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Existence of weak solutions for the thermistor

problem with degeneracy ∗

Abderrahmane El Hachimi & Moulay Rachid Sidi Ammi

Abstract

We prove the existence of weak solutions for the thermistor prob-
lem with degeneracy by using a regularization and truncation process.
The solution of the regularized-truncated problem is obtained by using
Schauder’s fixed point theorem. Then the solutions of the thermistor
problem are obtained by applying the monotonicity-compacity method of
Lions.

1 Introduction

This paper is devoted to the study of coupled parabolic-elliptic system of partial
differential equations related to the often so called thermistor problem. More
precisely, we are interested in the existence of solutions of problem

∂u

∂t
−4θ(u) = σ(u)|∇ϕ|2 in Ω× (0, T ),

div(σ(u)∇ϕ) = 0 in Ω× (0, T ),
u = u on ΓuD × (0, T ),

∂θ(u)
∂n

+ β(x, t)(u− u) = 0 on ΓuN × (0, T ),

ϕ = ϕ on ΓϕD × (0, T ),
∂ϕ

∂n
= 0 on ΓϕN × (0, T ),

u(x, 0) = u(x, 0) in Ω,

(1.1)

where Ω is a regular open bounded subset of RN , N ≥ 1, with smooth boundary
∂Ω and T a positive real. Here ΓuD, and ΓϕD are two nonempty open subsets
of ∂Ω with smooth boundaries, ΓuN = ∂Ω − ΓuD,Γ

ϕ
N = ∂Ω − ΓϕD and ∂

∂n is the
outward normal derivative to ∂Ω. While θ, σ, β, u, and ϕ are known functions
of their arguments.
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128 Existence of weak solutions

These problems arise from many applications in the automotive industry
and in the field of physics, especially in the study of electrical heating of a
conductor. In this situation, u is the temperature of the conductor, ϕ the
potential and σ denotes the electrical conductivity. Problems of this type, under
various assumptions on θ and σ and coupled with different types of boundary
conditions, have received a lot of attention in the last decade by numerous
authors. We quote in particular [3],[4], [5], [6],[7] ... and the references therein
concerning problem (1.1) or it’s corresponding stationary problems.

Our main goal here is to prove existence of weak solutions to (1.1), under
the following hypotheses:

(H1) θ is a continuous nondecreasing function from R to R, with θ(0) = 0.

(H2) σ is a real positive continuous function.

(H3) β is a continuous function from Ω× [0,∞[ to [0,∞[.

(H4) u ∈ W 1,∞(Ω× (0, T )) and ϕ ∈ L∞(0, T,W 1,∞(Ω)) with 0 ≤ u(x, t) ≤ M
a.e. in Ω× (0, T ), where M is positive constant.

In [6] Xu obtained existence of weak solutions of (1.1) under (H2)–(H4) and the
hypothesis

(H1’) θ is an increasing C1-function from R to R, with θ(0) = 0.

The result of Xu states that for each M > ‖u‖L∞(Ω×(0,T )), there exists a δ >
0 such that if ‖ϕ‖L∞(Ω×(0,T )) < δ one can find a weak solution (u, ϕ) with
‖u‖L∞(Ω×(0,T )) ≤ M . That is to keep temperature from exceeding a certain
value, it is enough to make the electrical potential drop applied suitably small.

Here, we obtain existence and boundedness of the temperature regardless to
the smallness of the potential, provided that u is bounded. Moreover our result
generalizes the one of Xu to the case where θ is not differentiable. The solution
(u, ϕ) is obtained as a limit of a sequence of weak solutions (uk, ϕk) of some
regularized-truncated problem (3.1) associated with (P ).

This paper is organized as follows: In section 2, we state our existence result
concerning solutions of (1.1). Section 3 is devoted to the existence of weak
solutions for problem (3.1). Then section 4 deals with a-priori estimates for
solutions of (3.1). Finally section 5 is devoted to the proof of the main result.

2 Statement of the main Result

Let QT = Ω× (0, T ). Define the space

V = {v ∈ H1(Ω), v = u on ΓDu }

with inner product ((u, v)) = ΣNi=1

∫
Ω
∂u
∂xi

∂v
∂xi

ds =
∫

Ω
∇u∇v ds, and 〈, 〉 the

duality bracket between V ′ and V . Also define the space

W (0, T ) = {v ∈ L2(0, T, V ) :
∂v

∂t
∈ L2(0, T, V ′)}.
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Definition 2.1 By a weak solution of (1.1), we mean a pair of function (u, ϕ)
such that u ∈ L2(0, T, V ), ∂u∂t ∈ L

2(0, T, V ′), ϕ ∈ L2(0, T,H1(Ω)), and for a.e. t

〈∂u
∂t
, v〉+

∫
Ω

∇θ(u)∇v ds+
∫

ΓuN

β(u− u)v ds−
∫

ΓuD

∂θ(u)
∂n

v ds

= −
∫

Ω

σ(u)ϕ∇ϕ∇v ds+
∫

ΓϕD

σ(u)ϕ
∂ϕ

∂n
v ds, for v ∈ V ∩ C1(Ω),∫

Ω

σ(u)ϕ∇ψ ds =
∫

ΓϕD

σ(u)
∂ϕ

∂n
ψ ds, for ψ ∈ H1(Ω).

The main result of this section is the following.

Theorem 2.2 Under hypotheses (H1)–(H4), Problem (1.1) has a weak solution
(u, ϕ) such that

u ∈ L2(0, T, V ) ∩ L2(0, T,H1(Ω)) ∩ L2(0, T,W s,2(Ω)),∀s : 0 < s < 1,
∂u

∂t
∈ L2(0, T, V ′), θ(u) ∈ L2(0, T,H1(Ω)) and ϕ ∈ L2(0, T,H1(Ω)).

Moreover, 0 ≤ u(x, t) ≤M a.e. in QT .

Remark. If (u, ϕ) is a solution of problem (1.1), then u ∈ W (0, T ) which is
compactly embedded in L2(0, T, L2(Ω)). Thus from Lion’s lemma of compacity
(see [2], p. 58) we deduce that the initial condition of (1.1) makes sense.

3 Existence of solutions for regularized trun-
cated problem

From θ, we construct a sequence θk ∈ C∞ such that 1
k ≤ θ′k, θk(0) = 0 and

θk → θ in Cloc(R), and from σ we introduce the truncated function

σ̃(s) =


σ(M) if s > M,

σ(s) if 0 ≤ s ≤M,

σ(0) if s < 0.

Now, we define the regularized-truncated problem (3.1) associated with (1.1):

∂uk
∂t
−4θk(uk) = σ̃(uk)|∇ϕk|2 in QT ,

div(σ̃(uk)∇ϕk) = 0 in QT ,

uk = u on ΓuD × (0, T ),
∂θk(uk)
∂n

+ β(x, t)(uk − u) = 0 on ΓuN × (0, T ),

ϕk = ϕ on ΓϕD × (0, T ),
∂ϕk
∂n

= 0 on ΓϕN × (0, T ),

uk(x, 0) = u(x, 0) in Ω.

(3.1)
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Lemma 3.1 Let u ∈ L2(0, T,H1(Ω)) and ϕ ∈ L2(0, T,H1(Ω)). Then

div(σ̃(u)ϕ∇ϕ) = σ̃(u)|∇ϕ|2

in the distributional sense.

For the proof of this lemma see ([6], p. 205).
Remarks. 1) By Definition 2.1, (uk, ϕk) is a solution of (3.1) if and only

〈∂uk
∂t

, v〉+ ((θk(uk), v)) +
∫

ΓuN

β(uk − u)v ds−
∫

ΓuD

θ′k(u)
∂u

∂n
v ds

= −
∫

Ω

σ̃(uk)ϕk∇ϕk∇v ds+
∫

ΓϕD

σ̃(uk)ϕ
∂ϕ

∂n
v ds,

(3.2)

for all v ∈ V ∩ C1(Ω), and∫
Ω

σ̃(uk)∇ϕk∇ψ ds =
∫

ΓϕD

σ̃(uk)
∂ϕ

∂n
ψ ds, for all ψ ∈ H1(Ω). (3.3)

2) The boundary integral in the right term of (3.3) makes sense since the op-
erator trace from H1(Ω) to the boundary space L2(∂Ω) is linear and compact.
In fact, one can show that for each ϕ ∈ L∞(0, T,H1(Ω)), the restriction of ϕ to
∂Ω× (0, T ) belongs to the space L2(0, T, L2(∂Ω)).

For the rest of this paper, we shall denote by ci different constants depending
only on Ω and the data but not on k.

Theorem 3.2 Under Hypotheses (H1)–(H4), there exists at least a weak solu-
tion (uk, ϕk) of (3.1), such that

uk ∈W (0, T ), ϕk ∈ L∞(0, T,H1(Ω)),
uk(x, 0) = u(x, 0) a.e. in Ω,

and satisfying (3.2)–(3.3). Moreover, 0 ≤ uk ≤M , a.e. in QT .

Proof of Theorem 3.2 This is based on Schauder’s fixed point theorem. We
shall construct an appropriate mapping whose fixed points are solutions of (3.1).
To this end let Uk(w) = uk,w where uk,w is the unique solution of

〈∂uk,w
∂t

, v〉+
∫

Ω

θ′k(w)∇uk,w∇v ds+
∫

ΓuN

β(uk,w − u)v ds−
∫

ΓuD

θ′k(u)
∂u

∂n
v ds

= −
∫

Ω

σ̃(w)ϕk,w∇ϕk,w∇v ds+
∫

ΓϕD

σ̃(w)ϕ
∂ϕ

∂n
v ds, for allv ∈ V ∩ C1(Ω).

(3.4)
(It is easy to show that such a solution exists and is unique.)
Let Sk : W (0, T ) → W (0, T ) be the operator defined by Sk(w) = ϕk,w where
ϕk,w is the unique solution of∫

Ω

σ̃(w)∇ϕk,w∇ψ ds =
∫

ΓϕD

σ̃(w)
∂ϕ

∂n
ψ ds, for ψ ∈ H1(Ω). (3.5)
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By [3, Lemma 2.2], we have ϕk,w ∈ L∞(Ω) and the H1-norm of ϕk,w is bounded
by a constant which is independent of w. Then, all terms in equations (3.4) and
(3.5) are well defined.

To continue the proof of theorem 3.2, we need the following a-priori esti-
mates.

Lemma 3.3 Let (uk,w, ϕk,w) be the solution of (3.4)–(3.5). Then, we have the
following a-priori estimates

‖ϕk,w‖L2(0,T,H1(Ω)) ≤ c1, (3.6)
‖uk,w‖L2(0,T,V ) ≤ c2, (3.7)

‖uk,w‖L2(0,T,L2(ΓuN )) ≤ c3, (3.8)

‖∂uk,w
∂t
‖L2(0,T,V ) ≤ c4, (3.9)

where the positive constants ci (i = 1 . . . 4) are not depending on w, nor on k.

Proof. (i) Taking ψ = ϕk,w − ϕ in (2.11) and using the properties of σ̃, the
conditions of ϕ and young’s inequality, we deduce that∫

Ω

σ̃(w)|∇ϕk,w|2 ≤ c5
∫

Ω

|∇ϕ|2,

where c5 is a positive constant. Which obviously implies (3.6).
(ii) Taking v = uk,w in (3.4), it follows that

〈∂uk,w
∂t

, uk,w〉+
∫

Ω

θ′k(w)|∇uk,w|2 ds+
∫

ΓuN

β(uk,w − u)uk,w ds

= −
∫

Ω

σ̃(w)ϕk,w∇ϕk,w∇uk,w ds+
∫

ΓϕD

σ̃(w)ϕ
∂ϕ

∂n
uk,w ds

+
∫

ΓuD

θ′k(u)
∂u

∂n
uk,w ds.

So, we get

1
2
∂

∂t
|uk,w|2L2(Ω) +

∫
Ω

θ′k(w)|∇uk,w|2 ds+
∫

ΓuN

β|uk,w|2 ds

=
∫

ΓuN

βuk,wu ds−
∫

Ω

σ̃(w)ϕk,w∇ϕk,w∇uk,w ds

+
∫

ΓϕD

σ̃(w)ϕ
∂ϕ

∂n
uk,w ds+

∫
ΓuD

θ′k(u)
∂u

∂n
u ds.
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Using a lemma3.3 in [3, p. 245] and the hypotheses on θ′k and β, and applying
Young’s inequality, there exist positive constants ci, (i = 6 . . . 12) such that

1
2
∂

∂t
|uk,w|2L2(Ω) + c6

∫
Ω

|∇uk,w|2 ds+ c7

∫
ΓuN

|uk,w|2 ds

≤
∫

ΓuN

βuk,wu ds−
∫

Ω

σ̃(w)ϕk,w∇ϕk,w∇uk,w ds

+
∫

ΓϕD

σ̃(w)ϕ
∂ϕ

∂n
uk,w ds+

∫
ΓuD

θ′k(u)
∂u

∂n
u ds

≤ c8
∫

Ω

|∇ϕk,w||∇uk,w| ds+
∫

ΓϕD

σ̃(w)ϕ
∂ϕ

∂n
uk,w ds

+
∫

ΓuD

θ′k(u)
∂u

∂n
u ds+

∫
ΓuN

βuk,wu

≤ c6
2

∫
Ω

|∇uk,w|2 ds+ c9

∫
Ω

|∇ϕk,w|2 ds+ c10

∫
ΓϕD

|∂ϕ
∂n
|2 ds

+
c7
4

∫
ΓϕD

|uk,w|2 ds+
c7
4

∫
ΓuN

|uk,w|2 ds+ c11

∫
ΓuN

|u|2 ds+ c12.

Then we have

1
2
∂

∂t
|uk,w|2L2(Ω) +

c6
2

∫
Ω

|∇uk,w|2 ds+ c7

∫
ΓuN

|uk,w|2 ds

≤ c13 +
c7
4

∫
ΓϕD

|uk,w|2 ds+
c7
4

∫
ΓuN

|uk,w|2 ds

≤ c13 +
c7
4

∫
∂Ω

|uk,w|2 ds+
c7
4

∫
ΓuN

|uk,w|2 ds

≤ c13 +
c7
4

∫
ΓuD

|uk,w|2 ds+
c7
2

∫
ΓuN

|uk,w|2 ds.

Therefore,

1
2
∂

∂t
|uk,w|2L2(Ω) +

c6
2

∫
Ω

|∇uk,w|2 ds+
c7
2

∫
ΓuN

|uk,w|2 ds

≤ c13 +
c7
4

∫
ΓuD

|u|2 ds ≤ c14. (3.10)

Integrating (3.10) on (0, T ), we conclude to the estimates (3.7) and (3.8) .
(iii) According to (3.4), (3.6), (3.7), (3.8) and a lemma3.3 in [3, p. 245], we
obtain

‖∂uk,w
∂t
‖L2(0,T,V ′) ≤ c4.

Hence Lemma 3.3 is proved. �
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Now, we define the space

W0 :=
{
v ∈W (0, T ), ‖v‖L2(0,T,V ) ≤ c2, ‖∂v∂t ‖L2(0,T,V ′) ≤ c4,
0 ≤ v(x, t) ≤M a.e. in QT , v(0) = u(x, 0) in Ω

}
.

Note that W0 is a non empty convex set, and by Lemma 3.3, the operator
Uk : W0 →W0 is well defined. To use Schauder’s fixed point theorem, it remains
to show that Uk is continuous with respect to the weak topology of W (0, T ).
Then, using the weak compactness of W0 we shall conclude that Uk has a fixed
point w in the set W0. To prove the weak continuity, assume that (wj)j is a
sequence in W0 satisfying wj → w weakly in W (0, T ) and let (uk,wj , ϕk,wj ) the
corresponding sequence of solutions of (3.4)–(3.5). By estimates (3.6)–(3.9),
there exists at least a subsequence denoted again by wj such that as j → ∞,
we have

wj → w weak in L2(0, T, V ),
∂wj
∂t
→ ∂w

∂t
weak in L2(0, T, V ′),

uk,wj → uk weak in L2(0, T, V ),

uk,wj → uk weak in L2(0, T, L2(ΓuN )),
∂uk,wj
∂t

→ ∂uk
∂t

weak in L2(0, T, V ′),

ϕk,wj → ϕk weak in L2(0, T,H1(Ω)).

Note that one may assume, without loss of generality, that wj → w strongly in
L2(QT ) and a.e. in QT . Since σ̃ is continuous and bounded, then, thanks to
the dominated convergence theorem of Lebesgue, it follows that

σ̃(wj)→ σ̃(w) strongly in L2(QT ).

By the trace theorem, we derive that

σ̃(wj)
∂ϕk,wj
∂n

→ σ̃(w)
∂ϕk
∂n

weak in L2(ΓϕD).

On the other hand, by vertue of the estimates of Lemma 3.3, we deduce that
there exist functions α1, α2, α3, such that

σ̃(wj)∇ϕk,wj → α1 weak in L2(QT ), (3.11)

θ′k(wj)∇uk,wj → α2 weak in L2(QT ), (3.12)

σ̃(wj)ϕk,wj∇ϕk,wj → α3 weak in L2(QT ). (3.13)

Now, as ∇ϕk,wj → ∇ϕk weak in L2(QT ), we have

σ̃(wj)∇ϕk,wj → σ̃(w)∇ϕk in D′(QT ).

Consequently,
α1 = σ̃(w)∇ϕk.
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In a similar way, we obtain

α2 = θ′k(w)∇uk,
α3 = σ̃(w)ϕk∇ϕk.

Then, passing to the limit as j →∞ in the relations (3.4) and (3.5) satisfied by
(uk,wj , ϕk,wj ), we deduce immediately that uk = Uk(w) and ϕk = Sk(w). By
the unique solvability of (3.4), all the sequence uk,wj converges to uk = Uk(w)
weakly in W (0, T ). This completes the proof. �

Remark By theorem 3.2, we have 0 ≤ uk ≤M . Hence σ̃(uk) = σ(uk).

4 Estimates on solutions of the regularized trun-
cated problem

In this section, we obtain appropriate estimates on the solutions (uk, ϕk) of the
regularized-truncated problem (3.1).

Lemma 4.1 Let (uk, ϕk) be a solution of (3.1). Under the hypotheses (H1)–
(H4), there exist constants ci (i = 15 . . . 19) such that, for any k ≥ 1, the
following estimates hold

|uk(t)|2L2(Ω) ≤ |u(x, 0)|2L2(Ω) + c15, (4.1)

‖uk‖2L2(0,T,V ) ≤ |u(x, 0)|2L2(Ω) + c15, (4.2)

‖1
k
uk‖2L2(0,T,V ) ≤

c16

2k
(|u(x, 0)|2L2(Ω) + c17), (4.3)

‖θk(uk)‖2L2(0,T,H1(Ω)) ≤ c18, (4.4)

‖∂uk
∂t
‖L2(0,T,V ′) ≤ c19. (4.5)

The different constants are positive and not depending on k.

Proof. Choosing v = uk as a function test in (3.2), using the hypotheses on
θ′k and β and applying a lemma3.3 in [3, p. 245], we obtain

1
2
∂

∂t
|uk(t)|2L2(Ω) + c20

∫
Ω

|∇uk|2 ds+ c21

∫
ΓuN

|uk|2 ds

≤ c22

∫
Ω

|∇ϕk||∇uk| ds+ c23

∫
ΓuN

|uk||u| ds

+ c24

∫
ΓϕD

|uk||
∂ϕ

∂n
| ds+ c25

∫
ΓuD

|∂u
∂n
||u| ds.

The same arguments as in the proof of Lemma 3.3 lead to

∂

∂t
|uk(t)|2L2(Ω) +

∫
Ω

|∇uk|2 ds+
∫

ΓuN

|uk|2 ds ≤ c26. (4.6)
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Integrating (4.6) on (0, t) yiel ds

|uk(t)|2L2(Ω) +
∫
Qt

|∇uk|2 ds+
∫ t

0

∫
ΓuN

|uk|2 ds ≤ |u(x, 0)|2L2(Ω) + c15.

Hence (4.1) and (4.2) are satisfied. On the other hand, by (3.2) we have

〈∂uk
∂t

, uk〉+ ((θk(uk), uk)) +
∫

ΓuN

β|uk|2

= −
∫

Ω

σ̃(uk)ϕk∇ϕk∇uk ds+
∫

ΓuN

βuku ds

+
∫

ΓϕD

σ̃(uk)ϕ
∂ϕ

∂n
uk ds+

∫
ΓuD

θ′k(u)
∂u

∂n
u ds.

Therefore, arguing exactly as above, we deduce that

|uk(t)|2L2(Ω) +2
∫ T

0

((θk(uk), uk))dt+
∫ T

0

∫
ΓuN

|uk|2 ds ≤ c16(|u(x, 0)|2L2(Ω) +c17).

Furthermore, ∫ T

0

((θk(uk), uk))dt =
∫ T

0

(∫
Ω

θ′k(uk)|∇uk|2 ds
)
dt

and 0 < 1
k ≤ θ

′
k(uk). Then

1
k
‖uk‖2L2(0,T,H1(Ω)) ≤

c16

2
(|u(x, 0)|2L2(Ω) + c17).

Which gives estimate (4.3).
To obtain an estimate on (θk(uk))k≥1, we take θk(uk) as a test function in

(3.2). We get

〈∂uk
∂t

, θk(uk)〉+ ‖θk(uk)‖2H1(Ω) +
∫

ΓuN

β(uk − u)θk(uk) ds

= −
∫

Ω

σ̃(uk)ϕk∇ϕk∇θk(uk) ds+
∫

ΓuD

θ′k(u)
∂u

∂n
θk(uk) ds

+
∫

ΓϕD

σ̃(uk)ϕ
∂ϕ

∂n
θk(uk) ds.

Straightforward calculations and Bamberger’s lemma [8, p. 8] give

d

dt

{∫
Ω

(∫ uk(x,.)

0

θk(r)dr
)
ds
}

+
1
2
‖θk(uk)‖2H1(Ω) ≤ c27. (4.7)

Integrating (4.7) from 0 to T yiel ds∫
Ω

( ∫ uk(x,T )

0

θk(r)dr
)
ds+

1
2
‖θk(uk)‖2L2(0,T,H1(Ω)) ≤

c18

2
.
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Hence estimate (4.4) follows. According to (3.2), (4.1), (4.2), (4.4) and Lemma
3.3, [3, p. 245], and the definition of dual norm, we get the desired relation
(4.5). �

5 Passage to the limit in (3.1) as k →∞
The aim now is to pass to the limit in the process (3.1). By using estimates of
Lemma 4.1 and standard compacity arguments, we deduce that there exists a
subsequence (uk, ϕk), not relabelled, such that, as k →∞, we have

uk → u weak in L2(0, T, V ),

uk → u weak star L∞(0, T, L2(Ω)),

uk → u weak in L2(0, T, L2(ΓuN )),
∂uk
∂t
→ ∂u

∂t
weak in L2(0, T, V ′),

ϕk → ϕ weak star in L∞(0, T,H1(Ω)).

On the other hand, since the space {v ∈ L2(0, T, V ), ∂v∂t ∈ L
2(0, T, V ′)} is com-

pactly embedded in L2(QT ), [2, p. 58], we can extract a subsequence from (uk),
not relabelled, such that

uk → u strongly and a.e. in L2(QT ).

Moreover, we can assume that

θk(uk)→ θ(u) a.e. in QT and weak in L2(0, T,H1(Ω)).

Indeed, we have∫ t

0

(
∫

Ω

|θk(uk)− θ(u)| dsdr

≤
∫ t

0

(
∫

Ω

|θk(uk)− θ(uk)| ds)dr +
∫ t

0

(
∫

Ω

|θ(uk)− θ(u)| ds)dr

≤ csup|r|≤M |θk(r)− θ(r)|+
∫ t

0

(
∫

Ω

|θ(uk)− θ(u)| ds)dr.

Now, arguing as in the proof of (3.11)–(3.13), we obtain

σ̃(uk)∇ϕk → σ(u)∇ϕ weak in L2(QT ),

σ̃(uk)ϕk∇ϕk → σ(u)ϕ∇ϕ weak in L2(QT ).

Moreover, using Aubin’s lemma (see [2, p. 7]), we obtain that uk → u in
C([0, T ];V ′). Then uk(0)→ u(0) weak in V ′. We consequently obtain u(x, 0) =
u(x, 0). Finally, we verify easily that the limit (u, ϕ) obtained is a solution of
problem (1.1). This conclude to the proof of the main result. �
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Remark. The question of uniqueness has been established in some special
cases; see [4] and [8].
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UFR Mathématiques Appliquées et Industrielles
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