general result than the proposition 2.1, we recall the defini-
tion of the Riesz potential operator

Isf = F−1{|.|−sFf}, f ∈ Z ′(Rn) and s ∈ R

Theorem 2.3 Let s ∈ R and 0 ≤ λ < n + 2. The space L̇2,λ,s(Rn) coincides
algebraically and topologically with the space Is(L̇2,λ(Rn)) image of L̇2,λ(Rn)
under Is.

Remark 2.4 These results are not true in general for the spaces L̇p,λ, p 6= 2.
For this, G. Bourdaud notes that L̇p,0,0 = Ḃ0

p,p for any 1 ≤ p < +∞, and it is
classical that L̇p,0 = Lp.
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The following lemma shows that these spaces are independent of the partition
(∆j)j .

Lemma 2.5 Let R > 1. Let (uj)j≥0 be a sequence of Lp
loc(Rn) satisfying the

following assumptions:

(i) suppFu0 ⊂ {|ξ| ≤ R} and suppFuj ⊂ { 1
R2j ≤ |ξ| ≤ R2j} for j ≥ 1.

(ii)

M := (sup
B

1
|B|λ/n

∑
j≥J+

2jsq‖uj‖q
Lp(B))

1/q < +∞

where the supremum is taken over all J ∈ Z and all balls B of Rn of radius
2−J .

Then the series
∑

j uj converges in S ′(Rn), and its sum u belongs to Lλ,s
p,q (Rn)

with ‖u‖Lλ,s
p,q (Rn) ≤ CM , where the constant C depends only from s, p, n,R and

the partition (∆j)j≥0. We have an analogous result for the dotted spaces.

Corollary 2.6 The derivation Dα
x is a bounded operator from the sapce Lλ,s

p,q (Rn)

to the space Lλ,s−|α|
p,q (Rn) and from L̇λ,s

p,q (Rn) to L̇λ,s−|α|
p,q (Rn).

For this it suffices to note that Dα
x u =

∑
j≥0 ∆jD

α
x u =

∑
j≥0 2j|α|Lju, where

FLju(ξ) = θα(2−jξ)Fu(ξ), with θα(ξ) = ξαθ(ξ). We apply lemma 2.5 then.
We can remove the spectral assumption (i) of lemma 2.5 by giving a result

dealing with the real interpolation of these spaces:

Theorem 2.7 (Interpolation) Let N , be an integer ≥ 1, 0 < s < N , λ ≥ 0
and p, q ∈ [1,+∞[. Let (uj)j be a sequence of functions belonging to C∞(Rn)∩
Lp

loc(Rn). We assume that there is a sequence (εj)j ∈ lq such that for any ball
B of Rn of radius 2−J , J ∈ Z,,

‖Dα
x uj‖Lp(B) ≤ εj2j(|α|−s)|B|λ/(qn) inf{1, 2−JN} for any j ≥ 0 and |α| ≤ N

(2.1)
Then, the series

∑
j≥0

uj converges in Lp
loc(Rn) and its sum u belongs to Lλ,s

p,q (Rn)

with
‖u‖Lλ,s

p,q (Rn) ≤ C‖(εj)j‖lq ,

where C depends only on N, s, p, n, λ and the partition defining the norm of
Lλ,s

p,q (Rn).

The following lemma gives the inclusion property among these spaces in
dependance of their parameters:

Lemma 2.8 Let 1 ≤ p ≤ p′ < +∞, 1 ≤ q′ ≤ q < +∞ and s ∈ R. Further, let
λ and µ ≥ 0 such that n

p′ −
µ
q′ ≥

n
p −

λ
q . Then we have the continuous embedding

L
µ,s+ n

p′−
µ
q′

p′,q′ (Rn) ↪→ Lλ,s+ n
p−

λ
q

p,q (Rn)

We have the same result for the dotted spaces L̇.
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In particular, if p = p′ and q = q′ then Lµ,s−µ
q

p,q (Rn) ↪→ Lλ,s−λ
q

p,q (Rn) holds for
any µ ≤ λ. Furthermore if p = p′ = q = q′ we get Lp,λ,s+ α

p (Rn) ↪→ Lp,λ+α,s(Rn)
for any α ≥ 0 and λ ≥ 0. Now we give the connection between Lλ,s

p,q (Rn) and
L̇λ,s

p,q (Rn).

Lemma 2.9 Let 1 ≤ p, q < +∞, λ ≥ 0 and s ∈ R.

(i) If the class of u modulo P belongs to L̇λ,s
p,q (Rn) and if ∆0u ∈ Lp(Rn), then

u ∈ Lλ,s
p,q (Rn).

(ii) Lp(Rn) ∩ L̇λ,s
p,q (Rn) ⊂ Lλ,s

p,q (Rn) with the same meaning as (i).

(iii) Lλ,s
p,q (Rn) ⊂ L̇λ,s

p,q (Rn) provided s > 0.

Remark 2.10 It follows that if s > 0 then

Lp(Rn) ∩ L̇λ,s
p,q (Rn) = Lp(Rn) ∩ Lλ,s

p,q (Rn).

Finally we give the connection between these spaces and the classical spaces.
For the definitions of the spaces Bs

p,q, C
s, F s

p,q and the dotted ones we refer to
[13].

Theorem 2.11 Let s ∈ R, 1 ≤ p < +∞, 1 ≤ q < +∞ and λ ≥ 0. We have the
following continuous embeddings

Lλ,s+ n
p−

λ
q

p,q (Rn) ↪→ Cs(Rn)

F
s+ n

p
p,q (Rn) ↪→ Lλ,s+ n

p−
λ
q

p,q (Rn) provided q ≥ p

F
s+ n

p
p,q (Rn) ↪→ Lp,λ,s−λ−n

p (Rn) provided p ≥ q

B
s−n

p + λ
q

∞,q (Rn) ↪→ Lλ,s
p,q (Rn) provided λ ≥ n

q

p

and finally∑
j≥0

2jq(s+ λ−n
q )|∆ju|q ∈ L∞(Rn) implies u ∈ Lq,λ,s(Rn) provided λ ≥ n

We have also the same continuous embeddings if we replace B,C, F and L re-
spectively by the dotted spaces Ḃ, Ċ, Ḟ and L̇.

Remark 2.12 (i) These embeddings cover theorem 2.1 of [5] and theorem

3.4 of [12] which asserts that
·
B

s

∞,2(Rn) ↪→ Is(BMO) ↪→
·
C

s

(Rn), where
Is is the Riesz potential operator and Is(BMO) = L̇2,n,s(Rn), BMO is
defined modulo polynomials.

(ii) In the case s = 0, S. Campanato [3] and [4] showed that if n < λ < n + p

we have Lp,λ ∼= C
λ−n

p and Lp,n+p = Lip (we refer also to [9]).
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(iii) If we do s = 0, p = q = 2 and λ = n in the third embedding, then we find
again a result due to Stein and Zygmund [11]

Ḣ
n
2 = Ḟ

n
2

2,2 ↪→ L̇2,n,0(Rn) = BMO modulo polynomials

From this theorem we deduce a partial result on the topological dual of
◦
L

λ,s

p,q (Rn), the closure of Schwartz space S(Rn) in Lλ,s
p,q (Rn).

Corollary 2.13 Let s ∈ R, λ ≥ 0, 1 ≤ p < +∞, 1 ≤ q < +∞, 1 < p′ ≤ +∞
and 1 < q′ ≤ +∞ with 1

p + 1
p′ = 1, 1

q + 1
q′ = 1. We have

F
−s−λ

q + n
p

1,1 (Rn) ↪→
◦

(L
λ,s

p,q (Rn))′ ↪→ F
−s−λ

q

p′,q′ (Rn) provided p ≤ q (2.2)

F
−s−λ

p + n
p

1,1 (Rn) ↪→ (
◦
L

p,λ,s

(Rn))′ ↪→ F
−s−λ

p

p′,q′ (Rn) provided q ≤ p (2.3)

in particular

F
n
2−

λ
2

1,1 (Rn) ↪→ (
◦
L

2,λ

(Rn))′ ↪→ F
−λ

2
2,q′ (R

n) for any q′ ≥ 2

We have the same injections for the dotted spaces.

All the previous results are proved in [6] and [7].

Acknowledgement. I am grateful to Professors Pascal Auscher, Gerard Bour-
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remarks and clarifications.
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