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Abstract

The organophosphorus (OP) insecticides are one of the most widely
used and important insecticide classes. These insecticides exert toxicity
through inhibition of the critical nervous system enzyme cholinesterase
(ChE) which functions to rapidly destroy the ubiquitous neurotransmit-
ter acetylcholine. When ChE is inhibited, the acetylcholine accumulates,
causing hyperactivity within the cholinergic pathways. Considerable ef-
fort has gone into assessing the risks of various OP insecticides. Unfortu-
nately, people are often exposed to different OP insecticides in different
dosages at different or overlapping times. The usual statistical methods
seem inadequate to the task of assessing the effect of OP mixtures. This
paper will discuss a simple model using systems of ordinary differential
equations. Using this model, we have had success in predicting the effect
of cumulative in vitro OP compound exposure in terms of ChE inhibition
using data from experiments measuring ChE inhibition by a single OP
compound. We will describe our model and compare our simulations to
in vitro experiments where binary mixtures have been used.

1 Introduction

The organophosphorus (OP) insecticides are one of the most widely used and
important insecticide classes. These insecticides exert toxicity through inhibi-
tion of the critical nervous system enzyme cholinesterase (ChE) which functions
to rapidly destroy the ubiquitous neurotransmitter acetylcholine. Inhibition of
ChE by OP compounds is through covalent bond formation, and the inhibited
ChE is quite persistent (half life of reactivation to uninhibited ChE is hours to
days). An additional covalent reaction can occur, termed aging, which renders
the ChE molecule permanently inhibited and incapable of recovering enzymatic
activity. When ChE is inhibited, the acetylcholine accumulates, causing hy-
peractivity within the cholinergic pathways. Considerable effort has gone into
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assessing the risks of various OP insecticides. Unfortunately, people are often
exposed to different OP insecticides in different dosages at different or over-
lapping times. The usual statistical methods seem inadequate to the task of
assessing the effect of OP mixtures [6, 7, 8, 9, 10, 11, 12, 16]. This paper will
discuss a simple model using systems of ordinary differential equations. Our ap-
proach will be somewhat different than those used previously in the toxicology
literature [3]. Using this model, we have had success in predicting the effect of
cumulative in vitro OP compound exposure in terms of ChE inhibition using
data from experiments measuring ChE inhibition by a single OP compound.

In the second section of this work, we will describe our model. Following
the model description, the next section will give the calibration results. In
the fourth section, we will compare our simulations to in vitro experiments of
simultaneous exposures to two OP inhibitors. The agreement seen in Section
Four is excellent. The fifth section briefly discusses time asymptotic results.
Full information on the experimental methods and results are forthcoming [1].

2 The model

We will start by discussing the usual modelling approach.
The usual models for chemical kinetics involve elementary reactions of the

following form [2, 4]:
aA + bB → cC + dD,

where the uppercase letters represent concentrations in moles per liter or a
similar set of units and the lower case letters are natural numbers. In this
case of an elementary reaction, the standard model is given by the following
differential equations:

dA

dt
= −akAaBb

dB

dt
= −bkAaBb

dC

dt
= ckAaBb

dD

dt
= dkAaBb.

That is, the rate of reaction is always proportional to products of the concen-
tration raised to the number of molecules that participate in each reaction. The
overall order of the reaction, a+b, is also the molecularity of the reaction, where
molecularity is number of molecules taking part in the reaction. It has been ob-
served by some investigators that not all such reactions are quite so simple. It
may be because of intermediate reactions or multiple reaction paths, but the
above model can fail. An alternative model is proposed in [14] of the form

dA

dt
= −akAαBβ
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dB

dt
= −bkAαBβ

dC

dt
= ckAαBβ

dD

dt
= dkAαBβ

where the exponents, called the partial orders, do not necessarily have a rela-
tionship with the molecularity and are in fact obtained empirically. This is the
modeling approach we will follow. We will consider single reactions first. Let
us consider our case of ChE and a variety of inhibitors. Let c be the molarity in
solution of ChE at time t and xi be the molarity of the ith inhibitor at time t.
We will model the reaction of ChE with the inhibitor by the following system
of differential equations

dc

dt
= −kic

αixβi

i

dxi

dt
= −kic

αixβi

i

c(0) = c0

xi(0) = x0
i

where ki is called the rate coefficient and αi and βi are the partial orders. These
constants are all empirically derived from the single inhibitor experiments. The
reader will observe that we are not modelling the concentration of the result of
the reaction. This is because the rate of the back reaction (reactivation) is so
slow compared to the time scale of the experiments, fifteen to thirty minutes,
that the back reaction will have negligible effect on the experimental results.
We will denote the solution of equation (1) as c

(
αi, βi, ki, x

0
i ; t

)
.

The experimental data used in this work are in the form of inhibition curves.
That is, the experimentalists will start with several samples containing a fixed
concentration of ChE. Different amounts of an inhibitor are added and the
fraction of the ChE which is inhibited is measured at fifteen minutes. That
is, the data sets consist of several different initial concentrations of inhibitor
i,

{
x0

i1, . . . , x
0
iN

}
and the percentage of ChE inhibited after fifteen minutes Iij .

Here, x0
ij is the initial concentration of inhibitor i in the jth experiment. For each

inhibitor, fifteen experiments were carried out and N = 15. (We observe that
this is quite a simplification of the actual experimental procedure and the reader
is referred to [1, 13].) The method of determining the unknown constants αi, βi,
and ki was as follows. We used the built–in numerical program ODE45 in the
Mathlab programming language [15] to approximate the solution of equation (1)
with initial inhibitor concentration x0

ij at time 15 minutes, c(αi, βi, ki, x
0
ij ; 15),

and compute the percent inhibition at 15 minutes for this set of parameters

p
(
αi, βi, ki, x

0
ij ; 15

)
=

(
1−

c(αi, βi, ki, x
0
ij ; 15)

c0

)
100.
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For inhibitor i we define the objective function

O (αi, βi, ki) =
15∑

j=1

(
Iij − p

(
αi, βi, ki, x

0
ij ; 15

))2
.

We find the parameters αi, βi, and ki by minimizing the objective function using
the Matlab function fmins.

Once the constants have been found, we can give the model for any combi-
nation of two inhibitors:

dc

dt
= −kic

αixβi

i − kncαnxβn
n (1)

dxi

dt
= −kic

αixβi

i

dxn

dt
= −kncαnxβn

n

c(0) = c0

xi(0) = x0
i

xn(0) = x0
n

This is the model we will use below for the simultaneous exposures. We note
that this model is much more general than we indicate here. Using it in slightly
different form, we can handle any number of inhibitors, any exposure regime,
reactivation, and aging. If the various inhibitors react with each other or other
more complex interactions occur, these basic models still form the building
blocks of the model.

We observe that in the work below the initial ChE concentration was not
measured directly, but was obtained using data in [13] and a published abstract
[5]. The value used is c0 = 4.045× 10−13 moles per liter.

3 Model Calibration

We will report on the calibration of the model for two OP inhibitors in this sec-
tion, chlorpyrifos-oxon and paraoxon. As noted in the previous section, the un-
known parameters are found by minimizing the objective function O (αi, βi, ki).
We will subscript the parameters associated with chlorpyrifos-oxon with C and
we will subscript the parameters associated with paraoxon with P .

Below, we will give the identified parameters, a chart comparing the inhi-
bition predicted by the calibrated model, and a graph of the model inhibition
curve with the experimental data points.

Chlorpyrifos-oxon

The identified parameters for chlorpyrifos-oxon are

kC = .0498
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αC = 1.1616
βC = .9670

We now give a chart comparing the model’s predictions with the experi-
mental data. Observe that the experimental error can be on the order of ±3%
inhibition:

Nanomoles of
chlorpyrifos-
oxon per liter
at time 0

Percent inhi-
bition of ChE
observed at 15
minutes

Percent inhi-
bition of ChE
predicted at
15 minutes

Predicted −
observed

.5 8.7 10.2 -1.5

.5 9.0 10.2 -1.2

.5 9.6 10.2 -.6

.5 9.97 10.2 -.23

.5 10.3 10.2 .1
1 17.7 18.8 -1.1
1 19.6 18.8 .8
1 19.7 18.8 .9
1 20.2 18.8 1.4
1 20.9 18.8 2.1
1.7 27.0 29.1 -2.1
1.7 28.0 29.1 -1.1
1.7 28.5 29.1 -.6
1.7 28.8 29.1 -.3
1.7 31.3 29.1 2.2

The information may be summarized statistically as follows. The maximum
of the absolute error is 2.2, the mean error is −.082, the median error is −.3,
and the standard deviation in the error is 1.1308. All of the units are percent
inhibition.

The graph of the predicted fifteen minute inhibition curve along with the
experimental data may be seen in Figure 1.

Paraoxon

The identified parameters for paraoxon are

kP = .0050
αP = 1.1160
βP = 1.0133

We now give a chart comparing the model’s predictions with the experi-
mental data. Observe that the experimental error can be on the order of ±3%
inhibition:
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Figure 1.  Model fifteen minute inhibition curve for chlorpyrifos−oxon.  Observations−*

nanomoles per liter of chlorpyrifos−oxon at time 0
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Nanomoles of
paraoxon per
liter at time 0

Percent inhi-
bition of ChE
observed at 15
minutes

Percent inhi-
bition of ChE
predicted at
15 minutes

Predicted −
observed

3.5 9.7 10.16 0.46
3.5 9.7 10.16 0.46
3.5 9.97 10.16 0.19
3.5 10.0 10.16 0.16
3.5 11.7 10.16 -1.54
7.5 19.6 20.57 0.97
7.5 20.0 20.57 0.57
7.5 20.8 20.57 -0.23
7.5 21.0 20.57 -0.43
7.5 22.0 20.57 -1.43
12 28.8 30.78 1.98
12 30.5 30.78 0.28
12 31.0 30.78 -0.22
12 31.3 30.78 -0.52
12 33 30.78 -2.22

The information may be summarized statistically as follows. The maximum
of the absolute error is 2.22, the mean error is 0.1013, the median error is −0.16,
and the standard deviation in the error is 1.0521. All of the units are percent
inhibition.

The graph of the predicted fifteen minute inhibition curve along with the
experimental data may be seen in Figure 2.
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Figure 2. Model fifteen minute inhibition curve for paraoxon. Observations−*

nanomoles per liter of paraoxon at time 0
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4 Simultaneous exposure to a binary mixture

Using the parameters obtained above, we will use the model

dc

dt
= −kP cαP xβP

P − kCcαC xβC
n (2)

dxP

dt
= −kP cαP xβP

P

dxC

dt
= −kCcαC xβC

n

c(0) = c0

xP (0) = x0
P

xC(0) = x0
C

to predict the percent ChE inhibition when two inhibitors, chlorpyrifos-oxon
and paraoxon, are present.

Using this model we got excellent agreement with experiment. By excellent,
we mean that the inhibition predicted by the model was within experimental
error of the observed inhibition. This is particularly significant as the model
was calibrated independently of any of the binary mixture data. We present a
table summarizing our results.
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Nanomoles
per liter of
paraoxon
at time 0

Nanomoles
per liter of
chlorpyrifos-
oxon at
time 0

Observed
inhibition

Predicted
inhibition

Observed -
predicted

3.5 .5 18.1 19.17 -1.07
3.5 1 27.3 26.8 .5
3.5 1.7 36.33 35.95 .38
7.5 .5 27.1 28.41 -1.31
7.5 1 35 35.06 -.06
7.5 1.7 42 43.06 -1.06
12 .5 35 37.48 -2.48
12 1 41.7 43.19 -1.49
12 1.7 49 50.07 -1.07

The information may be summarized statistically as follows. The maximum
of the absolute error is 2.48, the mean error is −0.8511, the median error is
−1.07, and the standard deviation in the error is 0.9604. All of the units are
percent inhibition.

The graph of the predicted fifteen minute inhibition surface along with the
experimental data may be seen in Figure 3.
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5 Results for larger times

Our goal in this work has been to develop models for Cholinesterase inhibition
by mixtures of OP insecticides that are more accurate and flexible than those
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currently available. We did so in the context of standard experimental protocols
for obtaining fifteen minute inhibition curves. However, we shall consider some
results, both theoretical and experimental for longer times. We note that as
time increases, we expect other mechanisms, such as reactivation, to come into
play, thus examining this model in isolation over longer times has limited utility.

We observe for the model with only one OP

dc

dt
= −kcαxβ

dxi

dt
= −kcαxβ

c(0) = c0

x(0) = x0

that for each t > 0, x(t)− x0 = c(t)− c0. We may therefore write

dc

dt
= −kcα

(
c(t) + x0 − c0

)β
.

If we assume that x0 > c0 as we had in all of our experiments we obtain

dc

dt
≤ −kcα

(
x0 − c0

)β
.

From this it is easy to see that if a < 1 then c reaches zero in finite time and
if α ≥ 0 then limt→∞ c (t) = 0. Of course, a residual of the OP will be left of
the amount x0 − c0. For the case of multiple OP’s we can construct a similar
upper bound and obtain analogous results. We note that the OP for which α is
smaller will dominate the reaction. If the α’s are equal, then the term with the
largest k will dominate.

For longer time periods, experimental measurements become more difficult.
However, we do have a comparison of the thirty minute inhibition curve for
paraoxon as predicted by the model and experimental data. We will plot the
model inhibition curve along with forty five data points.

The information may be summarized statistically as follows. The maximum
of the absolute error is 7.6, the mean error is 2.27, the median error is 1.98,
and the standard deviation in the error is 2.69. All of the units are percent
inhibition. Considering the range of experimental values, this is not too bad.

Conclusion We developed a new model for enzyme inhibition by an OP in-
secticide. We showed that this model accurately modelled single inhibitor ex-
periments. More significantly, using parameters obtained independently of any
data from experiments using binary mixtures, the model successfully predicted
the results of in vitro experiments using two inhibitors.
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Figure 4. Model 30 minute inhibition curve for paraoxon.  Observations *

nanomoles per liter of paraoxon at time 0
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