2002-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 09, 2002, pp 109–115. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

Function spaces of BMO and Campanato type *

Azzeddine El Baraka

Abstract

To obtain the Littlewood-Paley characterization for Campanato spaces $\mathcal{L}^{2,\lambda}$ modulo polynomials (which contain as special case the John and Nirenberg space BMO), we define and study a scale of function spaces on \mathbb{R}^n . We discuss the real interpolation of these spaces and some embeddings between these spaces and the classical spaces. These embeddings cover some classical results obtained by Campanato, Strichartz, Stein and Zygmund.

1 Introduction

In this work, we introduce and study a scale of function spaces on \mathbb{R}^n . The homogeneous version of these spaces contains Campanato spaces $\mathcal{L}^{2,\lambda}$ and John and Nirenberg space $BMO = \mathcal{L}^{p,n}$. It is classical that the homogeneous space of Triebel-Lizorkin $\dot{F}^s_{p,q}(\mathbb{R}^n)$ coincides with BMO modulo polynomials for some values of p, q and s. Namely, $BMO = \dot{F}^0_{\infty,2}$ [13, chapter 5] and $I^{s}(BMO) = \dot{F}^{s}_{\infty,2}$, where $I^{s} = \mathcal{F}^{-1}(|.|^{-s}\mathcal{F})$ is the Riesz potential operator. The spaces $I^{s}(BMO)$ were studied by Strichartz [12]. We use a Littlewood-Paley partition to define these spaces denoted by $\mathcal{L}_{p,q}^{\dot{\lambda},s}(\mathbb{R}^n)$ and their homogeneous version $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$. These spaces allow us to give the Littlewood-Paley characterization of Campanato spaces $\mathcal{L}^{2,\lambda}$ and more generally of $I^s(\mathcal{L}^{2,\lambda})$ modulo polynomials (cf. Theorem 2.3). If we denote L_p^s the local approximation Campanato spaces defined for instance in the book [14, Definition 1.7.2. (5)] for $s \ge -n/p$ and $1 \le p < +\infty$, then we recall that $L_p^s = C^s$ for any s > 0, $L_p^{-n/p} = L^p$ and $L_p^0 = bmo$ the local version of BMO, cf. [4], [10], [15] and [14] for the proof and more references. The spaces of Campanato $\mathcal{L}^{p,\lambda}$ considered here (Definition 1.4) coincide with the local approximation Campanato spaces L_p^s with $s = (\lambda - n)/p$ for $-\frac{n}{p} < s < 0$ (ie. $0 < \lambda < n$) which are themselves equal to Morrey spaces. The characterization given here is of interest for L_2^s spaces in the case -n/2 < s < 0.

Next we give a result concerning the real interpolation of these spaces, and we extend some injections due to Strichartz [12] and Stein and Zygmund [11]

^{*} Mathematics Subject Classifications: 46E35, 46B70.

Key words: BMO-space, Campanato spaces, Real interpolation, Sobolev embeddings. ©2002 Southwest Texas State University.

Published December 28, 2002.

by showing some embeddings between the spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and Triebel-Lizorkin ones $F_{p,q}^s(\mathbb{R}^n)$ and Besov-Peetre ones $B_{p,q}^s(\mathbb{R}^n)$, and on the other hand between the same spaces $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and Hölder-Zygmund ones $C^s(\mathbb{R}^n)$. Such embeddings shed some light on duals of the closure of Schwartz space $\mathcal{S}(\mathbb{R}^n)$ in *BMO* and in Campanato spaces $\mathcal{L}^{2,\lambda}$ (Corollary 2.13). To define the spaces we will need the following partition of unity: we denote $x \in \mathbb{R}^n$ and ξ its dual variable. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n), \ \varphi \ge 0, \ \varphi$ equal to 1 on $|\xi| \le 1$, and equal to 0 on $|\xi| \ge 2$. Let $\theta(\xi) = \varphi(\xi) - \varphi(2\xi)$, $\operatorname{supp} \theta \subset \{\frac{1}{2} \le |\xi| \le 2\}$. For $j \in \mathbb{Z}$ we set $\dot{\Delta}_j u =$ $\theta(2^{-j}D_x)u, \ \Delta_0 u = \varphi(D_x)u$ and if $j \ge 1$ we set also $\Delta_j u = \dot{\Delta}_j u$.

Remark 1.1 We recall that if $u \in S'(\mathbb{R}^n)$ then $u = \sum_{k\geq 0} \Delta_k u$ and $u = \sum_{k\in \mathbb{Z}} \dot{\Delta}_k u$ modulo polynomials.

Now we give the definition of the nonhomogeneous spaces.

Definition 1.2 Let $s \in \mathbb{R}$, $\lambda \ge 0$, $1 \le p < +\infty$ and $1 \le q < +\infty$. The space $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ denotes the set of all tempered distributions $u \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$\|u\|_{\mathcal{L}^{\lambda,s}_{p,q}(\mathbb{R}^{n})} = \left(\sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j \ge J^{+}} 2^{jqs} \|\Delta_{j}u\|_{L^{p}(B)}^{q}\right)^{1/q} < +\infty$$
(1.1)

where $J^+ = \max(J, 0)$, |B| is the measure of B and the supremum is taken over all $J \in \mathbf{Z}$ and all balls B of \mathbb{R}^n of radius 2^{-J} .

When p = q, the space $\mathcal{L}_{p,p}^{\lambda,s}(\mathbb{R}^n)$ is denoted $\mathcal{L}^{p,\lambda,s}(\mathbb{R}^n)$. Note that the space $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ equipped with the norm (1.1) is a Banach space.

To define the homogeneous spaces we recall the notation of [13]: $Z'(\mathbb{R}^n) := S'(\mathbb{R}^n)/\mathcal{P}$ is the space of all tempered distributions modulo the set \mathcal{P} of polynomials of \mathbb{R}^n with complex coefficients.

Definition 1.3 Let $s \in \mathbb{R}$, $\lambda \ge 0$, $1 \le p < +\infty$ and $1 \le q < +\infty$. The dotted space $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ denotes the set of all $u \in Z'(\mathbb{R}^n)$ such that

$$\|u\|_{\dot{\mathcal{L}}^{\lambda,s}_{p,q}(\mathbb{R}^{n})} = \left(\sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j \ge J} 2^{jqs} \|\dot{\Delta}_{j}u\|_{L^{p}(B)}^{q}\right)^{1/q} < +\infty$$
(1.2)

where the supremum is taken over all $J \in \mathbf{Z}$ and all balls B of \mathbb{R}^n of radius 2^{-J} .

The space $\dot{\mathcal{L}}_{p,p}^{\lambda,s}(\mathbb{R}^n)$ will be denoted $\dot{\mathcal{L}}_{p,\lambda,s}^{p,\lambda,s}(\mathbb{R}^n)$. If P is a polynomial of $\mathcal{P}(\mathbb{R}^n)$ and $u \in \mathcal{S}'(\mathbb{R}^n)$, it follows immediately that

$$\|u+P\|_{\dot{\mathcal{L}}^{\lambda,s}_{p,q}(\mathbb{R}^n)} = \|u\|_{\dot{\mathcal{L}}^{\lambda,s}_{p,q}(\mathbb{R}^n)}$$

This shows that the norm (1.2) is well defined. Further, the space $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ equipped with this norm is a Banach space.

Now we recall the definition of Campanato spaces and BMO.

Definition 1.4 Let $\lambda \geq 0$ and $1 \leq p < +\infty$. (i) We say $u \in \mathcal{L}^{p,\lambda}(\mathbb{R}^n)$ if $u \in L^p_{\text{loc}}(\mathbb{R}^n)$ and

$$\|u\|_{\mathcal{L}^{p,\lambda}(\mathbb{R}^n)} = \left(\sup_{B} \frac{1}{|B|^{\lambda/n}} \int_{B} |u - m_B u|^p dx\right)^{1/p} < +\infty$$

where $m_B u = \frac{1}{|B|} \int_B u(y) dy$ is the mean value of u and the supremum is taken over all the balls B of \mathbb{R}^n . The space $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$ is a Banach space modulo constants and is equal to $\{0\}$ for $\lambda > n + p$.

Let us denote BMO the space $\mathcal{L}^{2,n}(\mathbb{R}^n)$. Note that BMO is equal to $\mathcal{L}^{p,n}(\mathbb{R}^n)$ for any $1 \leq p < +\infty$, cf. [10].

(ii) For $0 \leq \lambda < n + p$, we define the space $\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)$ as the set of all equivalence classes modulo \mathcal{P} of elements of $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$, equipped with the norm $\|U\|_{\dot{\mathcal{L}}^{p,\lambda}(\mathbb{R}^n)} = \|u\|_{\mathcal{L}^{p,\lambda}(\mathbb{R}^n)}$ where u is the unique (modulo constants) element of $\mathcal{L}^{p,\lambda}(\mathbb{R}^n)$ belonging to the class U.

2 Results

The following proposition yields the dyadic characterization of $\dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)$.

Proposition 2.1 Let $0 \leq \lambda < n+2$. The space $\dot{\mathcal{L}}^{2,\lambda,0}(\mathbb{R}^n)$ coincides algebraically and topologically with Campanato space $\dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)$.

This proposition allows us to deduce the link between the discrete scale built on $\dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)$ and the continuous scale.

Corollary 2.2 Let $0 \leq \lambda < n+2$ and $m \in \mathbb{N}$.

- $(i) \ \dot{\mathcal{L}}^{2,\lambda,m}(\mathbb{R}^n) \hookrightarrow \dot{\mathcal{H}}^{2,\lambda,m} := \{ u \in \dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n); \ D^{\alpha}u \in \dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n), |\alpha| \le m \}.$
- (ii) $\dot{\mathcal{H}}^{2,\lambda,m} \cap \dot{H}^{m+\lambda/2}(\mathbb{R}^n) \hookrightarrow \dot{\mathcal{L}}^{2,\lambda,m}(\mathbb{R}^n)$, here $\dot{H}^{m+\lambda/2}(\mathbb{R}^n)$ is the classical homogeneous Sobolev space.

Therefore, $\dot{\mathcal{H}}^{2,\lambda,m} \cap \dot{H}^{m+\lambda/2}(\mathbb{R}^n) \equiv \dot{\mathcal{L}}^{2,\lambda,m}(\mathbb{R}^n) \cap \dot{H}^{m+\lambda/2}(\mathbb{R}^n).$

To state a more general result than the proposition 2.1, we recall the definition of the Riesz potential operator

$$I^s f = \mathcal{F}^{-1}\{|.|^{-s}\mathcal{F}f\}, \quad f \in Z'(\mathbb{R}^n) \text{ and } s \in \mathbb{R}$$

Theorem 2.3 Let $s \in \mathbb{R}$ and $0 \leq \lambda < n+2$. The space $\dot{\mathcal{L}}^{2,\lambda,s}(\mathbb{R}^n)$ coincides algebraically and topologically with the space $I^s(\dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n))$ image of $\dot{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n)$ under I^s .

Remark 2.4 These results are not true in general for the spaces $\dot{\mathcal{L}}^{p,\lambda}$, $p \neq 2$. For this, G. Bourdaud notes that $\dot{\mathcal{L}}^{p,0,0} = \dot{B}^0_{p,p}$ for any $1 \leq p < +\infty$, and it is classical that $\dot{\mathcal{L}}^{p,0} = L^p$. The following lemma shows that these spaces are independent of the partition $(\Delta_j)_j$.

Lemma 2.5 Let R > 1. Let $(u_j)_{j\geq 0}$ be a sequence of $L^p_{loc}(\mathbb{R}^n)$ satisfying the following assumptions:

- (i) supp $\mathcal{F}u_0 \subset \{|\xi| \leq R\}$ and supp $\mathcal{F}u_j \subset \{\frac{1}{R}2^j \leq |\xi| \leq R2^j\}$ for $j \geq 1$.
- (ii)

$$M := (\sup_{B} \frac{1}{|B|^{\lambda/n}} \sum_{j \ge J^+} 2^{jsq} ||u_j||_{L^p(B)}^q)^{1/q} < +\infty$$

where the supremum is taken over all $J \in \mathbb{Z}$ and all balls B of \mathbb{R}^n of radius 2^{-J} .

Then the series $\sum_{j} u_{j}$ converges in $\mathcal{S}'(\mathbb{R}^{n})$, and its sum u belongs to $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})$ with $\|u\|_{\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n})} \leq CM$, where the constant C depends only from s, p, n, R and the partition $(\Delta_{j})_{j\geq 0}$. We have an analogous result for the dotted spaces.

Corollary 2.6 The derivation D_x^{α} is a bounded operator from the sapce $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ to the space $\mathcal{L}_{p,q}^{\lambda,s-|\alpha|}(\mathbb{R}^n)$ and from $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ to $\dot{\mathcal{L}}_{p,q}^{\lambda,s-|\alpha|}(\mathbb{R}^n)$.

For this it suffices to note that $D_x^{\alpha} u = \sum_{j\geq 0} \Delta_j D_x^{\alpha} u = \sum_{j\geq 0} 2^{j|\alpha|} L_j u$, where $\mathcal{F}L_j u(\xi) = \theta_{\alpha}(2^{-j}\xi)\mathcal{F}u(\xi)$, with $\theta_{\alpha}(\xi) = \xi^{\alpha}\theta(\xi)$. We apply lemma 2.5 then.

We can remove the spectral assumption (i) of lemma 2.5 by giving a result dealing with the real interpolation of these spaces:

Theorem 2.7 (Interpolation) Let N, be an integer ≥ 1 , 0 < s < N, $\lambda \geq 0$ and $p, q \in [1, +\infty[$. Let $(u_j)_j$ be a sequence of functions belonging to $C^{\infty}(\mathbb{R}^n) \cap L^p_{loc}(\mathbb{R}^n)$. We assume that there is a sequence $(\varepsilon_j)_j \in l^q$ such that for any ball B of \mathbb{R}^n of radius $2^{-J}, J \in \mathbb{Z}$,

$$\|D_x^{\alpha} u_j\|_{L^p(B)} \le \varepsilon_j 2^{j(|\alpha|-s)} |B|^{\lambda/(qn)} \inf\{1, 2^{-JN}\} \text{ for any } j \ge 0 \text{ and } |\alpha| \le N$$
(2.1)

Then, the series $\sum_{j\geq 0} u_j$ converges in $L^p_{loc}(\mathbb{R}^n)$ and its sum u belongs to $\mathcal{L}^{\lambda,s}_{p,q}(\mathbb{R}^n)$ with

$$\|u\|_{\mathcal{L}^{\lambda,s}_{m,\sigma}(\mathbb{R}^n)} \leq C \|(\varepsilon_j)_j\|_{l^q},$$

where C depends only on N, s, p, n, λ and the partition defining the norm of $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

The following lemma gives the inclusion property among these spaces in dependance of their parameters:

Lemma 2.8 Let $1 \le p \le p' < +\infty$, $1 \le q' \le q < +\infty$ and $s \in \mathbb{R}$. Further, let λ and $\mu \ge 0$ such that $\frac{n}{p'} - \frac{\mu}{q'} \ge \frac{n}{p} - \frac{\lambda}{q}$. Then we have the continuous embedding

$$\mathcal{L}_{p',q'}^{\mu,s+\frac{n}{p'}-\frac{\mu}{q'}}(\mathbb{R}^n) \hookrightarrow \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}(\mathbb{R}^n)$$

We have the same result for the dotted spaces $\dot{\mathcal{L}}$.

Azzeddine El Baraka

In particular, if p = p' and q = q' then $\mathcal{L}_{p,q}^{\mu,s-\frac{\mu}{q}}(\mathbb{R}^n) \hookrightarrow \mathcal{L}_{p,q}^{\lambda,s-\frac{\lambda}{q}}(\mathbb{R}^n)$ holds for any $\mu \leq \lambda$. Furthermore if p = p' = q = q' we get $\mathcal{L}^{p,\lambda,s+\frac{\alpha}{p}}(\mathbb{R}^n) \hookrightarrow \mathcal{L}^{p,\lambda+\alpha,s}(\mathbb{R}^n)$ for any $\alpha \geq 0$ and $\lambda \geq 0$. Now we give the connection between $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Lemma 2.9 Let $1 \leq p, q < +\infty$, $\lambda \geq 0$ and $s \in \mathbb{R}$.

- (i) If the class of u modulo \mathcal{P} belongs to $\dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ and if $\Delta_0 u \in L^p(\mathbb{R}^n)$, then $u \in \mathcal{L}_{n,q}^{\lambda,s}(\mathbb{R}^n)$.
- (ii) $L^p(\mathbb{R}^n) \cap \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n) \subset \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ with the same meaning as (i).
- (iii) $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n) \subset \dot{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n)$ provided s > 0.

Remark 2.10 It follows that if s > 0 then

$$L^{p}(\mathbb{R}^{n}) \cap \dot{\mathcal{L}}^{\lambda,s}_{n,a}(\mathbb{R}^{n}) = L^{p}(\mathbb{R}^{n}) \cap \mathcal{L}^{\lambda,s}_{n,a}(\mathbb{R}^{n}).$$

Finally we give the connection between these spaces and the classical spaces. For the definitions of the spaces $B_{p,q}^s, C^s, F_{p,q}^s$ and the dotted ones we refer to [13].

Theorem 2.11 Let $s \in \mathbb{R}$, $1 \le p < +\infty$, $1 \le q < +\infty$ and $\lambda \ge 0$. We have the following continuous embeddings

$$\mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}(\mathbb{R}^{n}) \hookrightarrow C^{s}(\mathbb{R}^{n})$$

$$F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^{n}) \hookrightarrow \mathcal{L}_{p,q}^{\lambda,s+\frac{n}{p}-\frac{\lambda}{q}}(\mathbb{R}^{n}) \quad provided \ q \ge p$$

$$F_{p,q}^{s+\frac{n}{p}}(\mathbb{R}^{n}) \hookrightarrow \mathcal{L}^{p,\lambda,s-\frac{\lambda-n}{p}}(\mathbb{R}^{n}) \quad provided \ p \ge q$$

$$B_{\infty,q}^{s-\frac{n}{p}+\frac{\lambda}{q}}(\mathbb{R}^{n}) \hookrightarrow \mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^{n}) \quad provided \ \lambda \ge n\frac{q}{n}$$

and finally

$$\sum_{j\geq 0} 2^{jq(s+\frac{\lambda-n}{q})} |\Delta_j u|^q \in L^{\infty}(\mathbb{R}^n) \text{ implies } u \in \mathcal{L}^{q,\lambda,s}(\mathbb{R}^n) \text{ provided } \lambda \geq n$$

We have also the same continuous embeddings if we replace B, C, F and \mathcal{L} respectively by the dotted spaces $\dot{B}, \dot{C}, \dot{F}$ and $\dot{\mathcal{L}}$.

- **Remark 2.12** (i) These embeddings cover theorem 2.1 of [5] and theorem 3.4 of [12] which asserts that $B_{\infty,2}(\mathbb{R}^n) \hookrightarrow I^s(BMO) \hookrightarrow C^*(\mathbb{R}^n)$, where I^s is the Riesz potential operator and $I^s(BMO) = \mathcal{L}^{2,n,s}(\mathbb{R}^n)$, BMO is defined modulo polynomials.
 - (ii) In the case s = 0, S. Campanato [3] and [4] showed that if $n < \lambda < n + p$ we have $\mathcal{L}^{p,\lambda} \cong C^{\frac{\lambda-n}{p}}$ and $\mathcal{L}^{p,n+p} = Lip$ (we refer also to [9]).

(iii) If we do s = 0, p = q = 2 and $\lambda = n$ in the third embedding, then we find again a result due to Stein and Zygmund [11]

$$\dot{H}^{\frac{n}{2}}=\dot{F}^{\frac{n}{2}}_{2,2}\hookrightarrow\dot{\mathcal{L}}^{2,n,0}(\mathbb{R}^n)=BMO$$
 modulo polynomials

From this theorem we deduce a partial result on the topological dual of ${}^{\circ \lambda,s}_{\mathcal{L}_{p,q}}(\mathbb{R}^n)$, the closure of Schwartz space $\mathcal{S}(\mathbb{R}^n)$ in $\mathcal{L}_{p,q}^{\lambda,s}(\mathbb{R}^n)$.

Corollary 2.13 Let $s \in \mathbb{R}, \lambda \ge 0, 1 \le p < +\infty, 1 \le q < +\infty, 1 < p' \le +\infty$ and $1 < q' \le +\infty$ with $\frac{1}{p} + \frac{1}{p'} = 1, \frac{1}{q} + \frac{1}{q'} = 1$. We have

$$F_{1,1}^{-s-\frac{\lambda}{q}+\frac{n}{p}}(\mathbb{R}^n) \hookrightarrow (\overset{\circ}{\mathcal{L}}_{p,q}^{\lambda,s}(\mathbb{R}^n))' \hookrightarrow F_{p',q'}^{-s-\frac{\lambda}{q}}(\mathbb{R}^n) \text{ provided } p \le q$$
(2.2)

$$F_{1,1}^{-s-\frac{\lambda}{p}+\frac{n}{p}}(\mathbb{R}^n) \hookrightarrow (\mathcal{L}^{\circ p,\lambda,s}(\mathbb{R}^n))' \hookrightarrow F_{p',q'}^{-s-\frac{\lambda}{p}}(\mathbb{R}^n) \text{ provided } q \le p$$
(2.3)

in particular

$$F_{1,1}^{\frac{n}{2}-\frac{\lambda}{2}}(\mathbb{R}^n) \hookrightarrow (\overset{\circ}{\mathcal{L}}^{2,\lambda}(\mathbb{R}^n))' \hookrightarrow F_{2,q'}^{-\frac{\lambda}{2}}(\mathbb{R}^n) \quad \text{for any } q' \ge 2$$

We have the same injections for the dotted spaces.

All the previous results are proved in [6] and [7].

Acknowledgement. I am grateful to Professors Pascal Auscher, Gerard Bourdaud and Jacques Camus. They read the proofs of these results and made many remarks and clarifications.

References

- G. Bourdaud, Analyse fonctionnelle dans l'espace euclidien, Publ. Math. Univ. Paris VII, 23 (1987), réédité 1995.
- [2] J. Bergh J. Löfström, Interpolation spaces, Springer Verlag (1976).
- [3] S. Campanato, Proprietà di Holderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188.
- [4] S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), 137-160.
- [5] A. EL Baraka, Optimal BMO and L^{p,λ} estimates near the boundary for solutions of a class of degenerate elliptic problems. In: "Partial differential equations", Proc. Conf. Fez (Morocco, 1999). Lecture Notes Pure Appl. Math. 229, New York, Marcel Dekker 2002, 183-193.
- [6] A. EL Baraka, An embedding theorem for Campanato spaces, Electron. J. Diff. Eqns., Vol. 2002 (2002), N. 66, pp. 1-17.

- [7] A. EL Baraka, Dyadic characterization of Campanato spaces, Preprint, Fez (2001).
- [8] C. Feffermann E. M. Stein, H^p spaces of several variables, Acta math.129 (1972), 167-193.
- [9] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems Birkhauser (1993).
- [10] F. John L. Nirenberg, On functions of bounded mean oscillations, Comm. Pure Appl. Math. 14 (1961), 415-426.
- [11] E. S. Stein A. Zygmund, Boundedness of translation invariant operators on Hölder and L^p spaces Ann. of Math. 85 (1967), 337-349.
- [12] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558.
- [13] H. Triebel, *Theory of function spaces*, Birkhäuser (1983).
- [14] H. Triebel, Theory of function spaces, Birkhäuser (1992).
- [15] H. Wallin, New and old function spaces. In: "Function spaces and applications", Proc. Conf. Lund 1986, Lect. Notes Math. 1302, Berlin, Springer (1988), 97-114.

AZZEDDINE EL BARAKA University M. Ben Abdellah, FST Fez-Saiss Department of mathematics BP 2202, Route Immouzer Fez 30000 Morocco e-mail: aelbaraka@yahoo.com