Strongly nonlinear parabolic initial-boundary value problems in Orlicz spaces *

Abdelhak Elmahi

Abstract

We prove existence and convergence theorems for nonlinear parabolic problems. We also prove some compactness results in inhomogeneous Orlicz-Sobolev spaces.

1 Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}, T>0$ and let

$$
A(u)=\sum_{|\alpha| \leq 1}(-1)^{|\alpha|} D^{\alpha} A_{\alpha}(x, t, u, \nabla u)
$$

be a Leray-Lions operator defined on $L^{p}\left(0, T ; W^{1, p}(\Omega)\right), 1<p<\infty$. Boccardo and Murat [5] proved the existence of solutions for parabolic initial-boundary value problems of the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+A(u)+g(x, t, u, \nabla u)=f \quad \text { in } \Omega \times(0, T) \tag{1.1}
\end{equation*}
$$

where g is a nonlinearity with the following growth condition

$$
\begin{equation*}
g(x, t, s, \xi) \leq b(|s|)\left(c(x, t)+|\xi|^{q}\right), \quad q<p, \tag{1.2}
\end{equation*}
$$

and which satisfies the classical sign condition $g(x, t, s, \xi) s \geq 0$. The right hand side f is assumed (in [5]) to belong to $L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}(\Omega)\right)$. This result generalizes the analogous one of Landes-Mustonen [14] where the nonlinearity g depends only on x, t and u. In [5] and [14], the functions A_{α} are assumed to satisfy a polynomial growth condition with respect to u and ∇u. When trying to relax this restriction on the coefficients A_{α}, we are led to replace $L^{p}\left(0, T ; W^{1, p}(\Omega)\right)$ by an inhomogeneous Sobolev space $W^{1, x} L_{M}$ built from an Orlicz space L_{M} instead of L^{p}, where the N -function M which defines L_{M} is related to the actual growth of the A_{α} 's. The solvability of (1.1) in this

[^0]setting is proved by Donaldson [7] and Robert [16] in the case where $g \equiv 0$. It is our purpose in this paper, to prove existence theorems in the setting of the inhomogeneous Sobolev space $W^{1, x} L_{M}$ by applying some new compactness results in Orlicz spaces obtained under the assumption that the N - function $M(t)$ satisfies Δ^{\prime}-condition and which grows less rapidly than $|t|^{N /(N-1)}$. These compactness results, which we are at first established in [8], generalize those of Simon [17], Landes-Mustonen [14] and Boccardo-Murat [6]. It is not clear whether the present approach can be further adapted to obtain the same results for general N -functions.

For related topics in the elliptic case, the reader is referred to [2] and [3].

2 Preliminaries

Let $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an N-function, i.e. M is continuous, convex, with $M(t)>0$ for $t>0, \frac{M(t)}{t} \rightarrow 0$ as $t \rightarrow 0$ and $\frac{M(t)}{t} \rightarrow \infty$ as $t \rightarrow \infty$. Equivalently, M admits the representation: $M(t)=\int_{0}^{t} a(\tau) d \tau$ where $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is nondecreasing, right continuous, with $a(0)=0, a(t)>0$ for $t>0$ and $a(t) \rightarrow \infty$ as $t \rightarrow \infty$. The N -function \bar{M} conjugate to M is defined by $\bar{M}(t)=\int_{0}^{t} \bar{a}(\tau) d \tau$, where $\bar{a}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is given by $\bar{a}(t)=\sup \{s: a(s) \leq t\}[1,11,12]$.

The N-function M is said to satisfy the Δ_{2} condition if, for some $k>0$:

$$
\begin{equation*}
M(2 t) \leq k M(t) \quad \text { for all } t \geq 0 \tag{2.1}
\end{equation*}
$$

when this inequality holds only for $t \geq t_{0}>0, M$ is said to satisfy the Δ_{2} condition near infinity.

Let P and Q be two N-functions. $P \ll Q$ means that P grows essentially less rapidly than Q; i.e., for each $\varepsilon>0$,

$$
\frac{P(t)}{Q(\varepsilon t)} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

This is the case if and only if

$$
\lim _{t \rightarrow \infty} \frac{Q^{-1}(t)}{P^{-1}(t)}=0
$$

An N -function is said to satisfy the \triangle^{\prime}-condition if, for some $k_{0}>0$ and some $t_{0} \geq 0$:

$$
\begin{equation*}
M\left(k_{0} t t^{\prime}\right) \leq M(t) M\left(t^{\prime}\right), \quad \text { for all } t, t^{\prime} \geq t_{0} \tag{2.2}
\end{equation*}
$$

It is easy to see that the \triangle^{\prime}-condition is stronger than the \triangle_{2}-condition. The following N-functions satisfy the \triangle^{\prime}-condition: $M(t)=t^{p}\left(\log ^{q} t\right)^{s}$, where $1<$ $p<+\infty, 0 \leq s<+\infty$ and $q \geq 0$ is an integer $\left(\log ^{q}\right.$ being the iterated of order q of the function log).

We will extend these N -functions into even functions on all \mathbb{R}. Let Ω be an open subset of \mathbb{R}^{N}. The Orlicz class $\mathcal{L}_{M}(\Omega)$ (resp. the Orlicz space $\left.L_{M}(\Omega)\right)$ is
defined as the set of (equivalence classes of) real-valued measurable functions u on Ω such that:

$$
\int_{\Omega} M(u(x)) d x<+\infty \quad\left(\text { resp. } \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x<+\infty \text { for some } \lambda>0\right) .
$$

Note that $L_{M}(\Omega)$ is a Banach space under the norm

$$
\|u\|_{M, \Omega}=\inf \left\{\lambda>0: \int_{\Omega} M\left(\frac{u(x)}{\lambda}\right) d x \leq 1\right\}
$$

and $\mathcal{L}_{M}(\Omega)$ is a convex subset of $L_{M}(\Omega)$. The closure in $L_{M}(\Omega)$ of the set of bounded measurable functions with compact support in $\bar{\Omega}$ is denoted by $E_{M}(\Omega)$. The equality $E_{M}(\Omega)=L_{M}(\Omega)$ holds if and only if M satisfies the Δ_{2} condition, for all t or for t large according to whether Ω has infinite measure or not.

The dual of $E_{M}(\Omega)$ can be identified with $L_{\bar{M}}(\Omega)$ by means of the pairing $\int_{\Omega} u(x) v(x) d x$, and the dual norm on $L_{\bar{M}}(\Omega)$ is equivalent to $\|\cdot\|_{\bar{M}, \Omega}$. The space $L_{M}(\Omega)$ is reflexive if and only if M and \bar{M} satisfy the Δ_{2} condition, for all t or for t large, according to whether Ω has infinite measure or not.

We now turn to the Orlicz-Sobolev space. $W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$) is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_{M}(\Omega)$ (resp. $\left.E_{M}(\Omega)\right)$. This is a Banach space under the norm

$$
\|u\|_{1, M, \Omega}=\sum_{|\alpha| \leq 1}\left\|D^{\alpha} u\right\|_{M, \Omega}
$$

Thus $W^{1} L_{M}(\Omega)$ and $W^{1} E_{M}(\Omega)$ can be identified with subspaces of the product of $N+1$ copies of $L_{M}(\Omega)$. Denoting this product by ΠL_{M}, we will use the weak topologies $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ and $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$. The space $W_{0}^{1} E_{M}(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^{1} E_{M}(\Omega)$ and the space $W_{0}^{1} L_{M}(\Omega)$ as the $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ closure of $\mathcal{D}(\Omega)$ in $W^{1} L_{M}(\Omega)$. We say that u_{n} converges to u for the modular convergence in $W^{1} L_{M}(\Omega)$ if for some $\lambda>0, \int_{\Omega} M\left(\frac{D^{\alpha} u_{n}-D^{\alpha} u}{\lambda}\right) d x \rightarrow 0$ for all $|\alpha| \leq 1$. This implies convergence for $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$. If M satisfies the Δ_{2} condition on \mathbb{R}^{+}(near infinity only when Ω has finite measure), then modular convergence coincides with norm convergence.

Let $W^{-1} L_{\bar{M}}(\Omega)$ (resp. $W^{-1} E_{\bar{M}}(\Omega)$) denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\bar{M}}(\Omega)$ (resp. $E_{\bar{M}}(\Omega)$). It is a Banach space under the usual quotient norm.

If the open set Ω has the segment property, then the space $\mathcal{D}(\Omega)$ is dense in $W_{0}^{1} L_{M}(\Omega)$ for the modular convergence and for the topology $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$ (cf. $[9,10]$). Consequently, the action of a distribution in $W^{-1} L_{\bar{M}}(\Omega)$ on an element of $W_{0}^{1} L_{M}(\Omega)$ is well defined.

For $k>0$, we define the truncation at height $k, T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
T_{k}(s)= \begin{cases}s & \text { if }|s| \leq k \tag{2.3}\\ k s /|s| & \text { if }|s|>k\end{cases}
$$

The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1 Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly lipschitzian, with $F(0)=0$. Let M be an N-function and let $u \in W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Then $F(u) \in$ $W^{1} L_{M}(\Omega)$ (resp. $W^{1} E_{M}(\Omega)$). Moreover, if the set of discontinuity points of F^{\prime} is finite, then

$$
\frac{\partial}{\partial x_{i}} F(u)= \begin{cases}F^{\prime}(u) \frac{\partial u}{\partial x_{i}} & \text { a.e. in }\{x \in \Omega: u(x) \notin D\} \\ 0 & \text { a.e. in }\{x \in \Omega: u(x) \in D\} .\end{cases}
$$

Lemma 2.2 Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be uniformly lipschitzian, with $F(0)=0$. We suppose that the set of discontinuity points of F^{\prime} is finite. Let M be an N-function, then the mapping $F: W^{1} L_{M}(\Omega) \rightarrow W^{1} L_{M}(\Omega)$ is sequentially continuous with respect to the weak* topology $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$.

Proof By the previous lemma, $F(u) \in W^{1} L_{M}(\Omega)$ for all $u \in W^{1} L_{M}(\Omega)$ and

$$
\|F(u)\|_{1, M, \Omega} \leq C\|u\|_{1, M, \Omega}
$$

which gives easily the result.
Let Ω be a bounded open subset of $\mathbb{R}^{N}, T>0$ and set $\left.Q=\Omega \times\right] 0, T[$. Let $m \geq 1$ be an integer and let M be an N -function. For each $\alpha \in \mathbf{N}^{N}$, denote by D_{x}^{α} the distributional derivative on Q of order α with respect to the variable $x \in \mathbb{R}^{N}$. The inhomogeneous Orlicz-Sobolev spaces are defined as follows

$$
\begin{aligned}
& W^{m, x} L_{M}(Q)=\left\{u \in L_{M}(Q): D_{x}^{\alpha} u \in L_{M}(Q) \forall|\alpha| \leq m\right\} \\
& W^{m, x} E_{M}(Q)=\left\{u \in E_{M}(Q): D_{x}^{\alpha} u \in E_{M}(Q) \forall|\alpha| \leq m\right\}
\end{aligned}
$$

The last space is a subspace of the first one, and both are Banach spaces under the norm

$$
\|u\|=\sum_{|\alpha| \leq m}\left\|D_{x}^{\alpha} u\right\|_{M, Q}
$$

We can easily show that they form a complementary system when Ω satisfies the segment property. These spaces are considered as subspaces of the product space $\Pi L_{M}(Q)$ which have as many copies as there is α-order derivatives, $|\alpha| \leq m$. We shall also consider the weak topologies $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ and $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$. If $u \in W^{m, x} L_{M}(Q)$ then the function : $t \longmapsto u(t)=u(t,$.$) is defined on [0, T]$ with values in $W^{m} L_{M}(\Omega)$. If, further, $u \in W^{m, x} E_{M}(Q)$ then the concerned function is a $W^{m} E_{M}(\Omega)$-valued and is strongly measurable. Furthermore the following imbedding holds: $W^{m, x} E_{M}(Q) \subset L^{1}\left(0, T ; W^{m} E_{M}(\Omega)\right)$. The space $W^{m, x} L_{M}(Q)$ is not in general separable, if $u \in W^{m, x} L_{M}(Q)$, we can not conclude that the function $u(t)$ is measurable on $[0, T]$. However, the scalar function $t \mapsto\|u(t)\|_{M, \Omega}$ is in $L^{1}(0, T)$. The space $W_{0}^{m, x} E_{M}(Q)$ is defined as the (norm) closure in $W^{m, x} E_{M}(Q)$ of $\mathcal{D}(Q)$. We can easily show as in [10] that when Ω has the segment property then each element u of the closure of $\mathcal{D}(Q)$ with respect of the weak * topology $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$ is limit, in $W^{m, x} L_{M}(Q)$, of some subsequence $\left(u_{i}\right) \subset \mathcal{D}(Q)$ for the modular convergence; i.e., there exists $\lambda>0$ such
that for all $|\alpha| \leq m$,

$$
\int_{Q} M\left(\frac{D_{x}^{\alpha} u_{i}-D_{x}^{\alpha} u}{\lambda}\right) d x d t \rightarrow 0 \text { as } i \rightarrow \infty
$$

this implies that $\left(u_{i}\right)$ converges to u in $W^{m, x} L_{M}(Q)$ for the weak topology $\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)$. Consequently

$$
\overline{\mathcal{D}(Q)}^{\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)}=\overline{\mathcal{D}(Q)}^{\sigma\left(\Pi L_{M}, \Pi L_{\bar{M}}\right)},
$$

this space will be denoted by $W_{0}^{m, x} L_{M}(Q)$. Furthermore, $W_{0}^{m, x} E_{M}(Q)=$ $W_{0}^{m, x} L_{M}(Q) \cap \Pi E_{M}$. Poincaré's inequality also holds in $W_{0}^{m, x} L_{M}(Q)$ i.e. there is a constant $C>0$ such that for all $u \in W_{0}^{m, x} L_{M}(Q)$ one has

$$
\sum_{|\alpha| \leq m}\left\|D_{x}^{\alpha} u\right\|_{M, Q} \leq C \sum_{|\alpha|=m}\left\|D_{x}^{\alpha} u\right\|_{M, Q}
$$

Thus both sides of the last inequality are equivalent norms on $W_{0}^{m, x} L_{M}(Q)$. We have then the following complementary system

$$
\left(\begin{array}{ll}
W_{0}^{m, x} L_{M}(Q) & F \\
W_{0}^{m, x} E_{M}(Q) & F_{0}
\end{array}\right),
$$

F being the dual space of $W_{0}^{m, x} E_{M}(Q)$. It is also, except for an isomorphism, the quotient of $\Pi L_{\bar{M}}$ by the polar set $W_{0}^{m, x} E_{M}(Q)^{\perp}$, and will be denoted by $F=W^{-m, x} L_{\bar{M}}(Q)$ and it is shown that

$$
W^{-m, x} L_{\bar{M}}(Q)=\left\{f=\sum_{|\alpha| \leq m} D_{x}^{\alpha} f_{\alpha}: f_{\alpha} \in L_{\bar{M}}(Q)\right\}
$$

This space will be equipped with the usual quotient norm

$$
\|f\|=\inf \sum_{|\alpha| \leq m}\left\|f_{\alpha}\right\|_{\bar{M}, Q}
$$

where the infimum is taken on all possible decompositions

$$
f=\sum_{|\alpha| \leq m} D_{x}^{\alpha} f_{\alpha}, \quad f_{\alpha} \in L_{\bar{M}}(Q)
$$

The space F_{0} is then given by

$$
F_{0}=\left\{f=\sum_{|\alpha| \leq m} D_{x}^{\alpha} f_{\alpha}: f_{\alpha} \in E_{\bar{M}}(Q)\right\}
$$

and is denoted by $F_{0}=W^{-m, x} E_{\bar{M}}(Q)$.
Remark 2.3 We can easily check, using [10, lemma 4.4], that each uniformly lipschitzian mapping F, with $F(0)=0$, acts in inhomogeneous Orlicz-Sobolev spaces of order 1: $W^{1, x} L_{M}(Q)$ and $W_{0}^{1, x} L_{M}(Q)$.

3 Galerkin solutions

In this section we shall define and state existence theorems of Galerkin solutions for some parabolic initial-boundary problem.

Let Ω be a bounded subset of $\mathbb{R}^{N}, T>0$ and set $\left.Q=\Omega \times\right] 0, T[$. Let

$$
A(u)=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} D_{x}^{\alpha}\left(A_{\alpha}(u)\right)
$$

be an operator such that
$A_{\alpha}(x, t, \xi): \Omega \times[0, T] \times \mathbb{R}^{N_{0}} \rightarrow \mathbb{R}$ is continuous in (t, ξ), for a.e. $x \in \Omega$
and measurable in x, for all $(t, \xi) \in[0, T] \times \mathbb{R}^{N_{0}}$,
where, N_{0} is the number of all α-order's derivative, $|\alpha| \leq m$.

$$
\left|A_{\alpha}(x, s, \xi)\right| \leq \chi(x) \Phi(|\xi|) \text { with } \chi(x) \in L^{1}(\Omega) \text { and } \Phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \text {increasing. }
$$

$$
\begin{equation*}
\sum_{|\alpha| \leq m} A_{\alpha}(x, t, \xi) \xi_{\alpha} \geq-d(x, t) \text { with } d(x, t) \in L^{1}(Q), d \geq 0 \tag{3.2}
\end{equation*}
$$

Consider a function $\psi \in L^{2}(Q)$ and a function $\bar{u} \in L^{2}(\Omega) \cap W_{0}^{m, 1}(\Omega)$. We choose an orthonormal sequence $\left(\omega_{i}\right) \subset \mathcal{D}(\Omega)$ with respect to the Hilbert space $L^{2}(\Omega)$ such that the closure of $\left(\omega_{i}\right)$ in $C^{m}(\bar{\Omega})$ contains $\mathcal{D}(\Omega) . C^{m}(\bar{\Omega})$ being the space of functions which are m times continuously differentiable on $\bar{\Omega}$. For $V_{n}=\operatorname{span}\left\langle\omega_{1}, \ldots, \omega_{n}\right\rangle$ and

$$
\|u\|_{C^{1, m}(Q)}=\sup \left\{\left|D_{x}^{\alpha} u(x, t)\right|,\left|\frac{\partial u}{\partial t}(x, t)\right|:|\alpha| \leq m,(x, t) \in Q\right\}
$$

we have

$$
\mathcal{D}(Q) \subset{\overline{\left\{\cup_{n=1}^{\infty} C^{1}\left([0, T], V_{n}\right)\right\}}}^{C^{1, m}(Q)}
$$

this implies that for ψ and \bar{u}, there exist two sequences $\left(\psi_{n}\right)$ and $\left(\bar{u}_{n}\right)$ such that

$$
\begin{align*}
& \psi_{n} \in C^{1}\left([0, T], V_{n}\right), \quad \psi_{n} \rightarrow \psi \text { in } L^{2}(Q) . \tag{3.4}\\
& \bar{u}_{n} \in V_{n}, \quad \bar{u}_{n} \rightarrow \bar{u} \text { in } L^{2}(\Omega) \cap W_{0}^{m, 1}(\Omega) . \tag{3.5}
\end{align*}
$$

Consider the parabolic initial-boundary value problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+A(u)=\psi \text { in } Q \\
\left.D_{x}^{\alpha} u=0 \text { on } \partial \Omega \times\right] 0, T[, \text { for all }|\alpha| \leq m-1, \tag{3.6}\\
u(0)=\bar{u} \text { in } \Omega .
\end{gather*}
$$

In the sequel we denote $A_{\alpha}\left(x, t, u, \nabla u, \ldots, \nabla^{m} u\right)$ by $A_{\alpha}(x, t, u)$ or simply by $A_{\alpha}(u)$.

Definition 3.1 A function $u_{n} \in C^{1}\left([0, T], V_{n}\right)$ is called Galerkin solution of (3.6) if

$$
\int_{\Omega} \frac{\partial u_{n}}{\partial t} \varphi d x+\int_{\Omega} \sum_{|\alpha| \leq m} A_{\alpha}\left(u_{n}\right) \cdot D_{x}^{\alpha} \varphi d x=\int_{\Omega} \psi_{n}(t) \varphi d x
$$

for all $\varphi \in V_{n}$ and all $t \in[0, T] ; u_{n}(0)=\bar{u}_{n}$.
We have the following existence theorem.
Theorem 3.2 ([13]) Under conditions (3.1)-(3.3), there exists at least one Galerkin solution of (3.6).

Consider now the case of a more general operator

$$
A(u)=\sum_{|\alpha| \leq m}(-1)^{|\alpha|} D_{x}^{\alpha}\left(A_{\alpha}(u)\right)
$$

where instead of (3.1) and (3.2) we only assume that

$$
\begin{gather*}
A_{\alpha}(x, t, \xi): \Omega \times[0, T] \times \mathbb{R}^{N_{0}} \rightarrow \mathbb{R} \text { is continuous in } \xi \text {, for a.e. }(x, t) \in Q \\
\quad \text { and measurable in }(x, t) \text { for all } \xi \in \mathbb{R}^{N_{0}} \tag{3.7}\\
\left|A_{\alpha}(x, s, \xi)\right| \leq C(x, t) \Phi(|\xi|) \text { with } C(x, t) \in L^{1}(Q) \tag{3.8}
\end{gather*}
$$

We have also the following existence theorem
Theorem 3.3 ([14]) There exists a function u_{n} in $C\left([0, T], V_{n}\right)$ such that $\frac{\partial u_{n}}{\partial t}$ is in $L^{1}\left(0, T ; V_{n}\right)$ and

$$
\int_{Q_{\tau}} \frac{\partial u_{n}}{\partial t} \varphi d x d t+\int_{Q_{\tau}} \sum_{|\alpha| \leq m} A_{\alpha}\left(x, t, u_{n}\right) \cdot D_{x}^{\alpha} \varphi d x d t=\int_{Q_{\tau}} \psi_{n} \varphi d x d t
$$

for all $\tau \in[0, T]$ and all $\varphi \in C\left([0, T], V_{n}\right)$, where $Q_{\tau}=\Omega \times[0, \tau] ; u_{n}(0)=\bar{u}_{n}$.

4 Strong convergence of truncations

In this section we shall prove a convergence theorem for parabolic problems which allows us to deal with approximate equations of some parabolic initialboundary problem in Orlicz spaces (see section 6). Let Ω, be a bounded subset of \mathbb{R}^{N} with the segment property and let $\left.T>0, Q=\Omega \times\right] 0, T[$. Let M be an N -function satisfying a Δ^{\prime} condition and the growth condition

$$
M(t) \ll|t|^{\frac{N}{N-1}}
$$

and let P be an N -function such that $P \ll M$. Let $A: W^{1, x} L_{M}(Q) \rightarrow$ $W^{-1, x} L_{\bar{M}}(Q)$ be a mapping given by

$$
A(u)=-\operatorname{div} a(x, t, u, \nabla u)
$$

where $a(x, t, s, \xi): \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function satisfying for a.e. $(x, t) \in \Omega \times] 0, T\left[\right.$ and for all $s \in \mathbb{R}$ and all $\xi, \xi^{*} \in \mathbb{R}^{N}$:

$$
\begin{gather*}
|a(x, t, s, \xi)| \leq c(x, t)+k_{1} \bar{P}^{-1} M\left(k_{2}|s|\right)+k_{3} \bar{M}^{-1} M\left(k_{4}|\xi|\right) \tag{4.1}\\
{\left[a(x, t, s, \xi)-a\left(x, t, s, \xi^{*}\right)\right]\left[\xi-\xi^{*}\right]>0 \quad \text { if } \xi \neq \xi^{*}} \tag{4.2}\\
\alpha M\left(\frac{|\xi|}{\lambda}\right)-d(x, t) \leq a(x, t, s, \xi) \xi \tag{4.3}
\end{gather*}
$$

where $c(x, t) \in E_{\bar{M}}(Q), c \geq 0, d(x, t) \in L^{1}(Q), k_{1}, k_{2}, k_{3}, k_{4} \in \mathbb{R}^{+}$and $\alpha, \lambda \in$ \mathbb{R}_{*}^{+}. Consider the nonlinear parabolic equations

$$
\begin{equation*}
\frac{\partial u_{n}}{\partial t}-\operatorname{div} a\left(x, t, u_{n}, \nabla u_{n}\right)=f_{n}+g_{n} \quad \text { in } \mathcal{D}^{\prime}(Q) \tag{4.4}
\end{equation*}
$$

and assume that:

$$
\begin{gather*}
u_{n} \rightharpoonup u \quad \text { weakly in } W^{1, x} L_{M}(Q) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right), \tag{4.5}\\
f_{n} \rightarrow f \quad \text { strongly in } W^{-1, x} E_{\bar{M}}(Q) \tag{4.6}\\
g_{n} \rightharpoonup g \quad \text { weakly in } L^{1}(Q) \tag{4.7}
\end{gather*}
$$

We shall prove the following convergence theorem.
Theorem 4.1 Assume that (4.1)-(4.7) hold. Then, for any $k>0$, the truncation of u_{n} at height k (see (2.3) for the definition of the truncation) satisfies

$$
\begin{equation*}
\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u) \quad \text { strongly in }\left(L_{M}^{\mathrm{loc}}(Q)\right)^{N} \tag{4.8}
\end{equation*}
$$

Remark 4.2 An elliptic analogous theorem is proved in Benkirane-Elmahi [2].
Remark 4.3 Convergence (4.8) allows, in particular, to extract a subsequence n^{\prime} such that:

$$
\nabla u_{n^{\prime}} \rightarrow \nabla u \quad \text { a.e. in } Q
$$

Then by lemma 4.4 of [9], we deduce that

$$
\left.a\left(x, t, u_{n^{\prime}}, \nabla u_{n^{\prime}}\right) \rightharpoonup a(x, t, u, \nabla u) \quad \text { weakly in } L_{\bar{M}}(Q)\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)
$$

Proof of Theorem 4.1 Step 1: For each $k>0$, define $S_{k}(s)=\int_{0}^{s} T_{k}(\tau) d \tau$. Since T_{k} is continuous, for all $w \in W^{1, x} L_{M}(Q)$ we have $S_{k}(w) \in W^{1, x} L_{M}(Q)$ and $\nabla S_{k}(w)=T_{k}(w) \nabla w$. So that, by mollifying as in [6], it is easy to see that for all $\varphi \in \mathcal{D}(Q)$ and all $v \in W^{1, x} L_{M}(Q)$ with $\frac{\partial v}{\partial t} \in W^{-1, x} L_{\bar{M}}(Q)+L^{1}(Q)$, we have

$$
\begin{equation*}
\left\langle\left\langle\frac{\partial v}{\partial t}, \varphi T_{k}(v)\right\rangle\right\rangle=-\int_{Q} \frac{\partial \varphi}{\partial t} S_{k}(v) d x d t \tag{4.9}
\end{equation*}
$$

where $\langle\langle\rangle$,$\rangle means for the duality pairing between W_{0}^{1, x} L_{M}(Q)+L^{1}(Q)$ and $W^{-1, x} L_{\bar{M}}(Q) \cap L^{\infty}(Q)$. Fix now a compact set K with $K \subset Q$ and a function
$\varphi_{K} \in \mathcal{D}(Q)$ such that $0 \leq \varphi_{K} \leq 1$ in Q and $\varphi_{K}=1$ on K. Using in (4.4) $v_{n}=\varphi_{K}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) \in W^{1, x} L_{M}(Q) \cap L^{\infty}(Q)$ as test function yields

$$
\begin{align*}
& \left\langle\left\langle\frac{\partial u_{n}}{\partial t}, \varphi_{K} T_{k}\left(u_{n}\right)\right\rangle\right\rangle-\left\langle\left\langle\frac{\partial u_{n}}{\partial t}, \varphi_{K} T_{k}(u)\right\rangle\right\rangle \\
& +\int_{Q} \varphi_{K} a\left(x, t, u_{n}, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \tag{4.10}\\
& +\int_{Q}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla \varphi_{K} d x d t \\
& =\left\langle\left\langle f_{n}, v_{n}\right\rangle\right\rangle+\left\langle\left\langle g_{n}, v_{n}\right\rangle\right\rangle
\end{align*}
$$

Since $u_{n} \in W^{1, x} L_{M}(Q)$ and $\frac{\partial u_{n}}{\partial t} \in W^{-1, x} L_{\bar{M}}(Q)+L^{1}(Q)$ then by (4.9),

$$
\left\langle\left\langle\frac{\partial u_{n}}{\partial t}, \varphi_{K} T_{k}\left(u_{n}\right)\right\rangle\right\rangle=-\int_{Q} \frac{\partial \varphi_{K}}{\partial t} S_{k}\left(u_{n}\right) d x d t
$$

On the other hand since $\left(u_{n}\right)$ is bounded in $W^{1, x} L_{M}(Q)$ and $\frac{\partial u_{n}}{\partial t}=h_{n}+g_{n}$ while g_{n} is bounded in $L^{1}(Q)$ and so in $\mathcal{M}(Q)$ and $h_{n}=\operatorname{div} a\left(x, t, u_{n}, \nabla u_{n}\right)+f_{n}$ is bounded in $W^{-1, x} L_{\bar{M}}(Q)$, then by [8, Corollary 1], $u_{n} \rightarrow u$ strongly in $L_{M}^{\text {loc }}(Q)$. Consequently, $T_{k}\left(u_{n}\right) \rightarrow T_{k}(u)$ and $S_{k}\left(u_{n}\right) \rightarrow S_{k}(u)$ in $L_{M}^{\text {loc }}(Q)$. So that

$$
\int_{Q} \frac{\partial \varphi_{K}}{\partial t} S_{k}\left(u_{n}\right) d x d t \rightarrow \int_{Q} \frac{\partial \varphi_{K}}{\partial t} S_{k}(u) d x d t
$$

and also $\int_{Q}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla \varphi_{K} d x d t \rightarrow 0$ as $n \rightarrow \infty$. Furthermore $\left\langle\left\langle f_{n}, v_{n}\right\rangle\right\rangle \rightarrow 0$, by (4.6). Since $g_{n} \in L^{1}(Q)$ and $T_{k}\left(u_{n}\right)-T_{k}(u) \in L^{\infty}(Q)$,

$$
\left\langle\left\langle g_{n}, \varphi_{K}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right)\right\rangle\right\rangle=\int_{Q} g_{n} \varphi_{K}\left(T_{k}\left(u_{n}\right)-T_{k}(u)\right) d x d t
$$

which tends to 0 by Egorov's theorem.
Since $\varphi_{K} T_{k}(u)$ belongs to $W_{0}^{1, x} L_{M}(Q) \cap L^{\infty}(Q)$ while $\frac{\partial u_{n}}{\partial t}$ is the sum of a bounded term in $W^{-1, x} L_{\bar{M}}(Q)$ and of g_{n} which weakly converges in $L^{1}(Q)$ one has

$$
\left\langle\left\langle\frac{\partial u_{n}}{\partial t}, \varphi_{K} T_{k}(u)\right\rangle\right\rangle \rightarrow\left\langle\left\langle\frac{\partial u}{\partial t}, \varphi_{K} T_{k}(u)\right\rangle\right\rangle=-\int_{Q} \frac{\partial \varphi}{\partial t} S_{k}(u) d x d t
$$

We have thus proved that

$$
\begin{equation*}
\int_{Q} \varphi_{K} a\left(x, t, u_{n}, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.11}
\end{equation*}
$$

Step 2: Fix a real number $r>0$ and set $Q_{(r)}=\left\{x \in Q:\left|\nabla T_{k}(u)\right| \leq r\right\}$ and
denote by χ_{r} the characteristic function of $Q_{(r)}$. Taking $s \geq r$ one has:

$$
\begin{align*}
0 \leq & \int_{Q_{(r)}} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \\
& \leq \int_{Q_{(s)}} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \\
= & \int_{Q_{(s)}} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x d t \\
\leq & \int_{Q} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\right] \tag{4.12}\\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x d t \\
= & \int_{Q} \varphi_{K} a\left(x, t, u_{n}, \nabla u_{n}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \\
& -\int_{Q} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x d t \\
& +\int_{Q} \varphi_{K} a\left(x, t, u_{n}, \nabla u_{n}\right)\left[\nabla T_{k}(u)-\nabla T_{k}(u) \chi_{s}\right] d x d t \\
& -\int_{Q} \varphi_{K} a\left(x, t, u_{n}, \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}\right] d x d t .
\end{align*}
$$

Now pass to the limit in all terms of the right-hand side of the above equation.
By (4.11), the first one tends to 0 . Denoting by $\chi_{G_{n}}$ the characteristic function of $G_{n}=\left\{(x, t) \in Q:\left|u_{n}(x, t)\right|>k\right\}$, the second term reads

$$
\begin{equation*}
\int_{Q} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, 0\right)\right] \chi_{G_{n}} \nabla T_{k}(u) \chi_{s} d x d t \tag{4.13}
\end{equation*}
$$

which tends to 0 since $\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, 0\right)\right]$ is bounded in $\left(L_{\bar{M}}(Q)\right)^{N}$, by (4.1) and (4.5) while $\chi_{G_{n}} \nabla T_{k}(u) \chi_{s}$ converges strongly in $\left(E_{M}(Q)\right)^{N}$ to 0 by Lebesgue's theorem. The fourth term of (4.12) tends to

$$
\begin{gather*}
-\int_{Q} \varphi_{K} a\left(x, t, u, \nabla T_{k}(u) \chi_{s}\right)\left[\nabla T_{k}(u)-\nabla T_{k}(u) \chi_{s}\right] d x d t \tag{4.14}\\
=\int_{Q \backslash Q_{(s)}} \varphi_{K} a(x, t, u, 0) \nabla T_{k}(u) d x d t
\end{gather*}
$$

since $a\left(x, t, u_{n}, \nabla T_{k}(u) \chi_{s}\right)$ tends strongly to $a\left(x, t, u, \nabla T_{k}(u) \chi_{s}\right)$ in $\left(E_{\bar{M}}(Q)\right)^{N}$ while $\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u) \chi_{s}$ converges weakly to $\nabla T_{k}(u)-\nabla T_{k}(u) \chi_{s}$ in $\left(L_{M}(Q)\right)^{N}$ for $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$.

Since $a\left(x, t, u_{n}, \nabla u_{n}\right)$ is bounded in $\left(L_{\bar{M}}(Q)\right)^{N}$ one has (for a subsequence still denoted by u_{n})

$$
\begin{equation*}
a\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup h \quad \text { weakly in }\left(L_{\bar{M}}(Q)\right)^{N} \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right) \tag{4.15}
\end{equation*}
$$

Finally, the third term of the right-hand side of (4.12) tends to

$$
\begin{equation*}
\int_{Q \backslash Q_{(s)}} \varphi_{K} h \nabla T_{k}(u) d x d t \tag{4.16}
\end{equation*}
$$

We have, then, proved that

$$
\begin{align*}
0 \leq & \lim \sup _{n \rightarrow \infty} \int_{Q_{(r)}} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u)\right)\right] \\
& \times\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \tag{4.17}\\
\leq & \int_{Q \backslash Q_{(s)}} \varphi_{K}[h-a(x, t, u, 0)] \nabla T_{k}(u) d x d t
\end{align*}
$$

Using the fact that $[h-a(x, t, u, 0)] \nabla T_{k}(u) \in L^{1}(\Omega)$ and letting $s \rightarrow+\infty$ we get, since $\left|Q \backslash Q_{(s)}\right| \rightarrow 0$,

$$
\begin{equation*}
\int_{Q_{(r)}} \varphi_{K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \tag{4.18}
\end{equation*}
$$

which approaches 0 as $n \rightarrow \infty$. Consequently
$\int_{Q_{(r)} \cap K}\left[a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, u_{n}, \nabla T_{k}(u)\right)\right]\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right] d x d t \rightarrow 0$
as $n \rightarrow \infty$. As in [2], we deduce that for some subsequence $\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u)$ a.e. in $Q_{(r)} \cap K$. Since r, k and K are arbitrary, we can construct a subsequence (diagonal in r, in k and in j, where (K_{j}) is an increasing sequence of compacts sets covering Q), such that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \quad \text { a.e. in } Q \tag{4.19}
\end{equation*}
$$

Step 3: As in [2] we deduce that

$$
\int_{Q} \varphi_{K} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}\right) d x d t \rightarrow \int_{Q} \varphi_{K} a(x, t, u, \nabla u) \nabla T_{k}(u) d x d t
$$

as $n \rightarrow \infty$, and that

$$
\begin{equation*}
a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) \rightarrow a\left(x, t, u, \nabla T_{k}(u)\right) \nabla T_{k}(u) \text { strongly in } L^{1}(K) \tag{4.20}
\end{equation*}
$$

This implies that (see [2] if necessary): $\nabla T_{k}\left(u_{n}\right) \rightarrow \nabla T_{k}(u)$ in $\left(L_{M}(K)\right)^{N}$ for the modular convergence and so strongly and convergence (4.8) follows.

Note that in convergence (4.8) the whole sequence (and not only for a subsequence) converges since the limit $\nabla T_{k}(u)$ does not depend on the subsequence.

5 Nonlinear parabolic problems

Now, we are able to establish an existence theorem for a nonlinear parabolic initial-boundary value problems. This result which specially applies in Orlicz spaces generalizes analogous results in of Landes-Mustonen [14]. We start by giving the statement of the result.

Let Ω be a bounded subset of \mathbb{R}^{N} with the segment property, $T>0$, and $Q=\Omega \times] 0, T[$. Let M be an N-function satisfying the growth condition

$$
M(t) \ll|t|^{\frac{N}{N-1}}
$$

and the \triangle^{\prime}-condition. Let P be an N -function such that $P \ll M$. Consider an operator $A: W_{0}^{1, x} L_{M}(Q) \rightarrow W^{-1, x} L_{\bar{M}}(Q)$ of the form

$$
\begin{equation*}
A(u)=-\operatorname{div} a(x, t, u, \nabla u)+a_{0}(x, t, u, \nabla u) \tag{5.1}
\end{equation*}
$$

where $a: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and $a_{0}: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ are Carathéodory functions satisfying the following conditions, for a.e. $(x, t) \in$ $\Omega \times[0, T]$ for all $s \in \mathbb{R}$ and $\xi \neq \xi^{*} \in \mathbb{R}^{N}$:

$$
\begin{gather*}
|a(x, t, s, \xi)| \leq c(x, t)+k_{1} \bar{P}^{-1} M\left(k_{2}|s|\right)+k_{3} \bar{M}^{-1} M\left(k_{4}|\xi|\right) \\
\left|a_{0}(x, t, s, \xi)\right| \leq c(x, t)+k_{1} \bar{M}^{-1} M\left(k_{2}|s|\right)+k_{3} \bar{M}^{-1} P\left(k_{4}|\xi|\right) \tag{5.2}\\
\quad\left[a(x, t, s, \xi)-a\left(x, t, s, \xi^{*}\right)\right]\left[\xi-\xi^{*}\right]>0 \tag{5.3}\\
\quad a(x, t, s, \xi) \xi+a_{0}(x, t, s, \xi) s \geq \alpha M\left(\frac{|\xi|}{\lambda}\right)-d(x, t) \tag{5.4}
\end{gather*}
$$

where $c(x, t) \in E_{\bar{M}}(Q), c \geq 0, d(x, t) \in L^{1}(Q), k_{1}, k_{2}, k_{3}, k_{4} \in \mathbb{R}^{+}$and $\alpha, \lambda \in$ \mathbf{R}_{*}^{+}. Furthermore let

$$
\begin{equation*}
f \in W^{-1, x} E_{\bar{M}}(Q) \tag{5.5}
\end{equation*}
$$

We shall use notations of section 3. Consider, then, the parabolic initialboundary value problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+A(u)=f \quad \text { in } Q \\
u(x, t)=0 \text { on } \partial \Omega \times] 0, T[\tag{5.6}\\
u(x, 0)=\psi(x) \text { in } \Omega .
\end{gather*}
$$

where ψ is a given function in $L^{2}(\Omega)$. We shall prove the following existence theorem.

Theorem 5.1 Assume that (5.2)-(5.5) hold. Then there exists at least one weak solution $u \in W_{0}^{1, x} L_{M}(Q) \cap L^{2}(Q) \cap C\left([0, T], L^{2}(\Omega)\right)$ of (5.6), in the following sense:

$$
\begin{gather*}
-\int_{Q} u \frac{\partial \varphi}{\partial t} d x d t+\left[\int_{\Omega} u(t) \varphi(t) d x\right]_{0}^{T}+\int_{Q} a(x, t, u, \nabla u) \cdot \nabla \varphi d x d t \\
+\int_{Q} a_{0}(x, t, u, \nabla u) \cdot \varphi d x d t=\langle f, \varphi\rangle \tag{5.7}
\end{gather*}
$$

for all $\varphi \in C^{1}\left([0, T], L^{2}(\Omega)\right)$.
Remark 5.2 In (5.6), we have $u \in W_{0}^{1, x} L_{M}(Q) \subset L^{1}\left(0, T ; W^{-1,1}(\Omega)\right)$ and $\frac{\partial u}{\partial t} \in W^{-1, x} L_{\bar{M}}(Q) \subset L^{1}\left(0, T ; W^{-1,1}(\Omega)\right)$. Then $u \in W^{1,1}\left(0, T ; W^{-1,1}(\Omega)\right) \subset$ $C\left([0, T], W^{-1,1}(\Omega)\right)$ with continuity of the imbedding. Consequently u is, possibly after modification on a set of zero measure, continuous from $[0, T]$ into $W^{-1,1}(\Omega)$ in such a way that the third component of (5.6), which is the initial condition, has a sense.

Proof of Theorem 4.1 It is easily adapted from the proof given in [14]. For convenience we suppose that $\psi=0$. For each n, there exists at least one solution u_{n} of the following problem (see Theorem 3.3 for the existence of u_{n}):

$$
\begin{align*}
& u_{n} \in C\left([0, T], V_{n}\right), \quad \frac{\partial u_{n}}{\partial t} \in L^{1}\left(0, T ; V_{n}\right), \quad u_{n}(0)=\psi_{n} \equiv 0 \quad \text { and }, \\
& \text { for all } \tau \in[0, T], \quad \int_{Q_{\tau}} \frac{\partial u_{n}}{\partial t} \varphi d x d t+\int_{Q_{\varepsilon}} a\left(x, t, u_{n}, \nabla u_{n}\right) . \nabla \varphi d x d t \tag{5.8}\\
& +\int_{Q_{\varepsilon}} a_{0}\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \varphi d x d t=\int_{Q_{\varepsilon}} f_{n} \varphi d x d t, \quad \forall \varphi \in C\left([0, T], V_{n}\right) .
\end{align*}
$$

where $f_{k} \subset \cup_{n=1}^{\infty} C\left([0, T], V_{n}\right)$ with $f_{k} \rightarrow f$ in $W^{-1, x} E_{\bar{M}}(Q)$. Putting $\varphi=u_{n}$ in (5.8), and using (5.2) and (5.4) yields

$$
\begin{gather*}
\left\|u_{n}\right\|_{W_{0}^{1, x} L_{M}(Q)} \leq C, \quad\left\|u_{n}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)} \leq C \tag{5.9}\\
\left\|a_{0}\left(x, t, u_{n}, \nabla u_{n}\right)\right\|_{L_{\bar{M}}(Q)} \leq C \quad \text { and } \quad\left\|a\left(x, t, u_{n}, \nabla u_{n}\right)\right\|_{L_{\bar{M}}(Q)} \leq C .
\end{gather*}
$$

Hence, for a subsequence

$$
\begin{gather*}
u_{n} \rightharpoonup u \text { weakly in } W_{0}^{1, x} L_{M}(Q) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right) \text { and weakly in } L^{2}(Q), \\
a_{0}\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup h_{0}, a\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup h \text { in } L_{\bar{M}}(Q) \text { for } \sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right) \tag{5.10}
\end{gather*}
$$

where $h_{0} \in L_{\bar{M}}(Q)$ and $h \in\left(L_{\bar{M}}(Q)\right)^{N}$. As in [14], we get that for some subsequence $u_{n}(x, t) \rightarrow u(x, t)$ a.e. in Q (it suffices to apply Theorem 3.9 instead of Proposition 1 of [14]). Also we obtain

$$
-\int_{Q} u \frac{\partial \varphi}{\partial t} d x d t+\left[\int_{\Omega} u(t) \varphi(t) d x\right]_{0}^{T}+\int_{Q} h \nabla \varphi d x d t+\int_{Q} h_{0} \varphi d x d t=\langle f, \varphi\rangle,
$$

for all $\varphi \in C^{1}([0, T] ; \mathcal{D}(\Omega))$. The proof will be completed, if we can show that

$$
\begin{equation*}
\int_{Q}\left(h \nabla \varphi+h_{0} \varphi\right) d x d t=\int_{Q}\left(a(x, t, u, \nabla u) \nabla \varphi+a_{0}(x, t, u, \nabla u) \varphi\right) d x d t \tag{5.11}
\end{equation*}
$$

for all $\varphi \in C^{1}([0, T] ; \mathcal{D}(\Omega))$ and that $u \in C\left([0, T], L^{2}(\Omega)\right)$. For that, it suffices to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{Q}\left(a\left(x, t, u_{n}, \nabla u_{n}\right)\left[\nabla u_{n}-\nabla u\right]+a_{0}\left(x, t, u_{n} \nabla u_{n}\right)\left[u_{n}-u\right]\right) d x d t \leq 0 \tag{5.12}
\end{equation*}
$$

Indeed, suppose that (5.12) holds and let $s>r>0$ and set $Q^{r}=\{(x, t) \in Q$: $|\nabla u(x, t)| \leq r\}$. Denoting by χ_{s} the characteristic function of Q^{s}, one has

$$
\begin{align*}
0 \leq & \int_{Q^{r}}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u\right)\right]\left[\nabla u_{n}-\nabla u\right] d x d t \\
\leq & \int_{Q^{s}}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u\right)\right]\left[\nabla u_{n}-\nabla u\right] d x d t \\
= & \int_{Q^{s}}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u \cdot \chi_{s}\right)\right]\left[\nabla u_{n}-\nabla u \cdot \chi_{s}\right] d x d t \\
\leq & \int_{Q}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u \cdot \chi_{s}\right)\right]\left[\nabla u_{n}-\nabla u \cdot \chi_{s}\right] d x d t \\
= & \int_{Q} a_{0}\left(x, t, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right)-\int_{Q} a\left(x, t, u_{n}, \nabla u_{n} \cdot \chi_{s}\right)\left[\nabla u_{n}-\nabla u \cdot \chi_{s}\right] d x d t \\
& +\int_{Q}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)\left(\nabla u_{n}-\nabla u\right)+a_{0}\left(x, t, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right)\right] d x d t \\
& +\int_{Q \backslash Q^{s}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u d x d t . \tag{5.13}
\end{align*}
$$

The first term of the right-hand side tends to 0 since $\left(a_{0}\left(x, t, u_{n}, \nabla u_{n}\right)\right)$ is bounded in $L_{\bar{M}}(Q)$ by (5.2) and $u_{n} \rightarrow u$ strongly in $L_{M}(Q)$. The second term tends to $\int_{Q \backslash Q^{s}} a\left(x, t, u_{n}, 0\right) \nabla u d x d t$ since $a\left(x, t, u_{n}, \nabla u_{n} \cdot \chi_{s}\right)$ tends strongly in $\left(E_{\bar{M}}(Q)\right)^{N}$ to $a\left(x, t, u, \nabla u \cdot \chi_{s}\right)$ and $\nabla u_{n} \rightharpoonup \nabla u$ weakly in $\left(L_{M}(Q)\right)^{N}$ for $\sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right)$. The third term satisfies (5.12) while the fourth term tends to $\int_{Q \backslash Q^{s}} h \nabla u d x d t$ since $a\left(x, t, u_{n}, \nabla u_{n}\right) \quad{ }^{\circ} h$ weakly in $\left(L_{\bar{M}}(Q)\right)^{N}$ for $\sigma\left(\Pi L_{\bar{M}}, \Pi E_{M}\right)$ and M satisfies the \triangle_{2}-condition. We deduce then that

$$
\begin{aligned}
0 & \leq \limsup _{n \rightarrow \infty} \int_{Q^{s}}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u\right)\right]\left[\nabla u_{n}-\nabla u\right] d x d t \\
& \leq \int_{Q \backslash Q^{s}}[h-a(x, t, u, 0)] \nabla u d x d t \rightarrow 0 \quad \text { as } s \rightarrow \infty
\end{aligned}
$$

and so, by (5.3), we can construct as in [2] a subsequence such that $\nabla u_{n} \rightarrow$ ∇u a.e. in Q. This implies that $a\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow a(x, t, u, \nabla u)$ and that $a_{0}\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow a_{0}(x, t, u, \nabla u)$ a.e. in Q. Lemma 4.4 of [9] shows that $h=a(x, t, u, \nabla u)$ and $h_{0}=a_{0}(x, t, u, \nabla u)$ and (5.11) follows. The remaining of the proof is exactly the same as in [14].
Corollary 5.3 The function u can be used as a testing function in (5.6) i.e.
$\frac{1}{2}\left[\int_{\Omega}(u(t))^{2} d x\right]_{0}^{\tau}+\int_{Q_{\tau}}\left[a(x, t, u, \nabla u) . \nabla u+a_{0}(x, t, u, \nabla u) u\right] d x d t=\int_{Q_{\tau}} f u d x d t$ for all $\tau \in[0, T]$.

The proof of this corollary is exactly the same as in [14].

6 Strongly nonlinear parabolic problems

In this last section we shall state and prove an existence theorem for strongly nonlinear parabolic initial-boundary problems with a nonlinearity $g(x, t, s, \xi)$ having growth less than $M(|\xi|)$. This result generalizes Theorem 2.1 in BoccardoMurat [5]. The analogous elliptic one is proved in Benkirane-Elmahi [2].

The notation is the same as in section 5 . Consider also assumptions (5.2)(5.5) to which we will annex a Carathéodory function $g: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow$ \mathbb{R}^{N} satisfying, for a.e. $(x, t) \in \Omega \times[0, T]$ and for all $s \in \mathbb{R}$ and all $\xi \in \mathbb{R}^{N}$:

$$
\begin{gather*}
g(x, t, s, \xi) s \geq 0 \tag{6.1}\\
|g(x, t, s, \xi)| \leq b(|s|)\left(c^{\prime}(x, t)+R(|\xi|)\right) \tag{6.2}
\end{gather*}
$$

where $c^{\prime} \in L^{1}(Q)$ and $b: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and where R is a given N -function such that $R \ll M$. Consider the following nonlinear parabolic problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+A(u)+g(x, t, u, \nabla u)=f \quad \text { in } Q \\
u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \tag{6.3}\\
u(x, 0)=\psi(x) \quad \text { in } \Omega
\end{gather*}
$$

We shall prove the following existence theorem.
Theorem 6.1 Assume that (5.1)-(5.5), (6.1) and (6.2) hold. Then, there exists at least one distributional solution of (6.3).

Proof It is easily adapted from the proof of theorem 3.2 in [2] Consider first

$$
g_{n}(x, t, s, \xi)=\frac{g(x, t, s, \xi)}{1+\frac{1}{n} g(x, t, s, \xi)}
$$

and put $A_{n}(u)=A(u)+g_{n}(x, t, u, \nabla u)$, we see that A_{n} satisfies conditions (5.2)(5.4) so that, by Theorem 5.1, there exists at least one solution $u_{n} \in W_{0}^{1, x} L_{M}(Q)$ of the approximate problem

$$
\begin{gather*}
\frac{\partial u_{n}}{\partial t}+A\left(u_{n}\right)+g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)=f \quad \text { in } Q \\
\left.u_{n}(x, t)=0 \quad \text { on } \partial \Omega \times\right] 0, T[\tag{6.4}\\
u_{n}(x, 0)=\psi(x) \quad \text { in } \Omega
\end{gather*}
$$

and, by Corollary 5.3, we can use u_{n} as testing function in (6.4). This gives

$$
\int_{Q}\left[a\left(x, t, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n}+a_{0}\left(x, t, u_{n}, \nabla u_{n}\right) \cdot u_{n}\right] d x d t \leq\left\langle f, u_{n}\right\rangle
$$

and thus $\left(u_{n}\right)$ is a bounded sequence in $W_{0}^{1, x} L_{M}(Q)$. Passing to a subsequence if necessary, we assume that

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, x} L_{M}(Q) \text { for } \sigma\left(\Pi L_{M}, \Pi E_{\bar{M}}\right) \tag{6.5}
\end{equation*}
$$

for some $u \in W_{0}^{1, x} L_{M}(Q)$. Going back to (6.4), we have

$$
\int_{Q} g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) u_{n} d x d t \leq C
$$

We shall prove that $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)$ are uniformly equi-integrable on Q. Fix $m>0$. For each measurable subset $E \subset Q$, we have

$$
\begin{aligned}
& \int_{E}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right| \\
& \leq \int_{E \cap\left\{\left|u_{n}\right| \leq m\right\}}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right|+\int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right| \\
& \leq b(m) \int_{E}\left[c^{\prime}(x, t)+R\left(\left|\nabla u_{n}\right|\right)\right] d x d t+\frac{1}{m} \int_{E \cap\left\{\left|u_{n}\right|>m\right\}}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right| d x d t \\
& \leq b(m) \int_{E}\left[c^{\prime}(x, t)+R\left(\left|\nabla u_{n}\right|\right)\right] d x d t+\frac{1}{m} \int_{Q} u_{n} g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) d x d t \\
& \leq b(m) \int_{E} c^{\prime}(x, t) d x d t+b(m) \int_{E} R\left(\frac{\left|\nabla u_{n}\right|}{\lambda^{\prime}}\right) d x d t+\frac{C}{m}
\end{aligned}
$$

Let $\varepsilon>0$, there is $m>0$ such that $\frac{C}{m}<\frac{\varepsilon}{3}$. Furthermore, since $c^{\prime \prime} \in L^{1}(Q)$ there exists $\delta_{1}>0$ such that $b(m) \int_{E} c^{\prime \prime}(x, t) d x d t<\frac{\varepsilon}{3}$. On the other hand, let $\mu>0$ such that $\left\|\nabla u_{n}\right\|_{M, Q} \leq \mu, \forall n$. Since $R \ll M$, there exists a constant $K_{\varepsilon}>0$ depending on ε such that

$$
b(m) R(s) \leq M\left(\frac{\varepsilon}{6} \frac{s}{\mu}\right)+K_{\varepsilon}
$$

for all $s \geq 0$. Without loss of generality, we can assume that $\varepsilon<1$. By convexity we deduce that

$$
b(m) R(s) \leq \frac{\varepsilon}{6} M\left(\frac{s}{\mu}\right)+K_{\varepsilon}
$$

for all $s \geq 0$. Hence

$$
\begin{aligned}
b(m) \int_{E} R\left(\frac{\left|\nabla u_{n}\right|}{\lambda^{\prime}}\right) d x d t & \leq \frac{\varepsilon}{6} \int_{E} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x d t+K_{\varepsilon}|E| \\
& \leq \frac{\varepsilon}{6} \int_{Q} M\left(\frac{\left|\nabla u_{n}\right|}{\mu}\right) d x d t+K_{\varepsilon}|E| \\
& \leq \frac{\varepsilon}{6}+K_{\varepsilon}|E| .
\end{aligned}
$$

When $|E| \leq \varepsilon /\left(6 K_{\varepsilon}\right)$, we have

$$
b(m) \int_{E} R\left(\frac{\left|\nabla u_{n}\right|}{\lambda^{\prime}}\right) d x d t \leq \frac{\varepsilon}{3}, \quad \forall n .
$$

Consequently, if $|E|<\delta=\inf \left(\delta_{1}, \frac{\varepsilon}{6 K_{\varepsilon}}\right)$ one has

$$
\int_{E}\left|g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right| d x d t \leq \varepsilon, \quad \forall n
$$

this shows that the $g_{n}\left(x, t, u_{n}, \nabla u_{n}\right)$ are uniformly equi-integrable on Q. By Dunford-Pettis's theorem, there exists $h \in L^{1}(Q)$ such that

$$
\begin{equation*}
g_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup h \quad \text { weakly in } L^{1}(Q) \tag{6.6}
\end{equation*}
$$

Applying then Theorem 4.1, we have for a subsequence, still denoted by u_{n},

$$
\begin{equation*}
u_{n} \rightarrow u, \nabla u_{n} \rightarrow \nabla u \text { a.e. in } Q \text { and } u_{n} \rightarrow u \text { strongly in } W_{0}^{1, x} L_{M}^{\mathrm{loc}}(Q) . \tag{6.7}
\end{equation*}
$$

We deduce that $a\left(x, t, u_{n}, \nabla u_{n}\right) \stackrel{\rightharpoonup}{\partial} a(x, t, u, \nabla u)$ weakly in $\left(L_{\bar{M}}(Q)\right)^{N}$ for $\sigma\left(\Pi L_{\bar{M},} \Pi L_{M}\right)$ and since $\frac{\partial u_{n}}{\partial t} \rightarrow \frac{\partial u}{\partial t}$ in $\mathcal{D}^{\prime}(Q)$ then passing to the limit in (6.4) as $n \rightarrow+\infty$, we obtain

$$
\frac{\partial u}{\partial t}+A(u)+g(x, t, u, \nabla u)=f \quad \text { in } \mathcal{D}^{\prime}(Q)
$$

This completes the proof of Theorem 6.1.

References

[1] R. Adams, Sobolev spaces, Ac. Press, New York, 1975.
[2] A. Benkirane and A. Elmahi, Almost everywhere convergence of the gradients to elliptic equations in Orlicz spaces and application, Nonlinear Anal., T. M. A., $28 \mathrm{n}^{\circ} 11$ (1997), pp. 1769-1784.
[3] A. Benkirane and A. Elmahi, An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Analysis T.M.A., (to appear).
[4] A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solution, Ann. Inst. Henri Poincaré, $5 \mathrm{n}^{\circ} 4$ (1988), pp. 347-364.
[5] L. Boccardo and F. Murat, Strongly nonlinear Cauchy problems with gradient dependent lower order nonlinearity, Pitman Research Notes in Mathematics, 208 (1989), pp. 247-254.
[6] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients, Nonlinear analysis, T.M.A., 19 (1992), n ${ }^{\circ} 6$, pp. 581-597.
[7] T. Donaldson, Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial-boundary value problems, J. Diff. Equations, 16 (1974), 201-256.
[8] A. Elmahi, Compactness results in inhomogeneous Orlicz-Sobolev spaces, Lecture notes in Pure and Applied Mathematics, Marcel Dekker, Inc, 229 (2002), 207-221.
[9] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), pp.163-205.
[10] J.-P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math., 74 (1982), pp.17-24.
[11] M. Krasnosel'skii and Ya. Rutickii, convex functions and Orlicz spaces, Noordhoff Groningen, 1969.
[12] A. Kufner, O. John and S. Fucík, Function spaces, Academia, Prague, 1977.
[13] R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh sect. A. 89 (1981), 217-137.
[14] R. Landes and V. Mustonen, A strongly nonlinear parabolic initialboundary value problem, Ark. f. Mat. 25 (1987), 29-40.
[15] Morrey C. B. Jr., Multiple integrals in the calculus of variation, Springer-Verlag, Berlin-Heidelberg-NewYork, 1969.
[16] Robert J., Inéquations variationnelles paraboliques fortement non linéaires, J. Math. Pures Appl., 53 (1974), 299-321.
[17] Simon J., Compact sets in the space $L^{p}(0, T ; B)$, Ann. Mat. pura. Appl. 146 (1987), 65-96.

Abdelhak Elmahi
Department de Mathematiques, C.P.R.
B.P. 49, Fès - Maroc
e-mail: elmahi_abdelhak@yahoo.fr

[^0]: * Mathematics Subject Classifications: 35K15, 35K20, 35K60.

 Key words: Orlicz-Sobolev spaces, compactness, parabolic equations.
 © 2002 Southwest Texas State University.
 Published December 28, 2002.

