2002-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 09, 2002, pp 161–170. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

On the spectrum of the p-biharmonic operator *

Abdelouahed El Khalil, Siham Kellati & Abdelfattah Touzani

Abstract

This work is devoted to the study of the spectrum for p-biharmonic operator with an indefinite weight in a bounded domain.

1 Introduction

Let Ω be a bounded domain in \mathbb{R}^N , $N \ge 1$, not necessary regular; 1 $and <math>\rho \in L^r(\Omega)$, $\rho \ne 0$, an unbounded weight function which can change its sign, with r = r(N, p) satisfying the conditions

$$r \begin{cases} > \frac{N}{2p} & \text{for } \frac{N}{p} \ge 2\\ = 1 & \text{for } \frac{N}{p} < 2. \end{cases}$$

We assume that $|\Omega_{\rho}^{+}| \neq 0$, where $\Omega_{\rho}^{+} = \{x \in \Omega; \rho(x) > 0\}$ and $\lambda \in \mathbb{R}$. We consider the eigenvalue problem

$$\Delta_p^2 u = \lambda \rho(x) |u|^{p-2} u \quad \text{in } \Omega$$
$$u \in W_0^{2,p}(\Omega).$$
(1.1)

Here $\Delta_p^2 := \Delta(|\Delta u|^{p-2}\Delta u)$, the operator of fourth order called the *p*-biharmonic operator. For p = 2, the linear operator $\Delta_2^2 = \Delta^2 = \Delta \Delta$ is the iterated Laplacian that multiplied with positive constant appears often in Navier-Stokes equations as being a viscosity coefficient. Its reciprocal operator denoted $(\Delta^2)^{-1}$ is the celebrated Green's operator [5].

It is important to indicate that here we don't suppose any boundary conditions on the high order partial derivatives $\frac{\partial^2 u}{\partial x_i \partial x_j}$ on the boundary set $\partial \Omega$ of the domain Ω . The particular case $\rho \equiv 1$ and $u = \Delta u = 0$ on $\partial \Omega$ was considered recently by Drábek and Ôtani [2]. There the authors proved the existence, the simplicity, and the isolation of the first eigenvalue of (1.1) by using a transformation of a problem to a known Poisson's problem, and using the well-known advanced regularity of Agmon-Douglis-Niremberg [3]. Note that this transformation processus is not applicable to our situation because the quantity Δu

^{*} Mathematics Subject Classifications: 35P30, 34C23.

Key words: p-biharmonic operator, Duality mapping, Palais-Smale condition,

unbounded weight.

 $[\]textcircled{O}2002$ Southwest Texas State University.

Published December 28, 2002.

does not necessary vanished on $\partial\Omega$ and the eventual regularity is not required in any bounded domain.

The main objective of this work is to show that problem (1.1) has at least one non-decreasing sequence of positive eigenvalues $(\lambda_k)_{k\geq 1}$, by using the Ljusternichschnirelmann theory on C^1 manifolds, see e.g. [6]. Our approach is based only on some properties of the considered operator. So that we give a direct characterization of λ_k involving a minimax argument over sets of genus greater than k.

We set

$$\lambda_1 = \inf \left\{ \|\Delta v\|_p^p, v \in W_0^{2,p}(\Omega); \int_{\Omega} \rho(x) |v|^p dx = 1 \right\},\$$

where $\|.\|_p$ denotes the $L^p(\Omega)$ -norm. It is not difficult to show that $\|\Delta u\|_p$ defines a norm in $W_0^{2,p}(\Omega)$ and $W_0^{2,p}(\Omega)$ equipped with this norm is a uniformly convex Banach space for $1 . The norm <math>\|\Delta .\|_p$ is uniformly equivalent on $W_0^{2,p}(\Omega)$ to the usual norm of $W_0^{2,p}(\Omega)$ [3].

This paper is organized as follows: In section 2, we establish some definitions and show certain basic lemmas. In section 3, we use a variational technique to prove the existence of a sequence of the positive eigenvalues of p-biharmonic operator with any unbounded weight.

2 Preliminaries

Throughout this paper, all solutions are weak, i.e, $u \in W_0^{2,p}(\Omega)$ is a solution of (1.1), if for all $\varphi \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} |\Delta u|^{p-2} \Delta u \Delta \varphi \, dx = \lambda \int_{\Omega} \rho(x) |u|^{p-2} u \varphi \, dx$$

If $u \in W_0^{2,p}(\Omega) \setminus \{0\}$, then u shall be called an eigenfunction of the p-biharmonic operator (or of (1.1)) associated to the eigenvalue λ . The following proposition states some fundamental properties of the p-biharmonic operator.

Proposition 2.1 For any bounded domain Ω and $1 , <math>\Delta_p^2$ satisfies the following:

- (i) Δ_n^2 is an hemicontinuous operator from $W_0^{2,p}(\Omega)$ into $W^{-2,p'}(\Omega)$.
- (ii) Δ_p^2 is a bounded monotonous, and coercive operator.
- (iii) $\Delta_p^2: W_0^{2,p}(\Omega) \to W^{-2,p'}(\Omega)$ is a bicontinuous operator. Here $p' = \frac{p}{p-1}$.

Proof (i) Define on $W_0^{2,p}(\Omega)$ the potential functional

$$A(u) = \frac{1}{p} \|\Delta u\|_p^p.$$

This functional is convex and of class C^1 on $W_0^{2,p}(\Omega)$. Further its derivative operator is $A' = \Delta_n^2$. So this yields the hemicontinuity.

(ii) By a simple calculation we can show that $\|\Delta_p^2 u\|_* = \|\Delta u\|_p^{p-1}$, where $\|.\|_*$ is the dual norm associated to $\|\Delta_r\|_p$. This implies that Δ_p^2 is bounded and is a monotonous operator. The continuity and coercivity are obvious.

monotonous operator. The continuity and coercivity are obvious . (iii) The fact that, for any $u, v \in W_0^{2,p}(\Omega)$, $\|\Delta u\|_p = \|\Delta v\|_p$ if $\Delta_p^2 u = \Delta_p^2(v)$ and $(W_0^{2,p}(\Omega), \|\Delta .\|_p)$ is a uniformly convex space completes the proof.

Definition Let X be a real reflexive Banach space and let X^* stand for its dual with respect to the pairing $\langle ., . \rangle$. T a mapping acting from X into X^* . T is said to belong to the class (S^+) , if for any sequence $\{u_n\}$ in X with u_n converges weakly to $u \in X$ and $\limsup_{n \to +\infty} \langle Tu_n, u_n - u \rangle \leq 0$. It follows that u_n converges strongly to u in X. We write $T \in (S^+)$.

3 Main results

We will use Ljusternick-Schnirelmann theory on C^1 -manifolds [6]. Consider the following two functionals defined on $W_0^{2,p}(\Omega)$:

$$A(u) = \frac{1}{p} \|\Delta u\|_p^p, \quad B(u) = \frac{1}{p} \int_{\Omega} \rho(x) |u|^p dx.$$

We set $\mathcal{M} = \{ u \in W_0^{2,p}(\Omega); pB(u) = 1 \}.$

Lemma 3.1 (i) A and B are even, and of class C^1 on $W_0^{2,p}(\Omega)$. (ii) \mathcal{M} is a closed C^1 -manifold.

Proof (i) It is clear that B is of class C^1 on $W_0^{2,p}(\Omega)$. $\mathcal{M} = B^{-1}\{\frac{1}{p}\}$ so B is closed. Its derivative operator B' satisfies $B'(u) \neq 0 \ \forall u \in \mathcal{M}$ (i.e., B'(u) is onto $\forall u \in \mathcal{M}$), so B is a submersion, then \mathcal{M} is a C^1 -manifold. \Box

Remark 3.2 Observe that $J: W_0^{2,p}(\Omega) \to W^{-2,p'}(\Omega)$,

$$J(u) = \begin{cases} \|\Delta u\|_p^{2-p} \Delta_p^2 u & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$$

is the duality mapping of $(W_0^{2,p}(\Omega), \|\Delta.\|_p)$.

The following lemma is the key to show existence.

Lemma 3.3 (i) $B' : W_0^{2,p}(\Omega) \to W^{-2,p'}(\Omega)$ is completely continuous. (ii) The functional A satisfies the Palais-Smale condition on \mathcal{M} , i.e., for $\{u_n\} \subset \mathcal{M}$, if $A(u_n)$ is bounded and

$$\epsilon_n := A'(u_n) - g_n B'(u_n) \to 0 \quad as \ n \to +\infty, \tag{3.1}$$

where $g_n = \langle A'(u_n), u_n \rangle / \langle B'(u_n), u_n \rangle$. Then $\{u_n\}_{n \ge 1}$ has a convergent subsequence in $W_0^{2,p}(\Omega)$.

Proof (i) Step 1: Definition of B'. First case: $\frac{N}{p} > 2$ and $r > \frac{N}{2p}$. Let $u, v \in W_0^{2,p}(\Omega)$. By Hölder's inequality, we have

$$\left|\int_{\Omega} \rho(x) |u(x)|^{p-2} u(x) v(x) dx\right| \le \|\rho\|_r \|u\|_s^{p-1} \|v\|_{p_2}$$

where $\frac{1}{p_2} = \frac{1}{p} - \frac{2}{N}$ and s is given by

$$\frac{p-1}{s} + \frac{1}{p_2} + \frac{1}{r} = 1.$$
(3.2)

Therefore,

$$\frac{p-1}{s} = 1 - \frac{1}{r} - \frac{1}{p_2} > 1 - \frac{2p}{N} - \frac{1}{p_2} = \frac{p-1}{p_2}.$$

Then it suffices to take

$$\max(1, p - 1) < s < p_2 \tag{3.3}$$

so that B' is well defined.

Second case: $\frac{N}{p} = 2$ and $r > \frac{N}{2p}$. In this case $W_0^{2,p}(\Omega) \hookrightarrow L^q(\Omega)$, for any $q \in [p, +\infty[$. There is $q \ge p$ such that $\frac{1}{q} + \frac{1}{r} + \frac{p-1}{p} = \frac{1}{q} + \frac{1}{r} + \frac{1}{p'} = 1$. We obtain that

$$\frac{1}{q} = \frac{1}{p} - \frac{1}{r} \le \frac{1}{p}.$$
(3.4)

By Hölder's inequality, we arrive at

$$\left|\int_{\Omega} \rho(x) |u(x)|^{p-2} u(x) v(x) dx\right| \le \|\rho\|_r \|u\|_p^{p-1} \|v\|_q,$$

for any $u, v \in W_0^{2,p}(\Omega)$. Then B' is also well defined. Third case: $\frac{N}{p} < 2$ and r = 1. In this case $W_0^{2,p}(\Omega) \hookrightarrow C(\overline{\Omega}) \cap L^{\infty}(\Omega)$. Then for any $u, v \in W_0^{2,p}(\Omega)$, we have

$$\left|\int_{\Omega}\rho(x)|u(x)|^{p-2}u(x)v(x)dx\right|<\infty,$$

with $\rho \in L^1(\Omega)$, and B' is well defined.

Step 2. B' is completely continuous. Let $(u_n) \subset W_0^{2,p}(\Omega)$ be a sequence such that $u_n \to u$ weakly in $W_0^{2,p}(\Omega)$. We have to show that $B'(u_n) \to B'(u)$ strongly in $W_0^{2,p}(\Omega)$, i.e.,

$$\sup_{v \in W_0^{2,p}(\Omega) \, \|\Delta v\|_p \le 1} \Big| \int_{\Omega} \rho[|u_n|^{p-2}u_n - |u|^{p-2}u]v \, dx \Big| \to 0, \quad \text{as } n \to +\infty.$$

For this end, we distinguish three cases as in step 1 above. For $\frac{N}{p} > 2$, and

 $r > \frac{N}{2p}$. Let s be as in (3.3). Then

$$\sup_{v \in W_0^{2,p}(\Omega), \|\Delta v\|_p \le 1} \left| \int_{\Omega} \rho \left[|u_n|^{p-2} u_n - |u|^{p-2} u \right] v dx \right| \\
\leq \sup_{v \in W_0^{2,p}(\Omega), \|\Delta v\|_p \le 1} \left[\|\rho\|_r \left\| |u_n|^{p-2} u_n - |u|^{p-2} u \right\|_{\frac{s}{p-1}} \|v\|_{p_2} \right] \\
\leq c \|\rho\|_r \left\| |u_n|^{p-2} u_n - |u|^{p-2} u \right\|_{\frac{s}{p-1}},$$

where c is the constant of Sobolev's embedding [1]. On the other hand, the Nemytskii's operator $u \mapsto |u|^{p-2}u$ is continuous from $L^s(\Omega)$ into $L^{\frac{s}{p-1}}(\Omega)$, and $u_n \to u$ weakly in $W_0^{2,p}(\Omega)$. So, we deduce that $u_n \to u$ strongly in $L^s(\Omega)$ because $s < p_2$. Hence,

$$\left\| |u_n|^{p-2}u_n - |u|^{p-2}u \right\|_{\frac{s}{p-1}} \to 0, \text{ as } n \to +\infty.$$

This completes the proof of the claim. If $\frac{N}{p} = 2$ then

$$\left|\int_{\Omega} \rho \left[|u_n|^{p-2} u_n - |u|^{p-2} u \right] v \, dx \right| \le \|\rho\|_r \||u_n|^{p-2} u_n - |u|^{p-2} u \|_p^{p-1} \|v\|_q,$$

where q is given by (3.4). By Sobolev's embedding there exist c > 0 such that

$$\|v\|_q \le c \|\Delta v\|_p, \quad \forall v \in W^{2,p}_0(\Omega).$$

Thus

$$\sup_{\substack{v \in W_0^{2,p}(\Omega) \\ \|\Delta v\|_p \le 1}} \left| \int_{\Omega} \rho[|u_n|^{p-2}u_n - |u|^{p-2}u] v \, dx \right| \le c \|\rho\|_r \left\| |u_n|^{p-2}u_n - |u|^{p-2}u \right\|_p^{p-1}.$$

From the continuity of $u \mapsto |u|^{p-1}u$ from $L^p(\Omega)$ into $L^{p'}(\Omega)$, and from the compact embedding of $W_0^{2,p}(\Omega)$ in $L^p(\Omega)$, we have the desired result. If $\frac{N}{p} < 2$ and r = 1, $W_0^{2,p}(\Omega) \subset C(\overline{\Omega})$, then we obtain

$$\sup_{\substack{v \in W_0^{2,p}(\Omega) \\ \|\Delta v\|_p \le 1}} \Big| \int_{\Omega} \rho \Big[|u_n|^{p-2} u_n - |u|^{p-2} u \Big] v \, dx \Big| \le c \|\rho\|_1 \sup_{\overline{\Omega}} \Big| |u_n|^{p-2} u_n - |u|^{p-2} u \Big|,$$

where c is the constant given by embedding of $W_0^{2,p}(\Omega)$ in $C(\overline{\Omega}) \cap L^{\infty}(\Omega)$. It is clear that

$$\sup_{\overline{\Omega}} \left| |u_n|^{p-2} u_n - |u|^{p-2} u \right| \to 0, \quad \text{as } n \to +\infty.$$

Hence B' is completely continuous, also in this case. (ii) $\{u_n\}$ is bounded in $W_0^{2,p}(\Omega)$. Hence without loss of generality, we can assume that u_n converges weakly in $W_0^{2,p}(\Omega)$ for some function $u \in W_0^{2,p}(\Omega)$

and $\|\Delta u_n\|_p \to c$. For the rest we distinct two cases:

If c = 0 then u_n converges strongly to 0 in $W_0^{2,p}(\Omega)$.

If $c \neq 0$, then we argue as follows:

$$\langle \Delta_p^2 u_n, u_n - u \rangle = \|\Delta u_n\|_p^p - \langle \Delta_p^2(u_n), u \rangle$$

Applying ϵ_n of (3.1) to u, we deduce that

$$\Theta_n := \langle \Delta_p^2(u_n), u \rangle - \|\Delta u\|_p^p \langle B'(u_n), u \rangle \to 0 \quad \text{as } n \to +\infty.$$
(3.5)

Thus

$$\langle \Delta_p^2 u_n, u_n - u \rangle = \|\Delta u_n\|_p^p - \Theta_n - \|\Delta u_n\|_p^p \langle B'(u_n), u \rangle$$

That is,

$$\langle \Delta_p^2 u_n, u_n - u \rangle = \|\Delta u_n\|_p^p (1 - \langle B'(u_n), u \rangle) - \Theta_n$$

Hence,

$$\limsup_{n \to +\infty} \langle \Delta_p^2 u_n, u_n - u \rangle \le c^p \limsup_{n \to +\infty} (1 - \langle B'(u_n), u \rangle)$$

On the other hand, from (i) $B'(u_n) \to B'(u)$ in $W^{-2,p'}(\Omega)$ and pB(u) = 1, because $pB(u_n) = 1$ for all $n \in \mathbb{N}^*$. So $pB(u) = \langle B'(u), u \rangle = 1$. This yields that

$$1 - \langle B'(u_n), u \rangle = \langle B'(u), u \rangle - \langle B'(u_n), u \rangle \le \|B'(u) - B'(u_n)\|_* \|\Delta u\|_p,$$

where $\|.\|_*$ is the dual norm associated with $\|\Delta.\|_p$.

From (i) again $B'(u_n) \to B'(u)$ in $W_0^{-2,p'}(\Omega)$, we deduce that

$$\limsup_{n \to +\infty} \langle \Delta_p^2 u_n, u_n - u \rangle \le 0 \tag{3.6}$$

We can write $\Delta_p^2 u_n = \|\Delta u_n\|_p^{p-2} J(u_n)$, since $\|\Delta u_n\|_p \neq 0$ for *n* large enough. Therefore,

$$\limsup_{n \to +\infty} \langle \Delta_p^2 u_n, u_n - u \rangle = c^{p-2} \limsup_{n \to +\infty} \langle J u_n, u_n - u \rangle.$$

According to (3.5) we conclude that

$$\limsup_{n \to +\infty} \langle Ju_n, u_n - u \rangle \le 0$$

J being a duality mapping, thus it satisfies the condition S^+ . Therefore, $u_n \to u$ strongly in $W_0^{2,p}(\Omega)$. This achieves the proof of the lemma. \Box

Remark 3.4 A' is continuous, odd, (p-1)-homogeneous, continuously invertible and $||A'(u)||_* = ||\Delta u||_p^{p-1}, \forall u \in W_0^{2,p}(\Omega).$

Remark 3.5 We can give another method to prove that the functional A satisfies the Palais-Smale condition on \mathcal{M} .

Indeed, $\{u_n\}$ is bounded in $W_0^{2,p}(\Omega)$, we can assume for a subsequence if necessary that u_n converges weakly in $W_0^{2,p}(\Omega)$. The claim is to prove that u_n is of Cauchy in $W_0^{2,p}(\Omega)$. Set

$$G(u_n, u_m) = \int_{\Omega} (|\Delta u_n|^{p-2} \Delta u_n - |\Delta u_m|^{p-2} \Delta u_m) \Delta (u_n - u_m).$$

From (ii) of the proposition 2.1, Δ_p^2 is a monotonous operator on $W_0^{2,p}(\Omega)$. So that

$$0 \le G(u_n, u_m) = \langle \Delta_p^2 u_n - \Delta_p^2 u_m, u_n - u_m \rangle$$
$$= \langle \epsilon_n - \epsilon_m, u_n - u_m \rangle + \langle h_n - h_m, u_n - u_m \rangle,$$

with ϵ_n defined as in (3.1) and $h_n = \|\Delta u_n\|_p^p B'(u_n)$.

$$G(u_n, u_m) \le \|\epsilon_n - \epsilon_m\|_* \|\Delta u_n - \Delta u_m\|_p + \|h_n - h_m\|_* \|\Delta u_n - \Delta u_m\|_p.$$

Or h_n converges for a subsequence if necessary in $W_0^{2,p}(\Omega)$. Indeed, from (i) of Lemma 3.3 $B': W_0^{2,p}(\Omega) \to W^{-2,p'}(\Omega)$ is completely continuous. On the other hand, for a subsequence if necessary $\|\Delta u_n\| \to c \ge 0$. It follows that $(h_n)_{n\ge 0}$ is convergent in $W^{-2,p'}(\Omega)$. Then

$$G(u_n, u_m) \to 0, \quad \text{as } n \to +\infty.$$
 (3.7)

From [4], we have the following inequality

$$|t_1 - t_2|^p \le c\{(|t_1|^{p-2}t_1 - |t_2|^{p-2}t_2).(t_1 - t_2)\}^{\frac{\gamma}{2}}(|t_1|^p + |t_2|^p)^{1-\frac{\gamma}{2}},$$

for any $t_1, t_2 \in \mathbb{R}$, with $\gamma = p$ if $1 and <math>\gamma = 2$ if $p \ge 2$. By applying Hölder's inequality, we deduce that

$$\|\Delta u_n - \Delta u_m\|_p^p \le c\{G(u_n, u_m)\}^{\frac{\gamma}{2}} (\|\Delta u_n\|_p^p + \|\Delta u_m\|_p^p)^{1-\frac{\gamma}{2}}$$
(3.8)

for some positive constante c independent of n and m. According to (3.7), (3.8) shows that $(u_n)_n$ is a Cauchy's sequence in $W_0^{2,p}(\Omega)$. This proves the claim. \Box Set

 $\Gamma_k = \{ K \subset \mathcal{M} : \text{ K is symmetric, compact and } \gamma(\mathcal{K}) \ge \| \},\$

where $\gamma(K) = k$ is the genus of k, i.e., the smallest integer k such that there exists an odd continuous map from K to $\mathbb{R}^k - \{0\}$.

Now, by the Ljusternick-Schnirelmann theory, see e.g. [6], we have our main result formulated as follows.

Theorem 3.6 For any integer $k \in \mathbb{N}^*$,

$$\lambda_k := \inf_{K \in \Gamma_k} \max_{u \in K} pA(u)$$

is a critical value of A restricted on \mathcal{M} . More precisely, there exists $u_k \in K_k \in \Gamma_k$ such that

$$\lambda_k = pA(u_k) = \sup_{u \in K_k} pA(u)$$

and (λ_k, u_k) is a solution of (1.1) associated with the positive eigenvalue λ_k . Moreover,

$$\lambda_k \to +\infty, \quad as \ k \to +\infty.$$

Proof We need only to prove that for any $k \in \mathbb{N}^*$, $\Gamma_k \neq \emptyset$ and the least assertion. Indeed, since $W_0^{2,p}(\Omega)$ is separable, there exist $(e_i)_{i\geq 1}$ linearly dense in $W_0^{2,p}(\Omega)$ such that $\operatorname{supp} e_i \cap \operatorname{supp} e_j = \emptyset$ if $i \neq j$. We can assume that $e_i \in \mathcal{M}$. Let $k \in \mathbb{N}^*$, denote $F_k = \operatorname{span}\{e_1, e_2, \ldots, e_k\}$. F_k is a vectorial subspace and dim $F_k = k$. If $v \in F_k$, then there exist $\alpha_1, \ldots, \alpha_k$ in \mathbb{R} such that $v = \sum_{i=1}^k \alpha_i e_i$. Thus $B(v) = \sum_{i=1}^k |\alpha_i|^p B(e_i) = \frac{1}{p} \sum_{i=1}^k |\alpha_i|^p$. It follows that the map $v \mapsto (pB(v))^{1/p} := ||v||$ defines a norm on F_k . Consequently, there is a constant c > 0 such that

$$c\|\Delta u\|_p \le \|v\| \le \frac{1}{c} \|\Delta u\|_p.$$

This implies that the set

$$V = F_k \cap \{ v \in W_0^{2,p}(\Omega) : B(v) \le \frac{1}{p} \}$$

is bounded. Thus V is a symmetric bounded neighbourhood of $0 \in F_k$. By (f) in [6, Prop. 2.3], $\gamma(F_k \cap \mathcal{M}) = \|$. Because $F_k \cap \mathcal{M}$ is compact and $\Gamma_k \neq \emptyset$. Now, we claim that $\lambda_k \to +\infty$, as $k \to +\infty$. Indeed let be $(e_n, e_j^*)_{n,j}$ a bi-orthogonal system such that $e_n \in W_0^{2,p}(\Omega)$ and $e_j^* \in W^{-2,p'}(\Omega)$, the e_n are linearly dense in $W_0^{2,p}(\Omega)$; and the e_j^* are total for $W^{-2,p'}(\Omega)$, see e.g. [6]. For $k \in \mathbb{N}^*$, set

$$F_k = \operatorname{span}\{e_1, \dots, e_k\}, \quad F_k^{\perp} = \operatorname{span}\{e_{k+1, e_{k+2}, \dots}\}.$$

By (g) of Proposition 2.3 in [6], we have for any $A \in \Gamma_k$, $A \cap F_{k-1}^{\perp} \neq \emptyset$. Thus

$$t_k := \inf_{A \in \Gamma_k} \sup_{u \in A \cap F_{k-1}^{\perp}} pA(u) \to +\infty$$

Indeed, if not, for k is large, there exists $u_k \in F_{k-1}^{\perp}$ with $||u_k||_p = 1$ such that

$$t_k \le pA(u_k) \le M,$$

for some M > 0 independent of k. Thus $\|\Delta u_k\|_p \leq M$. This implies that $(u_k)_k$ is bounded in $W_0^{2,p}(\Omega)$. For a subsequence of $\{u_k\}$ if necessary, we can assume that $\{u_k\}$ converge weakly in $W_0^{2,p}(\Omega)$ and strongly in $L^p(\Omega)$. By our choice of F_{k-1}^{\perp} , we have $u_k \hookrightarrow 0$ weakly in $W_0^{2,p}(\Omega)$. Because $\langle e_n^*, e_k \rangle = 0, \forall k \geq n$. This contradicts the fact that $\|u_k\|_p = 1 \forall k$. Since $\lambda_k \geq t_k$, the claim is proved. This completes the proof.

Corrolary 3.7 (i) $\lambda_1 = \inf\{\|\Delta v\|_p^p, v \in W_0^{2,p}(\Omega); \int_\Omega \rho(x)|v|^p dx = 1\}.$ (ii) $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n \to +\infty.$ **Proof** (i) For $u \in \mathcal{M}$, we put $K_1 = \{u, -u\}$. It is clear that $\gamma(K_1) = 1$, that A is even and that

$$pA(u) = \max_{K_1} pA \ge \inf_{K \in \Gamma_1} \max_K pA.$$

Hence

$$\inf_{u \in \mathcal{M}} pA(u) \ge \inf_{K \in \Gamma_1} \max_{K} pA = \lambda_1.$$

On the other hand, $\forall K \in \Gamma_1, \ \forall u \in K$,

$$\sup_{K} pA \ge pA(u) \ge \inf_{u \in \mathcal{M}} pA(u).$$

So

$$\inf_{K \in \Gamma_1} \max_{K} pA = \lambda_1 \ge \inf_{u \in \mathcal{M}} pA(u).$$

Thus

$$\lambda_1 = \inf_{u \in \mathcal{M}} pA(u) = \inf\{ \|\Delta v\|_p^p, v \in W_0^{2,p}(\Omega) : \int_{\Omega} \rho(x) |v|^p dx = 1 \}.$$

(ii) For all $i \ge j$, $\Gamma_i \subset \Gamma_j$. From the definition of $\lambda_i, i \in \mathbb{N}^*$, we have $\lambda_i \ge \lambda_j$. $\lambda_n \to +\infty$ is already proved in Theorem 3.6. Which completes the proof. \Box

Corrolary 3.8 Assume that $|\Omega_{\rho}^{-}| \neq 0$ with $\Omega_{\rho}^{-} = \{x \in \Omega : \rho(x) < 0\}$. Then Δ_{p}^{2} has a decreasing sequence of the negative eigenvalues $(\lambda_{-n})(\rho)_{n\geq 0}$, such that $\lim_{n\to+\infty} \lambda_{-n} = -\infty$.

Proof First, remark that $\Omega_{\rho}^{-} = \Omega_{(-\rho)}^{+}$, so $|\Omega_{(-\rho)}^{+}| = |\Omega_{\rho}^{-}| \neq 0$. From Theorem 3.6, Δ_{p}^{2} has an increasing sequence of the positive eigenvalues $\lambda_{n}(-\rho)$, such that $\lim_{n \to +\infty} \lambda_{n}(-\rho) = +\infty$. Note that $\lambda_{n}(-\rho)$ satisfies

$$\Delta_p^2 u = \lambda_n(-\rho)(-\rho)|u|^{p-2}u = -\lambda_n(-\rho)\rho|u|^{p-2}u,$$

for $u \in W_0^{2,p}(\Omega)$. Put $\lambda_{-n}(\rho) := -\lambda_n(-\rho)$ then $\lambda_n(-\rho)_{n\geq 0}$ is an increasing positive sequence so $(\lambda_{-n})(\rho)_{n\geq 0}$ is a negative decreasing sequence. On the other hand, $\lim_{n\to+\infty} \lambda_n(-\rho) = +\infty$. So

$$\lim_{n \to +\infty} \lambda_{-n}(\rho) = -\infty.$$

References

- [1] R. ADAMS, Sobolev spaces, Academic Press, New-York (1975).
- [2] P. DRÁBEK and M. ÔTANI, Global bifurcation result for the p-biharmonic operator, Electronic Journal of Differential Equations, Vol. 2001(2001), No. 48, 1-19.

- [3] D. GILBARG and NEIL S. TRUDINGER, Elliptic Partial Differential Equations of second order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1983).
- [4] P. LINDQVIST, On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109 (1990), 157-164.
- [5] J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).
- [6] A. SZULKIN, Ljusternick-Schnirelmann theory on C¹-manifolds, Ann. Inst. Henri Poincaré, Anal. Non., 5 (1988), 119-139.

ABDELOUAHED EL KHALIL (e-mail: lkhlil@hotmail.com) SIHAM KELLATI (e-mail: siham360@caramail.com) ABDELFATTAH TOUZANI (e-mail: atouzani@iam.net.ma) Department of Mathematics and Informatic, Faculty of Sciences Dhar-Mahraz, P.O. Box 1796 Atlas-Fez, Morocco