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Nonlinear elliptic systems with exponential

nonlinearities ∗

Said El Manouni & Abdelfattah Touzani

Abstract

In this paper we investigate the existence of solutions for

− div(a(|∇u|N )|∇u|N−2u) = f(x, u, v) in Ω

− div(a(|∇v|N )|∇v|N−2v) = g(x, u, v) in Ω

u(x) = v(x) = 0 on ∂Ω.

Where Ω is a bounded domain in RN , N ≥ 2, f and g are nonlineari-
ties having an exponential growth on Ω and a is a continuous function
satisfying some conditions which ensure the existence of solutions.

1 Introduction

Let Ω ⊂ RN , N ≥ 2 be a bounded domain with smooth boundary ∂Ω.
In this paper we shall be concerned with existence of solutions for the problem

−div(a(|∇u|N )|∇u|N−2u) = f(x, u, v) in Ω

−div(a(|∇v|N )|∇v|N−2v) = g(x, u, v) in Ω
u(x) = v(x) = 0 on ∂Ω.

(1.1)

Where the nonlinearities f, g : Ω× R2 → R are continuous functions having an
exponential growth on Ω: i.e.,

(H1) For all δ > 0

lim
|(u,v)|→∞

|f(x, u, v)|+ |g(x, u, v)|
eδ(|u|N+|v|N )1/(N−1) = 0 Uniformly in Ω.

Let us mention that there are many results in the scalar case for problem in-
volving exponential growth in bounded domains; see for example [4], [6]. The
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140 Nonlinear elliptic systems with exponential nonlinearities

objective of this paper is to extend these results to a more general class of el-
liptic systems using variational method. Here we will make use the approach
stated by Rabinowitz [8].

Note that for nonlinearities having polynomial growth, several results of such
problem have been established. We can cite, among others, the articles: [9] and
[10]. In order to prove the compactness condition of the functional associated
to a problem (1.1) we assume the following hypothesis

(H2) u∂F
∂u ≥ µ

2F and v ∂F
∂v ≥ µ

2F , where F = F (x, u, v) and such that ∂F
∂u =

f(x, u, v), ∂F
∂v = g(x, u, v) with F (x, u, v) > 0 for u > 0 and v > 0,

F (x, u, v) = 0 for u ≤ 0 or v ≤ 0 with µ > N and U = (u, v) ∈ R2.

We shall find weak-solution of (1.1) in the space W = W 1,N
0 (Ω) × W 1,N

0 (Ω)
endowed with the norm

‖U‖N
W =

∫
Ω

|∇U |N dx =
∫

Ω

(|∇u|N + |∇v|N ) dx

where U = (u, v) ∈ W. Motivated by the following result due to Trudinger and
Moser (cf. [7].[11]), we remark that the space W is embeded in the class of
Orlicz-Lebesgue space

Lφ = {U : Ω → R2, measurable :
∫

Ω

φ(U) <∞},

where φ(s, t) = exp
(
s

N
N−1 + t

N
N−1

)
. Moreover,

sup
‖(u,v)‖W≤1

∫
Ω

exp
(
γ(|u|

N
N−1 + |v|

N
N−1

)
dx ≤ C if γ ≤ ωN−1,

where C is a real number and ωN−1 is the dimensional surface of the unit sphere.

On this paper, we make the following assumptions on the function a.

(a1) a : R+ → R is continuous

(a2) There exist positive constants p ∈]1, N ], b1, b2, c1, c2 such that

c1 + b1u
N−p ≤ uN−pa(uN ) ≤ c2 + b2u

N−p ∀u ∈ R+;

(a3) The function k : R → R, k(u) = a(|u|N )|u|N−2u is strictly increasing and
k(u) → 0 as u→ 0+.

Remark Note that operator considered here has been studied by Hirano [5]
and by Ubilla [11] with nonlinearities having polynomial growth.

We shall denote by λ1 the smallest eigenvalue [9] for the problem

−∆Nu = λ|u|α−1
u|v|β+1 in Ω ⊂ RN

−∆Nv = λ|u|α+1|v|β−1
v in Ω ⊂ RN

u(x) = v(x) = 0 on ∂Ω;
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i.e.,

λ1 = inf
{α+ 1

N

∫
Ω

|∇u|N dx+
β + 1
N

∫
Ω

|∇v|N dx :

(u, v) ∈W,
∫

Ω

|u|α+1|v|β+1 dx = 1
}

where α+ β = N − 2 and α, β > −1.

Definition We say that a pair (u, v) ∈W is a weak solution of (1.1) if for all
(ϕ,ψ) ∈W , ∫

Ω

a(|∇u|N )|∇u|N−2∇u∇ϕdx =
∫

Ω

f(x, u, v)ϕdx∫
Ω

a(|∇v|N )|∇v|N−2∇v∇ψ dx =
∫

Ω

g(x, u, v)ψ dx
(1.2)

Now state our main results.

Theorem 1.1 Suppose that f and g are continuous functions satisfying (H1),
(H2) and that a satisfies (a1), (a2) and (a3), with Nb2 < µb1. Furthermore,
assume that

lim
|U |→0

sup
pF (x, U)

|u|α+1|v|β+1
< (c1 + b1δp(N))λ1 (1.3)

uniformly on x ∈ Ω, where δp(N) = 1 if N = p and δp(N) = 0 if N 6= p. Then
problem (1.1) has a nontrivial weak solution in W .

Remarks

1) Here we note that in case that (a2) holds for p = N, the condition (a2)
can be rewritten as follows:
(a2′) There exist c1, c2 such that

c1 ≤ a(uN ) ≤ c2 for all u ∈ R+.

If a(t) = 1, (a2′) holds with c1 = c2 = 1 and therefore, we obtain the result
given in [3].

2) If a(u) = 1 +u
p−N

N , conditions (a2) and (a3) hold, then the problem (1.1)
can be formulated as follows

−∆Nu−∆pu = f(x, u, v)
−∆Nv −∆pv = g(x, u, v);

where ∆p ≡ div(|∇u|p−2∇u) is p-Laplacian operator.
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2 Preliminaries

The maximal growth of f(x, u, v) and g(x, u, v) will allow us to treat variation-
ally system (1.1) in the product Sobolev space W . This exponential growth is
relatively motivated by Trudinger-Moser inequality ([4], [11]).

Note that if the functions f and g are continuous and have an exponential
growth, then there exist positive constants C and γ such that

|f(x, u, v)|+ |g(x, u, v)| ≤ C exp
(
γ(|u|

N
N−1 + |v|

N
N−1 )

)
, ∀(x, u, v) ∈ Ω× R2.

(2.1)
Consequently the functional Ψ : W → R defined as

Ψ(u, v) =
∫

Ω

F (x, u, v) dx

is well defined, belongs to C1(W,R), and has

Ψ′(u, v)(ϕ,ψ) =
∫

Ω

f(x, u, v)ϕ+ g(x, u, v)ψ dx.

To prove this statements, we deduce from (2.1) that there exists C1 > 0 such
that

|F (x, u, v)| ≤ C1 exp(γ(|u|
N

N−1 + |v|
N

N−1 )), ∀(x, u, v) ∈ Ω× R2.

Thus, since

exp
(
γ(|u|

N
N−1 + |v|

N
N−1 )

)
∈ L1(Ω), ∀(u, v) ∈W,

we have the result.
It follows from the assumptions on the function a that for all t ∈ R,

1
N
A(|t|N ) ≥ b1

N
|t|N +

c1
p
|t|p

1
N
A(|t|N ) ≤ b2

N
|t|N +

c2
p
|t|p,

where A(t) =
∫ t

0
a(s) ds. Furthermore the function g(t) = A(|t|N ) is strictly

convex. Consequently, the functional Φ : W → R defined as

Φ(u, v) =
1
N

∫
Ω

A(|∇u|N ) +A(|∇v|N ) dx

is well defined, weakly lower semicontinuous, Frechet differentiable and belongs
to C1(W,R).

Therefore, if the function a satisfies conditions (a1), (a2) and (a3) and the
nonlinearities f and g are continuous and satisfy (2.1), we conclude that the
functional J : W → R, given by

J(u, v) =
1
N

∫
Ω

A(|∇u|N ) +A(|∇v|N ) dx−
∫

Ω

F (x, u, v) dx
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is well defined and belongs to C1(W,R). Also for all (u, v) ∈W ,

J ′(u, v)(ϕ,ψ) =
∫

Ω

a(|∇u|N )|∇u|N−2∇u∇ϕ+ a(|∇v|N )|∇v|N−2∇u∇ψ dx

−
∫

Ω

f(x, u, v)ϕ+ g(x, u, v)ψ dx .

Consequently, we are interested in using Critical Point theory to obtain weak
solutions of (1.1).

Lemma 2.1 Assume that f and g are continuous and have an exponential
growth. Let (un, vn) be a sequence in W such that (un, vn) converge weakly
on (u, v) ∈ X, then ∫

Ω

f(x, un, vn)(un − u) dx→ 0,∫
Ω

g(x, un, vn)(vn − v) dx→ 0,

as n→∞.

Proof. Let (un, vn) be a sequence converging weakly to some (u, v) in W .
Thus, there exist a subsequence, denoted again by (un, vn) such that

un → u in Lp(Ω),
vn → v in Lq(Ω),

as n→∞ and for all p, q > 1. On the other hand, we have∫
Ω

|f(x, un, vn)|p dx ≤ C

∫
Ω

exp(pγ(|un|
N

N−1 + |vn|
N

N−1 )) dx

≤ C(
∫

Ω

exp(spγ|un|
N

N−1 ))
1
s (
∫

Ω

exp(s′pγ|vn|
N

N−1 ))
1
s′

≤ C
(∫

Ω

exp(spγ‖un‖
N

N−1

W 1,N
0 (Ω)

(
|un|

N
N−1

‖un‖W 1,N
0 (Ω)

))
)1/s

×
(∫

Ω

exp(s′pγ‖vn‖
N

N−1

W 1,N
0 (Ω)

(
|vn|

N
N−1

‖vn‖W 1,N
0 (Ω)

))
)1/s′

.

Since (un, vn) is a bounded sequence, we may choose γ sufficiently small such
that

spγ‖un‖W 1,N
0 (Ω)

N
N−1 < αN and s′pγ‖vn‖W 1,N

0 (Ω)

N
N−1 < αN .

Then ∫
Ω

|f(x, un, vn)|p dx ≤ C1
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for n large and some constant C1 > 0. By the same argument, we have also∫
Ω

|g(x, un, vn)|q dx ≤ C2

for n large and some constant C2 > 0. Using Hölder inequality, we obtain∫
Ω

f(x, un, vn)(un − u) dx ≤
[ ∫

Ω

|f(x, un, vn)|p
′
]1/p′

[|un − u|p]1/p

≤ C [|un − u|p]1/p

and ∫
Ω

g(x, un, vn)(vn − v) dx ≤
[ ∫

Ω

|g(x, un, vn)|q
′
]1/q′

[|vn − v|q]1/q

≤ C ′ [|vn − v|q]1/q
.

Thus the proof is completed since un → u in Lp(Ω) and vn → v in Lq(Ω). �

Lemma 2.2 Assume that f and g are continuous satisfying (H1). Then the
functional J satisfies Palais-Smale condition (PS) provided that every sequence
(un, vn) in W is bounded.

Proof. Note that

J ′(un, vn)(ϕ,ψ) =Φ′(un, vn)(ϕ,ψ)−
∫

Ω

f(x, un, vn)ϕ+ g(x, un, vn)ψ dx

≤εn‖(ϕ,ψ)‖W ,

(2.2)

for all (ϕ,ψ) ∈ W, where εn → 0 as n→∞. Since ‖(un, vn)‖W is bounded, we
can take a subsequence, denoted again by (un, vn) such that

un → u in Lp(Ω),
vn → u in Lq(Ω),

as n approaches ∞ and ∀p, q > 1. Then considering in one hand ϕ = un − u
and ψ = 0 in (2.2) and with the help of Lemma 2.1 , we obtain

Φ′(un, vn)(un − u, 0) → 0,

as n approaches ∞. Since un ⇀ u weakly, as n→∞ and Φ′ ∈ (S+), the result
is proved. We have the same result for vn by considering ψ = vn − v and ϕ = 0
in (2.2). Finally, we conclude that (un, vn) → (u, v) as n→∞. �

Lemma 2.3 Assume that the function a satisfies (a1), (a2) and (a3) with
Nb2 < µb1, and that the nonlinearities f and g are continuous and satisfy
(H1). Then the functional J satisfies the Palais-Smale condition (PS).
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Proof. Using (a1), (a2) and (a3) with Nb2 < µb1, we obtain positive constants
c, d such that

µ

N
A(t)− a(t)t ≥ ct− d ∀t ∈ R+. (2.3)

Now, let (un, vn) be a sequence in W satisfying condition (PS). Thus

1
N

∫
Ω

A(|∇un|N ) +
1
N

∫
Ω

A(|∇vn|N ) dx−
∫

Ω

F (x, un, vn) dx→ c (2.4)

as n goes to ∞.∣∣∣ ∫
Ω

a(|∇un|N )|∇un|N + a(|∇vn|N )|∇vn|N

−(
∫

Ω

f(x, un, vn)un + g(x, un, vn)vn) dx
∣∣∣ ≤ εn‖(un, vn)‖W ,

(2.5)

where εn → 0 as n → ∞. Multiplying (2.4) by µ, subtracting (2.5) from the
expression obtained and using (2.3), we have

∣∣∣ ∫
Ω

|∇un|N +|∇vn|N−
∫

Ω

(µF (x, un, vn)−(f(x, un, vn)un+g(x, un, vn)vn) dx
∣∣∣

≤ c+ εn‖(un, vn)‖W .

From this inequality and using hypothesis (H1), we deduce that (un, vn) is
bounded sequence in W . Now, with the help of Lemma 2.2, we conclude the
proof. �

3 Proofs of the existence results

Lemma 3.1 Assume that the hypotheses of Theorem 1.1 hold. Then, there exist
η, ρ > 0 such that J(u, v) ≥ η if ‖(u, v)‖X = ρ. Moreover, J(t(u, v)) → −∞ as
t→ +∞ for all (u, v) ∈W .

Proof. By (1.3) and (2.1), we can choose η1 < c1 + b1δp(N) such that for
r > N ,

F (x, u, v) ≤ 1
p
η1λ1|u|α+1|v|β+1 + C|u|reγ|u|

N
N−1

eγ|v|
N

N−1
,

for all (x, u, v) ∈ Ω ×W . For ‖u‖W 1,N
0

and ‖v‖W 1,N
0

small, from Hölder’s and
Trudinger-Moser’s inequalities, we obtain

J(u, v) ≥ b1
N
‖u‖N

W 1,N
0

+
c1
p
‖u‖p

W 1,N
0

− η1
p
‖u‖p

W 1,N
0

− C1‖u‖r
W 1,N

0

+
b1
N
‖v‖N

W 1,N
0

+
c1
p
‖v‖p

W 1,N
0

− η1
p
‖v‖p

W 1,N
0

− C1‖v‖r
W 1,N

0
.
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Since η1 < c1 + b1δp(N) and p ≤ N < r, we can choose ρ > 0 such that
J(u, v) ≥ η if ‖(u, v)‖W = ρ for some η > 0. On the other hand, we can prove
easily that

J(t(u, v)) → −∞ as t→ +∞

So, by the Mountain-Pass Lemma [2], problem (1.1) has nontrivial solution
(u, v) ∈ W which is a critical point of J . This completes the proof of Theorem
1.1.
At the end, we give an example which illustrates conditions given on the non-
linearities f and g.

Example Let

F (x, u, v) = (1+ δp(N))
λ

p
|u|α+1|v|β+1 +(1−χ(u, v))exp

(
σ(|u|N + |v|N )

1
N−1

Log(|u|+ |v|+ 2)

)

where χ ∈ C1(R2, [0, 1]), χ ≡ 1 on some ball B(0, r) ⊂ R2 with r > 0 , and
χ ≡ 0 on R2\B(0, r + 1).
Thus, it follows immediately that (H1), (H2) and (1.3) are satisfied. Then prob-
lem (1.1) has a nontrivial weak solution provided that λ < λ1.
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