Existence and regularity of positive solutions for an elliptic system *

Abdelouahed El Khalil, Mohammed Ouanan, \& Abdelfattah Touzani

Abstract

In this paper, we study the existence and regularity of positive solution for an elliptic system on a bounded and regular domain. The non linearities in this equation are functions of Caratheodory type satisfying some exponential growth conditions.

1 Introduction

In this work, we study the elliptic system

$$
\begin{gather*}
-\Delta_{p} u=f(x, u, v) \quad \text { in } \Omega \\
-\Delta_{p} v=g(x, u, v) \quad \text { in } \Omega \tag{1.1}\\
u=v=0 \quad \text { on } \partial \Omega,
\end{gather*}
$$

where Ω is a bounded regular domain in $\mathbb{R}^{N}, 1<p<+\infty$, and f and g are Carathéodory functions satisfying some growth conditions specified later.

In the recent years; the existence and non existence for the scalar case have been studied by several author's by using various approaches [9, 5]. For the system case, we mention the recent work of Bechah [4]. He study the local and global behaviour of solutions of systems involving the p-Laplacian operator in unbounded domains with f, g functions satisfying some growth conditions of polynomial type. Also, we cite the work of Ahammou [2], where he studied the positive radial solutions of nonlinear elliptic systems (1.1) using the method of topological degree. There Ω is a ball in \mathbb{R}^{N} and f, g are positive functions satisfying $f(x, 0,0)=g(x, 0,0)=0$ under some growth conditions of polynomial type.

Here we study the existence and regularity of positive solutions of (1.1) in a regular bounded domain and f, g are functions of Carathéodory type satisfying some growth conditions of exponential type. We extend the results of De Thelin [8] for the problem

$$
\Delta_{p} u+g(x, u)=0
$$

[^0]in the case when the growth of $g(x,$.$) is allowed to be of exponential type.$
The rest of this paper is organized as follows: In section 2 we introduce the assumptions and some results preliminaries. In section 3 we introduce the main results of this paper.

2 Assumptions and preliminaries

Let X be a closed subspace of $W_{0}^{1, p}(\Omega) ; f$ and g be two positives Carathéodory functions satisfying the growth conditions:
(H1) For all $K>0$, there exists $m>0$ such that for all $(\xi, \eta) \in \mathbb{R} \times \mathbb{R}$, satisfying $|\xi|+|\eta| \leq K$ and for almost every where $x \in \Omega$ we have

$$
f(x, \xi, \eta) \leq m \quad \text { and } \quad g(x, \xi, \eta) \leq m
$$

(H2) There exist $\sigma_{0}>2 p-1, \theta_{0}>2 p-1$ and $R>0$ such that for all $(\xi, \eta) \in$ $\mathbb{R}^{+} \times \mathbb{R}^{+}$satisfying $\xi+\eta \geq R$ we have

$$
\begin{gather*}
\xi f(x, \xi, \eta) \geq\left(\sigma_{0}+1\right) G(x, \xi, \eta) \text { a.e } x \in \Omega \tag{2.1}\\
\eta g(x, \xi, \eta) \geq\left(\theta_{0}+1\right) G(x, \xi, \eta) \text { a.e } x \in \Omega \tag{2.2}
\end{gather*}
$$

where $\frac{\partial G(x, \xi, \eta)}{\partial \xi}=f(x, \xi, \eta)$, and $\frac{\partial G(x, \xi, \eta)}{\partial \eta}=g(x, \xi, \eta)$.
Definition We say that (u, v) is a weak solution of elliptic system (1.1) if for all $(\phi, \psi) \in\left(W_{0}^{1, p}(\Omega)\right)^{2}$ we have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \phi & =\int_{\Omega} f(x, u, v) \phi \\
\int_{\Omega}|\nabla v|^{p-2} \nabla v \nabla \psi & =\int_{\Omega} g(x, u, v) \psi
\end{aligned}
$$

Theorem 2.1 (Mountain Pass [3]) Let I be a C^{1}-differentiable functional on a Banach space E and satisfying the Palais-Smale condition (PS), suppose that there exists a neighbourhood U of 0 in E and a positive constant α satisfying the following conditions:
(I1) $I(0)=0$.
(I2) $I(u) \geq \alpha$ on the boundary of U.
(I3) There exists an $e \in E \backslash U$ such that $I(e)<\alpha$.
Then

$$
c=\inf _{\gamma \in \Gamma} \sup _{y \in[0,1]} I(\gamma(y))
$$

is a critical value of I with $\Gamma=\{g \in C([0,1]) ; g(0)=0, g(1)=e\}$.

3 Main result

The case $p \neq N$.
Set

$$
J(u, v)=\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}+|\nabla v|^{p}\right) d x-\int_{\Omega} G(x, u, v) d x
$$

J is well define in $\left(W_{0}^{1, p}(\Omega)\right)^{2}$. In this subsection we have the following result
Theorem 3.1 Let f and g are two Carathéodory functions satisfying (H1), (H2) and suppose that
i) $X \subset L^{\infty}(\Omega)$.
ii) There exist some $r_{0}>0, \sigma>p-1, \theta>p-1$ and $c>0$ such that, for almost every where $x \in \Omega$ and for all $|\xi|+|\eta|<r_{0}$ we have

$$
G(x, \xi, \eta) \leq c\left(\xi^{\sigma+1}+\eta^{\theta+1}\right)
$$

Then, there is at least one positive solution $(u, v) \in\left(X \cap C^{1, \nu}(\bar{\Omega})\right)^{2}$ of (1.1).
Remark. The condition i) is true for $X=W_{0}^{1, p}(\Omega)$ where Ω is an open bounded domain in \mathbb{R}^{N} and $p>N$.

The following proposition gives another interesting example of the space X with $p>1$.

Proposition 3.2 ([8]) Let $0<\rho<R<+\infty$ and $\Omega=\left\{x \in \mathbb{R}^{N}: \rho<|x|<R\right\}$ an annulus in \mathbb{R}^{N}. Let X be the set of radially symmetric functions in $W_{0}^{1, p}(\Omega)$. Then, there exist a positive constant $c(N, \rho, p, R)>0$ such that, for all $u \in X$ and for almost every where $x \in \Omega$ we have

$$
|u(x)| \leq c(N, \rho, p, R)\|\nabla u\|_{p} .
$$

To prove Theorem 3.1 we prove some preliminary lemmas.
Lemma 3.3 Let $u \in X$. Suppose that f and g satisfy (H1) and (H2). Then, any sequence $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0} \in X \times X$ satisfying the following two hypotheses:

$$
\begin{equation*}
\left|J\left(u_{j}, v_{j}\right)\right| \leq K \tag{3.1}
\end{equation*}
$$

and for all $\epsilon>0$ there exist $j_{0} \in \mathbb{N}^{*}$ such that $\forall j \geq j_{0}$,

$$
\begin{equation*}
\left|\left\langle J^{\prime}\left(u_{j}, v_{j}\right),\left(u_{j}, v_{j}\right)\right\rangle\right| \leq \epsilon\left\|\left(u_{j}, v_{j}\right)\right\|, \tag{3.2}
\end{equation*}
$$

is bounded in $X \times X$.

Proof. Set $\|(u, v)\|=\left(\|\nabla u\|_{p}^{p}+\|\nabla v\|_{p}^{p}\right)^{1 / p}$. This is a norm in the product space $X \times X$, and $\|\nabla u\|_{p}=\|u\|_{X}$. Now we proceed by contradiction. Suppose that a subsequent denoted by $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ be such that

$$
\lim _{j \rightarrow+\infty}\left\|\left(u_{j}, v_{j}\right)\right\|=+\infty
$$

In virtue (3.1), we get

$$
\frac{-K}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p}} \leq \frac{1}{p}-\frac{\int_{\Omega} G\left(x, u_{j}, v_{j}\right) d x}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p}} \leq \frac{K}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p}}
$$

By passing to limit we deduce that

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \frac{\int_{\Omega} G\left(x, u_{j}, v_{j}\right) d x}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p}}=\frac{1}{p} \tag{3.3}
\end{equation*}
$$

On the other hand, (3.2) implies

$$
\frac{-\varepsilon}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p-1}} \leq 1-\frac{\int_{\Omega}\left(u_{j} f\left(x, u_{j}, v_{j}\right)+v_{j} g\left(x, u_{j}, v_{j}\right)\right) d x}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p}} \leq \frac{\varepsilon}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p-1}}
$$

By passing to limit, we obtain

$$
\begin{equation*}
\lim _{j \rightarrow+\infty} \frac{\int_{\Omega}\left(u_{j} f\left(x, u_{j}, v_{j}\right)+v_{j} g\left(x, u_{j}, v_{j}\right)\right) d x}{\left\|\left(u_{j}, v_{j}\right)\right\|^{p}}=1 \tag{3.4}
\end{equation*}
$$

Combining (2.1), (2.2), (3.3) and (3.4) we deduce that

$$
\frac{1}{p} \leq \frac{1}{\sigma_{0}+1}+\frac{1}{\theta_{0}+1}<\frac{1}{p}
$$

A contradiction, whence $\left\|\left(u_{j}, v_{j}\right)\right\|_{X}$ is bounded.
Lemma 3.4 Let f and g be two Carathéodory functions satisfying the hypothesis of Theorem 3.1 and let $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ be a sequence in $X \times X$ such that $\left(u_{j}, v_{j}\right) \rightharpoonup(u, v)$ weakly in $X \times X$. Then

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} f\left(x, u_{j}, v_{j}\right)\left(u_{j}-u\right)=0, q u a d \lim _{j \rightarrow+\infty} \int_{\Omega} g\left(x, u_{j}, v_{j}\right)\left(v_{j}-v\right)=0
$$

Proof. By using Hölder's inequality we obtain

$$
\left|\int_{\Omega} f\left(x, u_{j}, v_{j}\right)\left(u_{j}-u\right)\right| \leq\left\|f\left(x, u_{j}, v_{j}\right)\right\|_{p^{\prime}}\left\|u_{j}-u\right\|_{p}
$$

In virtue i), (H1) and by using the imbedding Sobolev space we have $\left(u_{j}, v_{j}\right) \rightarrow$ (u, v) strongly in $L^{p}(\Omega) \times L^{p}(\Omega)$. Then, by Lebesgue's theorem, as $j \rightarrow+\infty$,

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} f\left(x, u_{j}, v_{j}\right)\left(u_{j}-u\right)=0
$$

The proof of the second limit in this Theorem is the same.
Lemma 3.5 Under the hypothesis of Theorem 3.1, $J \in C^{1}(X \times X)$ and satisfies the Palais-Smale condition.

Proof. In virtue of the preceding lemma we have $J \in C^{1}(X \times X)$. Let $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ be a sequence of element in $X \times X$ satisfying the conditions (3.1) and (3.2). Hence, by Lemma 3.3 the sequence (u_{j}, v_{j}) is bounded, then, there exist a subsequent still denoted $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ weakly convergent to $(u, v) \in X \times X$ and strongly in $L^{p}(\Omega) \times L^{p}(\Omega)$. On the other hand, since

$$
\left\langle-\Delta_{p} u_{j}, u_{j}-u\right\rangle=\left\langle J^{\prime}\left(u_{j}, v_{j}\right),\left(u_{j}, v_{j}\right)-(u, v)\right\rangle-\int_{\Omega} f\left(x, u_{j}, v_{j}\right)\left(u_{j}-u\right) .
$$

As $j \rightarrow+\infty$, in virtue of Lemma 3.4 and (3.2) we have

$$
\lim _{j \rightarrow+\infty}\left\langle-\Delta_{p} u_{j}, u_{j}-u\right\rangle=0
$$

Or the p-Laplacian operator satisfies the condition $\left(S_{+}\right)$, thus

$$
u_{j} \rightarrow u \text { strongly in } X
$$

The same way, we prove that $v_{j} \rightarrow v$ strongly in X.

Proof of Theorem 3.1 It suffices to prove that the functional J satisfies the conditions for the Pass-Mountain lemma [3]:
J satisfies condition of Palais-Smale and $J(0)=0$ (see Lemma 3.5).
For $\|(u, v)\|=r$ sufficiently small, we have $J(u, v) \geq \alpha>0$.
We prove this second conditions first. By i), for all $x \in \Omega$, there exist $c^{\prime}>0$ such that $|u(x)|+|v(x)| \leq c^{\prime}\|(u, v)\|$; and for $\|(u, v)\| \leq \frac{\left.r_{0}\right)}{c^{\prime}}$. Using ii) we deduce that

$$
\begin{aligned}
G(x, u(x), v(x)) & \leq c\left(|u(x)|^{\sigma+1}+|v(x)|^{\theta+1}\right) \\
& \leq c\left[\left(c^{\prime}\right)^{\sigma+1}\|(u, v)\|^{\sigma+1}+\left(c^{\prime}\right)^{\theta+1}\|(u, v)\|^{\theta+1}\right] \\
& \leq c^{\prime \prime}\left(\|(u, v)\|^{\sigma+1}+\|(u, v)\|^{\theta+1}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
J(u, v) & \geq \frac{1}{p}\|(u, v)\|^{p}-c^{\prime \prime}\left(\|(u, v)\|^{\sigma+1}+\|(u, v)\|^{\theta+1}\right) \\
& \geq \frac{1}{p}\|(u, v)\|^{p}-2 c^{\prime \prime}\|(u, v)\|^{l}
\end{aligned}
$$

with $l=\min (\sigma+1, \theta+1)$. It suffices to take $r \leq \min \left(\frac{r_{0}}{c^{\prime}},\left(\frac{1}{2 p c^{\prime \prime}}\right)^{\frac{1}{l-p}}\right)$. Finally, for $\|(u, v)\| \leq r$, we have

$$
J(u, v) \geq \alpha=\frac{r^{p}}{p}>0
$$

Now, we prove the first condition. Let $\left(u_{0}, v_{0}\right) \in X \times X$ such that for almost every where $x \in \Omega_{0}$ with meas $\left(\Omega_{0}\right)>0$ we have $u_{0}(x)+v_{0}(x)>\alpha_{0}>0$ with
some $\alpha_{0}>0$. For t large enough we have $t u_{0}>\xi_{0}, t v_{0}>\eta_{0}$ with $\xi_{0}+\eta_{0}>R$. From (2.1) and (2.2) we get

$$
\xi \rightarrow \frac{G(x, \xi, \eta)}{|\xi|^{\sigma_{0}+1}} \quad \text { and } \quad \eta \rightarrow \frac{G(x, \xi, \eta)}{|\eta|^{\theta_{0}+1}}
$$

are increasing, then

$$
\int_{\Omega} G\left(x, t u_{0}, t v_{0}\right) \geq \int_{\Omega_{0}} G\left(x, t u_{0}, t v_{0}\right) \geq \beta\left(t^{\sigma_{0}+1}+t^{\theta_{0}+1}\right)
$$

with

$$
\begin{aligned}
\beta=\frac{1}{2} \inf (& \frac{1}{\xi_{0}^{\sigma_{0}+1}} \int_{\Omega_{0}} G\left(x, \xi_{0}, \eta_{0}\right)\left|u_{0}(x)\right|^{\sigma_{0}+1} \\
& \left.\frac{1}{\eta_{0}^{\theta_{0}+1}} \int_{\Omega_{0}} G\left(x, \xi_{0}, \eta_{0}\right)\left|v_{0}(x)\right|^{\theta_{0}+1}\right)
\end{aligned}
$$

Consequently,

$$
J\left(t u_{0}, t v_{0}\right) \leq \frac{t^{p}}{p}\|(u, v)\|^{p}-\beta\left(t^{\sigma_{0}+1}+t^{\theta_{0}+1}\right)
$$

by passing to the limit, as $t \rightarrow+\infty$ we have $\lim _{t \rightarrow+\infty} J\left(t u_{0}, t v_{0}\right)=-\infty$. Then, there exist some $\left(e_{1}, e_{2}\right) \in X \times X$, with $e_{1} \neq 0$ and $e_{2} \neq 0$, such that $J\left(e_{1}, e_{2}\right)<$ 0.

By the Pass-Mountain theorem, there exists $\left(u_{0}, v_{0}\right) \in X \times X u_{0} \neq 0, v_{0} \neq 0$, such that $J^{\prime}\left(u_{0}, v_{0}\right)=0$, i.e for all $(\phi, \psi) \in W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$,

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{0}\right|^{p-2} \nabla u_{0} \nabla \phi-\int_{\Omega} f\left(x, u_{0}, v_{0}\right) \phi=0 \\
& \int_{\Omega}\left|\nabla v_{0}\right|^{p-2} \nabla v_{0} \nabla \psi-\int_{\Omega} g\left(x, u_{0}, v_{0}\right) \psi=0
\end{aligned}
$$

In virtue of Tolksdorf regularity [10], $\left(u_{0}, v_{0}\right) \in C^{1, \nu}(\bar{\Omega}) \times C^{1, \nu}(\bar{\Omega})$ and by Vazquez's maximum principle [11], $u_{0}>0$ and $v_{0}>0$.

Example Let $f(x, \xi, \eta)=\xi^{\sigma} \exp \left(\xi^{q}+\eta^{r}\right), g(x, \xi, \eta)=\eta^{\theta} \exp \left(\xi^{q}+\eta^{r}\right), \sigma>$ $2 p-1, \theta>2 p-1, r, q>0$. The functions f and g satisfy the hypotheses (H1), (H2), (ii), and X the space defined in Proposition 3.2. Hence, for $\sigma, \theta>1$;

$$
\begin{array}{cc}
-\Delta_{p} u=u^{\sigma} \exp \left(u^{q}+v^{r}\right) & \text { in } \Omega \\
-\Delta_{p} v=v^{\theta} \exp \left(u^{q}+v^{r}\right) & \text { in } \Omega \\
u=v=0 & \text { on } \partial \Omega,
\end{array}
$$

has a positive solution $(u, v) \in\left(X \times C^{1, \nu}(\bar{\Omega})\right)^{2}$.

The case $p=N$

Recall that a Young function is an even convex function from \mathbb{R} into \mathbb{R}^{+}, such that

$$
\lim _{\xi \rightarrow 0} \frac{M(\xi)}{\xi}=0 \quad \text { and } \quad \lim _{\xi \rightarrow+\infty} \frac{M(\xi)}{\xi}=+\infty
$$

The conjugate function of M is defined as

$$
M^{*}(\xi)=\sup _{s \in \mathbb{R}}[\xi s-M(s)] .
$$

The Orlicz space $L_{M}(\Omega)$ is the set of measurable function u defined on \mathbb{R} such that, there is some $\lambda>0$ with

$$
\int_{\Omega} M\left(\frac{u}{\lambda}\right)<+\infty .
$$

This is a Banach space for the norm

$$
\|u\|_{M}=\operatorname{Inf}\left\{\lambda>0: \int_{\Omega} M\left(\frac{u}{\lambda}\right)<1\right\} .
$$

Let $E_{M}(\Omega)$ be the closure of $C_{0}^{\infty}(\Omega)$ in $L_{M}(\Omega)$.
We say that M is super-homogenous of degree $(\sigma+1)$ [8] if there exists $K>0$ such that

$$
M(h \xi) \leq h^{\sigma+1} M(K \xi), \quad \forall \xi \in \mathbb{R}, \forall h \in[0,1]
$$

Let Ω be a bounded regular domain in \mathbb{R}^{N}. In this case $W_{0}^{1, p}(\Omega) \not \subset L^{\infty}(\Omega)$ but $W_{0}^{1, p}(\Omega) \subset E_{M_{1}}(\Omega)[1]$ where

$$
M_{1}(\xi)=\exp \left(|\xi|^{p^{\prime}}\right)-1, \quad \text { or } \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1
$$

So, we can get the following Theorem.
Theorem 3.6 Let f and g be two positive functions which are Caratheodory and satisfy (H1) and (H2). Assume also that there exists a Young function of exponential type M such that:
i) The imbedding $W_{0}^{1, p}(\Omega) \hookrightarrow E_{M}(\Omega)$ is compact.
ii) M is super-homogeneous of degree $\sigma_{1}+1>p$.
iii) There are some $c_{1}>0$ and $K_{1}>0$ such that for a.e $x \in \Omega$ and for all $(\xi, \eta) \in \mathbb{R}^{2}$,

$$
\xi f(x, \xi, \eta) \leq c_{1} M\left(\frac{\xi}{K_{1}}\right) \quad \text { and } \quad \eta g(x, \xi, \eta) \leq c_{1} M\left(\frac{\eta}{K_{1}}\right)
$$

iv) For all $K>0$, we have

$$
\lim _{|\xi|+|\eta| \rightarrow+\infty} \frac{f(x, \xi, \eta)}{M^{\prime}\left(\frac{\xi}{K}\right)}=0 \quad \text { and } \quad \lim _{|\xi|+|\eta| \rightarrow+\infty} \frac{g(x, \xi, \eta)}{M^{\prime}\left(\frac{\eta}{K}\right)}=0
$$

almost every where in $x \in \Omega$.
Then there is at least one positive solution $(u, v) \in\left(W_{0}^{1, p}(\Omega) \cap C^{1, \nu}(\bar{\Omega})\right)^{2}$ of (1.1).

The proof of this Theorem needs the following lemma.
Lemma 3.7 Under the hypotheses of Theorem 3.6, $J \in C^{1}\left(\left(W_{0}^{1, p}(\Omega)\right)^{2}\right.$ and satisfies the Palais-Smale condition.

Proof. Let $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ be a bounded sequence in $W_{0}^{1, p}(\Omega) \times W_{0}^{1, p}(\Omega)$. By i) there exist some $K>0$ such that

$$
\int_{\Omega} M\left(\frac{u_{j}}{K}\right) \leq 1, \quad \int_{\Omega} M\left(\frac{v_{j}}{K}\right) \leq 1
$$

Let $c>0$ be large enough such that $M^{*}\left(\frac{1}{c}\right) \operatorname{meas}(\Omega)<1$. From iv) for all $(\xi, \eta) \in \mathbb{R}^{2}$ and for a.e $x \in \Omega$ we have

$$
|f(x, \xi, \eta)|+|g(x, \xi, \eta)| \leq \frac{c}{2}+\frac{1}{4}\left(M^{\prime}\left(\frac{\xi}{K}\right)+M^{\prime}\left(\frac{\eta}{K}\right)\right)
$$

or M^{*} is a Young function satisfies the " Δ_{2}-condition". Then

$$
\begin{aligned}
M^{*}\left(\frac{f\left(x, u_{j}, v_{j}\right)}{c^{2}}\right) & \leq \frac{1}{2} M^{*}\left(\frac{1}{c}\right)+\frac{1}{2} M^{*}\left(\frac{1}{2} M^{\prime}\left(\frac{u_{j}}{c^{2} K}\right)+\frac{1}{2} M^{\prime}\left(\frac{v_{j}}{c^{2} K}\right)\right) \\
& \leq \frac{1}{2} M^{*}\left(\frac{1}{c}\right)+\frac{1}{4}\left(M\left(\frac{2 u_{j}}{c^{2} K}\right)+M\left(\frac{2 v_{j}}{c^{2} K}\right)\right) \\
& \leq \frac{1}{2} M^{*}\left(\frac{1}{c}\right)+\frac{1}{4}\left(M\left(\frac{u_{j}}{K}\right)+M\left(\frac{v_{j}}{K}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\int_{\Omega} M^{*}\left(\frac{f\left(x, u_{j}, v_{j}\right)}{c^{2}}\right) \leq 1 \tag{3.5}
\end{equation*}
$$

In the same we obtain

$$
\begin{equation*}
\int_{\Omega} M^{*}\left(\frac{g\left(x, u_{j}, v_{j}\right)}{c^{2}}\right) \leq 1 \tag{3.6}
\end{equation*}
$$

Let $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ be a subsequent of the least sequence of element in $\left(W_{0}^{1, p}(\Omega)\right)^{2}$ converges to $(u, v) \in\left(W_{0}^{1, p}(\Omega)\right)^{2}$. For $\delta>0$ sufficiently small, for all $\epsilon>0$ and
$A \subset \Omega$ such that meas $(A) \leq \delta$ we have

$$
\begin{aligned}
& \int_{A} M^{*}\left(\frac{f\left(x, u_{j}, v_{j}\right)}{c^{2}}\right) \\
& \leq \frac{1}{2} M^{*}\left(\frac{1}{c}\right) \operatorname{meas}(A)+\frac{1}{4} \int_{A}\left[M\left(\frac{2 u_{j}}{c^{2} K}\right)+M\left(\frac{2 v_{j}}{c^{2} K}\right)\right] \\
& \leq \frac{1}{2} M^{*}\left(\frac{1}{c}\right) \operatorname{meas}(A)+\frac{1}{8} \int_{A}\left[M\left(\frac{u_{j}-u}{K}\right)+M\left(\frac{u}{K}\right)+M\left(\frac{v_{j}-v}{K}\right)+M\left(\frac{v}{K}\right)\right] \\
& \leq \epsilon
\end{aligned}
$$

then $M^{*}\left(\frac{f\left(x, u_{j}, v_{j}\right)-f(x, u, v)}{c^{2}}\right)$ is equi-summable and

$$
\lim _{j \rightarrow+\infty} \int_{\Omega} M^{*}\left(\frac{f\left(x, u_{j}, v_{j}\right)-f(x, u, v)}{c^{2}}\right)=0
$$

By ii) and since M^{*} satisfies " Δ_{2}-condition" we have

$$
\lim _{j \rightarrow+\infty}\left\|f\left(., u_{j}, v_{j}\right)-f(., u, v)\right\|_{M^{*}}=0
$$

In the same way we have

$$
\lim _{j \rightarrow+\infty}\left\|g\left(., u_{j}, v_{j}\right)-g(., u, v)\right\|_{M^{*}}=0
$$

Whence $J \in C^{1}\left(\left(W_{0}^{1, p}(\Omega)\right)^{2}\right.$. Let $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ be a sequence satisfying (3.1) and (3.2) then by lemma 3.3 the sequence $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ is bounded in $\left(W_{0}^{1, p}(\Omega)\right)^{2}$,hence $\left\{\left(u_{j}, v_{j}\right)\right\}_{j \geq 0}$ converges weakly to $(u, v) \in\left(W_{0}^{1, p}(\Omega)\right)^{2}$ and strongly in $\left(E_{M}(\Omega)\right)^{2}$. In view of (3.5) (3.6) we deduce that $f\left(x, u_{j}, v_{j}\right), g\left(x, u_{j}, v_{j}\right)$ converge with $\sigma\left(L_{M} \times L_{M}, E_{M} \times E_{M}\right)$. So the same proof of lemma 3.5 shows that the Palais-Smale condition is satisfied.

Proof of Theorem 3.6 Let us show that for $\|(u, v)\|=r$ sufficiently small, $J(u, v) \geq \alpha>0$. By (H2) and iii), for a.e $x \in \Omega$, for all $\xi \in \mathbb{R}$, and for all $h \in[0,1]$, we have

$$
\begin{aligned}
G(x, \xi, \eta) & \leq \frac{1}{2}\left[\frac{1}{\sigma_{0}+1} \xi f(x, \xi, \eta)+\frac{1}{\theta_{0}+1} \eta g(x, \xi, \eta)\right] \\
& \leq \frac{c_{1}}{2}\left[\frac{1}{\sigma_{0}+1} M\left(\frac{\xi}{K_{1}}\right)+\frac{1}{\theta_{0}+1} M\left(\frac{\eta}{K_{1}}\right)\right] \\
& \leq \frac{c_{1}}{2}\left[h^{\sigma_{1}+1} M\left(\frac{K \xi}{h K_{1}}\right)+h^{\theta_{1}+1} M\left(\frac{K \eta}{h K_{1}}\right)\right]
\end{aligned}
$$

on the other hand, in virtue of i) there exists $c>0$ such that for all $(u, v) \in$ $W_{0}^{1, p}(\Omega)^{2}$ we have

$$
\|u\|_{M}+\|v\|_{M} \leq c\|(u, v)\| .
$$

Whence for $\|(u, v)\|=r \leq \frac{K_{1}}{c K}$ and $h=\frac{c K r}{K_{1}}$ we get

$$
\int_{\Omega} M\left(\frac{u}{c r}\right) \leq 1 \quad \text { and } \quad \int_{\Omega} M\left(\frac{v}{c r}\right) \leq 1 .
$$

Hence

$$
\begin{aligned}
\int_{\Omega} G(x, u, v) d x & \leq \frac{c_{1}}{2}\left[h^{\sigma_{1}+1}+h^{\theta_{1}+1}\right] \\
& \leq c^{\prime}\left[\|(u, v)\|^{\sigma_{1}+1}+\|(u, v)\|^{\theta_{1}+1}\right]
\end{aligned}
$$

The same proof as in Theorem 3.1 gives $(u, v) \in\left(W_{0}^{1, p}(\Omega)\right)^{2}, u \not \equiv 0, v \not \equiv 0$, solution of (1.1). The rest of the proof is a consequence of the following lemma.

Lemma 3.8 Under the hypotheses of Theorem 3.6, if (u, v) is a solution of (1.1) then $(u, v) \in C^{1, \nu}(\bar{\Omega}) \times C^{1, \nu}(\bar{\Omega})$.

Proof. This proof is inspired by the work of De Thélin [8] and Otani [6] (see also [7]).
In view of iii), there exists $s>1$ such that $u f(x, u, v) \in L^{s}(\Omega)$ and $v g(x, u, v) \in$ $L^{s}(\Omega)$. Consider the following sequences:

$$
\begin{gathered}
q_{1}=2 p s^{*}=\frac{2 p s}{s-1}, \quad q_{k+1}=2\left(p+q_{k}\right) \\
m_{k}=s^{*} q_{k}
\end{gathered}
$$

Multiplying the first equation of (1.1) by $|u|^{q_{k}} u$ and the second equation by $|v|^{q_{k}} v$, we obtain:

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla\left(|u|^{q_{k}} u\right) & =\int_{\Omega} u f(x, u, v)|u|^{q_{k}} \\
\int_{\Omega}|\nabla v|^{p-2} \nabla v \nabla\left(|v|^{q_{k}} v\right) & =\int_{\Omega} v g(x, u, v)|u|^{q_{k}}
\end{aligned}
$$

by Hölder's inequality we deduce that

$$
\begin{align*}
\left(\frac{p}{p+q_{k}}\right)^{p} \int_{\Omega}\left|\nabla u^{\frac{p+q_{k}}{p}}\right|^{p} & =\int_{\Omega} f(x, u, v)|u|^{q_{k}} u \\
& \leq\|u f(., u, v)\|_{s}\left\|u^{q_{k}}\right\|_{s^{*}} \tag{3.7}\\
& \leq c\|u\|_{s^{*}}^{q_{k}} .
\end{align*}
$$

Since the imbedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{2 p s^{*}}(\Omega)$ is compact, there exists $K>0$ such that

$$
\begin{equation*}
\|u\|_{2 s^{*}\left(p+q_{k}\right)}^{p+q_{k}} \leq K^{p} \int_{\Omega}\left|\nabla u^{\frac{p}{p+q_{k}}}\right|^{p} \tag{3.8}
\end{equation*}
$$

By combining (3.7) and (3.8) we have

$$
\|u\|_{2 s^{*}\left(p+q_{k}\right)}^{m_{k+1} /\left(2 s^{*}\right)} \leq c\left(\frac{K\left(p+q_{k}\right)}{p}\right)^{p}\|u\|_{m_{k}}^{m_{k} / s^{*}} .
$$

Since $p+q_{k} \leq 4^{k} p s^{*}$ we get

$$
\|u\|_{m_{k+1}}^{m_{k}+1} \leq c^{2 s^{*}}\left(4 K s^{*}\right)^{2 p s^{*}} 4^{2(k-1) p s^{*}}\|u\|_{m_{k}}^{2 m_{k}}
$$

Set $E_{k}=m_{k} \log \|u\|_{m_{k}}, a=4^{2 p s^{*}}, b=\log \left[c^{2 s^{*}}\left(2 K s^{*}\right)^{2 p s^{*}}\right]$ and $r_{k}=b+(k-$ 1) $\log a$. We obtain

$$
E_{k+1} \leq r_{k}+2 E_{k}
$$

then, by the result's of Otani [6] we deduce that

$$
\|u\|_{\infty} \leq \limsup _{k \rightarrow+\infty} \exp \left(\frac{E_{k}}{m_{k}}\right)<+\infty
$$

Finally, by the regularity of Tolksdorf's results $u \in C^{1, \nu}(\bar{\Omega})$. In the same way we have $v \in C^{1, \nu}(\bar{\Omega})$.

Example Let $f(x, \xi, \eta)=\xi^{\sigma} \exp \left(\xi^{q}-\eta^{r}\right), g(x, \xi, \eta)=\eta^{\theta} \exp \left(-\xi^{q}+\eta^{r}\right), \sigma>$ $2 p-1, \theta>2 p-1, N \geq 2,0<r, q<\frac{p}{p-1}$, and $M(\xi)=|\xi|^{\sigma+\theta+1-l}\left(e^{|\xi|^{l}}-1\right)$ with $\max (p, r)<l<2$ hence the functions f and g satisfy the hypothesis (H1), (H2), (i), (ii), (iii) and (iv). Then

$$
\begin{array}{cc}
-\Delta_{p} u=u^{\sigma} \exp \left(u^{q}-v^{r}\right) & \text { in } \Omega \\
-\Delta_{p} v=v^{\theta} \exp \left(-u^{q}+v^{r}\right) & \text { in } \Omega \\
u=v=0 & \text { on } \partial \Omega
\end{array}
$$

has a positive solution $(u, v) \in\left(W_{0}^{1, p}(\Omega) \times C^{1, \nu}(\bar{\Omega})\right)^{2}$.

References

[1] R. Adams, Sobolev spaces, Academic, New-York (1975).
[2] A. Ahammou, Positive radial solutions of nonlinear elliptic systems, New York J. Math. 7 ,pp 267-280, (2001).
[3] Ambrosetti, A., and Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal, pp. 349-381, 1973.
[4] A. Bechah, Local and global estimates for solutions of systems involving the p-Laplacian in unbounded domains,Electronic J. Diff. Eqations, vol. 2001, N0. 19,pp 1-14, (2001).
[5] L. B occardo, J. Fleckinger and F. De Thelin; Elliptic sysstems with various growth, reaction diffusion systems, (Trieste 1995), Lecture notes in Pure and Applied Math., no. 194, Marcel Dekker, New York, p 59-66, Zbl 0892.35059, (1998).
[6] M. Ôtani, Existence and non-existence of non trivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Analysis, vol. 76 n. 1,pp 140-159, (1988).
[7] F. De Thelin Résultats d'existence et de non existence pour la solution positive et bornee d'une E.D.P. elliptique non lineare; C.R. Acad. Sc. Paris, t. 299, Serie I n. 18, pp 911-914, (1984).
[8] F. De Thelin Positive Solutions of an elliptic equation with strongly nonlinear lower order terms, 2, 3, (1989).
[9] F. De Thelin, and J. Velin, Existenceand non existence of nontrivial solutions for some non-linear elliptic systems, Matematica Univ. Compl. Madrid 6, pp 153-194, Zbl 0834.35042, (1993).
[10] P. Tolksdorf, Comm.P.D.E,8, pp.773-817, (1989).
[11] J. L Vazquez, A Strong Maximum Principle for some Quasilinear Elliptic Equations, Appl. Math. Optim., 12, pp 191-202, (1984).

Abdelouahed EL Khalil (e-mail: lkhlil@hotmail.com)
Mohammed. Ouanan (e-mail: m_ouanan@hotmail.com)
Abdelfattah Touzani (e-mail: atouzani@iam.net.ma)
Laboratoire d'analyse non lineaire (lanolif)
Departement de Mathématiques
Faculté des sciences DM
B.P. 1796 Atlas-Fes,

Fes 30000 Maroc

[^0]: * Mathematics Subject Classifications: 35J20, 35J45, 35J50, 35J70.

 Key words: p-Laplacian operator, mountain pass Theorem Orlicz space
 (C)2002 Southwest Texas State University.

 Published December 28, 2002.

