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Nonlinear initial-value problems with positive

global solutions ∗

John V. Baxley & Cynthia G. Enloe

Abstract

We give conditions on m(t), p(t), and f(t, y, z) so that the nonlinear
initial-value problem

1

m(t)
(p(t)y′)′ + f(t, y, p(t)y′) = 0, for t > 0,

y(0) = 0, lim
t→0+

p(t)y′(t) = B,

has at least one positive solution for all t > 0, when B is a sufficiently
small positive constant. We allow a singularity at t = 0 so the solution
y′(t) may be unbounded near t = 0.

1 Introduction

We consider the initial-value problem

1
m(t)

(p(t)y′)′ + f(t, y, p(t)y′) = 0, t > 0, (1.1)

y(0) = 0, lim
t→0+

p(t)y′(t) = B, B > 0. (1.2)

We allow a singularity at t = 0, and so y′(t) may not be bounded near t = 0.
However, we require of a solution that it be continuous at t = 0, satisfy (1.1)
a.e. on some interval (0, δ), and satisfy (1.2). The singularity may be caused by
the behavior of m or p or f near t = 0 or by some combination of them.

This problem was considered earlier by Zhao [5] and by Maagli and Mas-
moudi [4]. In particular, [5] considered the case that m ≡ p ≡ 1 while [4]
required that m ≡ p. In each of these papers, only one of the initial conditions
(y(0) = 0) was imposed and conditions were specified which guaranteed that
this “incomplete” initial-value problem has infinitely many positive solutions
existing on the entire interval (0,∞). Both papers viewed the problem as a
boundary-value problem by imposing a condition at ∞, namely

lim
t→∞

y(t)
r(t)

= c > 0, (1.3)

∗Mathematics Subject Classifications: 34A12, 34B15.
Key words: Nonlinear initial-value problems, positive global solutions, Carathéodory.
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where r(t) =
∫ t

0
(p(s))−1 ds. In [5], r(t) reduces to r(t) = t. In both [4] and [5],

the Schauder fixed point theorem is the main tool and the hypotheses imposed
allow the authors to prove existence of at least one solution of the boundary-
value problem for c sufficiently small.

Here, we shall treat the problem in the initial-value form (1.1), (1.2). We
shall impose conditions rather close to those of [4] and [5], and prove that our
initial-value problem has at least one positive solution for B sufficiently small.
Our methods use initial-value techniques, similar to those used already in [1, 2],
and are completely different from the previous papers discussed above. To
get started, we must have a local solution on some interval (0, δ) and for that
purpose, we need a slight generalization of the classical theorem of Carathéodory
[3], which we provide in Section 2.

In Section 3, we prove our main result, which we state below. Let r(t) =∫ t

0
(p(s))−1 ds and assume that

M1: p(t) and m(t) are positive and continuous on (0,∞);

M2: 1
p(t) ∈ L1(0, 1);

M3: for some positive number, D < ∞,

f : (0,∞)× (0, Dr(∞))× (0, D) → R

is a measurable function on (0,∞) × (0, Dr(∞)) × (0, D) and f(t, ·, ·) is
continuous on (0, Dr(∞))× (0, D) for each fixed t ∈ (0,∞);

M4:
|f(t, y, z)| ≤ h1(t, y, z)y + h2(t, y, z)z

where h1(t, y, z) → 0 and h2(t, y, z) → 0 as (y, z) → (0, 0), h1 and h2 are
nonnegative, and for α > 0, let h(t, y, z) = h1(t, y, z)r(t) + h2(t, y, z),

gα(s) = sup{h(s, y, z) : 0 < y < αr(s), 0 < z < α}, s > 0,

and m(s)gα(s) ∈ L1(0,∞) for sufficiently small α > 0.

Theorem 1.1 Under assumptions M1–M4, there exists γ > 0 so that B ∈
(0, γ) implies that the initial-value problem (1.1), (1.2) has at least one solution
existing for 0 < t < ∞ and satisfying

B

2
< p(t)y′(t) <

3B

2
,

Br(t)
2

< y(t) <
3Br(t)

2
,

for 0 < t < ∞. Moreover, the two limits

lim
t→∞

y(t)
r(t)

, lim
t→∞

p(t)y′(t)

exist, and if r(∞) = ∞, the two limits are equal.
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Other than the fact that [4] requires that m ≡ p, the only substantive differ-
ence in our hypotheses is that we do not require that h1, h2 be nondecreasing
with respect to y and z, as they do. Of course, we prove existence for an
initial-value problem, not a boundary-value problem as they do.

The key to our proof is that our local existence theorem in Section 2 is
formulated carefully to provide a lower bound on the length of the interval of
existence. In applying it in Section 3, we show that this lower bound gives us
a uniform lower bound on the length of the interval of existence, regardless of
where in the interval [0,∞) we start the solution. Thus, we are able to step from
0 to ∞ inductively, without fear that the sum of the lengths of our intervals will
converge, to complete the proof.

2 Local Solutions

In this section, we consider the initial-value problem

1
m(t)

(p(t)y′)′ + f(t, y, p(t)y′) = 0, t > t0, (2.1)

y(t0) = A, lim
t→t+0

p(t)y′(t) = B. (2.2)

We use x1 = y, x2 = p(t)y′ to transform to the two-dimensional system

x′1 =
x2

p(t)
x′2 = −m(t)f(t, x1, x2)

(2.3)

with initial conditions

lim
t→t+0

x1(t) = A, lim
t→t+0

x2(t) = B. (2.4)

Let R(t) =
∫ t

t0
(p(s))−1 ds. We shall assume that

L1: There exists b > t0 such that p(t) and m(t) are positive and continuous
on (t0, b).

L2: 1
p(t) ∈ L1(t0, b).

L3: f : S → R, where S = {t0 < t ≤ b, A+ cR(t) < y < A+dR(t), c < z < d},
and f is measurable in t for each fixed (y, z) and continuous in (y, z) for
each fixed t.

L4: There exists h(t) ∈ L1(t0, b) such that m(t)|f(t, y, z)| ≤ h(t), almost ev-
erywhere on the set S.

We shall prove the following generalization of Carathéodory’s local existence
theorem. The proof follows the same general lines as the well-known proof in
[3].
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Theorem 2.1 Suppose hypotheses L1-L4 are satisfied. Let 0 < d∗ < min{d −
B,B − c} and suppose β ∈ (0, b) and satisfies

∫ t0+β

t0
h(s)ds < d∗. Then, the

initial-value problem (2.1), (2.2) has a solution existing on the interval [t0, t0+β]
and satisfies

A + cR(t) < x1(t) < A + dR(t)
c < x2(t) < d

for t0 < t ≤ t0 + β.

Proof: Choose a fixed integer n > 1. Let hn = β/n and let tk = t0 + khn for
k = 1, 2, · · · , n. Define

u2,n(t) = B, for t0 ≤ t ≤ t1.

Note that B − d∗ < u2,n(t) < B + d∗ for t0 ≤ t ≤ t1. Also define

u1,n(t) = A +
∫ t

t0

u2,n(s)
p(s)

ds, for t0 ≤ t ≤ t1.

It follows that

(B − d∗)R(t) < u1,n(t)−A < (B + d∗)R(t)

and so
A + (B − d∗)R(t) < u1,n(t) < A + (B + d∗)R(t).

Thus, (t, u1,n(t), u2,n(t)) ∈ S for t0 ≤ t ≤ t1.
We extend the pair (u1,n, u2,n) to the entire interval [t0, t0+β] by recursively

defining the pair on the subintervals [tj−1, tj ]. Thus, for each j = 2, 3, · · · , n,
we define

u2,n(t) = B −
∫ t−hn

t0

m(s)f(s, u1,n(s), u2,n(s)) ds, for tj−1 ≤ t ≤ tj ,

u1,n(t) = A +
∫ t

t0

u2,n(s)
p(s)

ds, for tj−1 ≤ t ≤ tj .

(The measurability of the integrand in the integral for u2,n follows from L3 by
approximating with simple functions.) Using L4, we have

|u2,n(t)−B| ≤
∫ t−hn

t0

m(s)|f(s, u1,n(s), u2,n(s))|ds

≤
∫ t0+β

t0

h(s)ds < d∗,

and therefore, B − d∗ < u2,n(t) < B + d∗. Further,

(B − d∗)R(t) < u1,n(t)−A < (B + d∗)R(t),
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and so
A + (B − d∗)R(t) < u1,n(t) < A + (B + d∗)R(t).

These inequalities show that (t, u1,n(t), u2,n(t)) remains in S on each subinterval
and the recursive definition is allowed. Moreover, the two sequences {u1,n},
{u2,n} are uniformly bounded on t0 ≤ t ≤ t0 + β.

We shall show that these sequences are equicontinuous so that Ascoli’s the-
orem may be applied. Suppose t0 ≤ t ≤ t∗ ≤ t0 + β. Then

|u1,n(t)− u1,n(t∗)| =
∣∣∣ ∫ t∗

t

u2,n(s)
p(s)

ds
∣∣∣ ≤ ∫ t∗

t

Q

p(s)
ds,

where Q = max{|B − d∗|, |B + d∗|}. Moreover,

|u2,n(t)− u2,n(t∗)| =
∣∣∣ ∫ t∗−hn

t−hn

m(s)f(s, u1,n(s), u2,n(s)) ds
∣∣∣

≤
∫ t∗−hn

t−hn

h(s) ds.

The desired equicontinuity follows from absolute continuity of the integral. Us-
ing Ascoli’s theorem, we may assume without loss of generality that both se-
quences converge uniformly on [t0, t0 + β] to limit functions u1(t), u2(t). We
may use the Lebesgue dominated convergence theorem (for u2,n the dominating
function is h(s); for u1,n, the dominating function is (p(s))−1) to take limits
under each integral sign as n →∞ to show that

u1(t) =
∫ t

t0

u2(s)
p(s)

ds,

u2(t) = B −
∫ t

t0

m(s)f(s, u1(s), u2(s)) ds,

for t0 ≤ t ≤ t0 + β, from which we obtain

u′2(t) = −m(t)f(t, u1(t), u2(t)),

u′1(t) =
u2(t)
p(t)

,

almost everywhere on [t0, t0 + β].

The specific size of β provided by the hypotheses of this last theorem is
crucial for our main proof in the next section.

3 Proof of Main Theorem

First note that the hypotheses M1-M4 imply that the earlier hypotheses L1-L4
hold on any interval (t0, b) with 0 ≤ t0 < b < ∞, so we may apply Theorem 2.1
as needed.
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From hypothesis M4, we have m(s)gα0(s) ∈ L1(0,∞) if α0 > 0 is sufficiently
small. Further, M4 implies that m(s)gα(s) ≤ m(s)gα0(s) whenever 0 < α < α0

and also that m(s)gα(s) → 0 as α → 0, for all s > 0. Thus, by the Lebesgue
Dominated Convergence Theorem,∫ ∞

0

m(t)gα(t)dt → 0 as α → 0.

Hence, there exists δ ∈ (0, α0] such that 0 < α < δ implies∫ ∞

0

m(t)gα(t)dt <
1
4
.

We shall show that γ = 1
2 min{D, δ}, where D is the number from our hypothesis

M3, satisfies the requirements of our theorem. To apply Theorem 2.1, we pick
0 < C ≤ γ, d∗ = C/2, c = 0, d = 2C, t0 = 0, b = 1, B = C, and A = 0.
Note that d∗ = d

4 < d − d/2 = d − C = d − B and d∗ < C = B − c. So
d∗ < min{d−B,B − c}.

By absolute continuity of the integral, there exists β ∈ (0, b) = (0, 1) so that
for k = 0, 1, · · · , ∫ (k+1)β

kβ

αm(s)gα(s) ds < d∗. (3.1)

This last inequality, for k = 0 allows us to apply Theorem 2.1 to get a solution
y1(t) on [0, β] so that for 0 < t ≤ β,

0 < y1(t) < 2Cr(t), 0 < p(t)y′1(t) < 2C . (3.2)

Integrating (1.1) from 0 to t and using M4, we obtain

|p(t)y′1(t)− C| ≤
∫ t

0

m(s)|f(s, y1(s), p(s)y′1(s))| ds

= 2C

∫ t

0

m(s)h(s, y1(s), p(s)y′1(s)) ds

< 2C

∫ t

0

m(s)g2C(s) ds <
C

2
,

if t ∈ [0, β]. Hence,
C

2
< p(t)y′1(t) <

3C

2
.

Then

y1(t) =
∫ t

0

p(s)y′1(s)
p(s)

ds

and so
C

2
r(t) < y1(t) <

3C

2
r(t).
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We claim that for k = 2, 3, . . . , there exists a solution yk(t) of (1.1) on the
interval (k − 1)β ≤ t ≤ kβ so that

yk+1(kβ) = yk(kβ),
y′k+1(kβ) = y′k(kβ),

for k ≥ 1, and
C

2
r(t) < yk(t) <

3C

2
r(t),

C

2
< p(t)y′k(t) <

3C

2
,

(3.3)

for (k − 1)β ≤ t ≤ kβ.
Noting that y1(t) has already been constructed, we continue by induction and

assume that y1(t), y2(t), . . . , yn(t) have been constructed. Next, we construct
yn+1(t). To use Theorem 2.1, we keep C, d∗, c, d, b, and β as before and let
t0 = nβ, A = An = yn(nβ), and B = Bn = p(nβ)y′n(nβ). Inequality (3.1)
for k = n allows us to apply Theorem 2.1 to get a solution yn+1(t) of (1.1) on
[t0, t0 + β] = [nβ, (n + 1)β] so that yn+1(nβ) = yn(nβ) and

An ≤ yn+1(t) < An + 2C

∫ t

t0

1
p(s)

ds,

0 < p(t)y′n+1(t) < 2C.

To complete the induction, we must verify that yn+1(t) satisfies (3.3). Define
y(t) for 0 ≤ t ≤ (n + 1)β by y(t) = yk(t) for (k − 1)β ≤ t ≤ kβ.

Since
C

2
< p(s)y′(s) <

3C

2
, for 0 ≤ s ≤ nβ

and
0 < p(s)y′(s) < 2C, for nβ ≤ s ≤ (n + 1)β,

it follows that
0 < p(s)y′(s) < 2C

for the larger interval, 0 ≤ s ≤ (n + 1)β, and it follows by integrating that

0 < y(t) < 2Cr(t), for 0 ≤ t ≤ (n + 1)β.

The calculation appearing just after (3.2) may now be repeated to show that

C

2
< p(t)y′(t) <

3C

2
, for 0 ≤ t ≤ (n + 1)β,

which implies, as before, that

C

2
r(t) < y(t) <

3C

2
r(t), for 0 ≤ t ≤ (n + 1)β.

Finally, we define y(t) for 0 ≤ t < ∞ by y(t) = yk(t) for (k− 1)β ≤ t < kβ, and
each k = 1, 2, . . . . Clearly, y(t) is the desired solution.
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To investigate the limit of p(t)y′(t) at infinity, we examine

p(t)y′(t) = p(t0)y′(t0) +
∫ t

t0

(p(s)y′(s))′ ds

= p(t0)y′(t0)−
∫ ∞

t0

(m(s)f(s, y(s), p(s)y′(s))X[t0,t](s) ds.

Since (m(s)f(s, y(s), p(s)y′(s))X[t0,t](s) < m(s)g2C(s), and m(s)g2C(s) is in
L1(0,∞), we can use the Lebesgue Dominated Convergence Theorem to take
the limit of both sides as t approaches ∞ and conclude that limt→∞ p(t)y′(t)
exists. If r(∞) = ∞, then

lim
t→∞

y(t)
r(t)

= lim
t→∞

y′(t)
r′(t)

= lim
t→∞

p(t)y′(t),

which we have already proven to exist.
If r(∞) < ∞, then y(t) is a monotone increasing function which is bounded

above by 3C
2 r(∞). Hence, limt→∞ y(t)/r(t) exists.
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