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Uniform stability of multidimensional travelling

waves for the nonlocal Allen-Cahn equation ∗

Fengxin Chen

Abstract

In this paper, we study the uniform stability of mutidimensional planar
travelling waves for the nonlocal Allen-Cahn equation.

1 Introduction

The main concern of this paper is the stability of planar travelling wave solutions
of the multidimensional nonlocal Allen-Cahn equation

ut = J ∗ u− u + f(u). (1.1)

Here J ∈ C1(Rn) is a nonnegative function with
∫

Rn J(y)dy = 1 and J(0) 6= 0;
J ∗u =

∫
Rn J(x− y)u(y)dy is the convolution of J and u; f is a smooth bistable

function with three zeros, ±1 and a ∈ (−1, 1) satisfying f ′(±1) < 0 and f ′(a) >
0. A typical example is f(u) = (u− a)(1− u2) for some a ∈ (−1, 1).

Travelling wave solutions of the nonlocal Allen-Cahn equation in one spatial
dimension have been extensively studied. It is well known that there exists a
travelling wave solution of the form u(x, t) = φ(x− c0t) satisfying

c0φ
′ + J ∗ φ− φ + f(φ) = 0, φ(±∞) = ±1, (1.2)

where φ is a monotone function; If φ is continuous,

c0 =
∫ 1

−1

f(u)du/

∫ ∞

−∞
(φ′(z))2dz;

if c0 6= 0, the travelling wave solution is smooth and unique modulo a spatial
shift; and it is uniformly and asymptotically stable (see [4], [5] and [6]). If the
unique speed c0 = 0, the wave may be discontinuous but monotone waves are
still unique up to a spatial shift.

A planar travelling wave solutions of (1.1) is a solution of the form φ(ξ) =
φ(k · x − ct) and φ(±∞) = ±1, where k ∈ Sn−1 is a unit vector. Without
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loss of generality, we assume k = (1, 0, · · · , 0). Then φ(k · x − ct) = φ(x1 − ct)
satisfies (1.2) with J being replaced by J1(·) =

∫
Rn−1 J(·, x′)dx′. Notice that∫

R J1(x)dx = 1. Therefore the existence of such planar travelling wave solutions
can be derived from the one dimensional case. Therefore, in this paper, we
assume that φ(x1 − c0t) is a planar travelling satisfying φ′(x) > 0 for all x ∈ R;
and φ(±∞) = limx→∞ φ(±x) = ±1, with wave speed c0. Our main concern is
the multidimensional stability for the planar travelling wave φ(x1 − c0t). We
have the following theorem.

Theorem 1.1 (Uniform Stability) Let u(x, t) = φ(x1 − c0t) be a travelling
wave solution satisfying φ′(x) > 0 for all x ∈ R and φ(±∞) = ±1. Then
φ(x1− c0t) is uniformly stable, that is, for any ε > 0 there is δ(ε) > 0 such that
for any u0 ∈ L∞(Rn) with ‖u0(·)− φ(·)‖L∞(Rn) < δ(ε), one has

‖u(·, t;u0)− φ(· − c0t)‖L∞(Rn) < ε

for all t > 0, where u(·, t;u0) is the solution of (1.1) with initial data u(·, 0;u0) =
u0.

The global exponential stability in one space dimension is due to the spectral
gap [2]. In the multidimensional case, however, the gap disappears due to the
effects of the transverse diffusion along the planar wave front and there may exist
continuous spectrum all the way up to zero. The global asymptotic stability for
the multidimensional case is studied in [2] for special kernel J . For general case
the asymptotic stability is still open.

2 Proof of the main Theorem

In this section, we will use super-and sub- solution method to prove the theorem.
First we have the following comparison principle.

Lemma 2.1 (Comparison Principle) Suppose R1 is an open set in Rn and
R2 = Rn \ R1 is the complement of R1. Suppose u ∈ C1([τ, t0], L∞(Rn)) and
u(x, t) ≥ 0 for almost all x ∈ R2 and t ∈ [τ, t0]. Assume u(x, t) satisfies

ut −K0(x, t)u− (J ∗ u)(x, t) ≥ 0 (2.1)

for almost all (x, t) ∈ R1×(τ, t0], where K0(x, t) ∈ L∞(Rn×[τ, t0]). If u(x, τ) ≥
0 for almost all x ∈ Rn, then u(x, t) ≥ 0 for almost all x ∈ Rn, and t ∈ [τ, t0].
If, furthermore, u ∈ Cunif (Rn × [τ, t0]) and u(x, τ) 6≡ 0, then u(x, t) > 0 for
x ∈ R1, and t ∈ (τ, t0].

Proof The proof is similar to that of one dimensional case(see[5] and [6]).
We may assume τ = 0. By assumption, ess infx∈Rnu(x, t) is continuous. If the
conclusion of the lemma is not true, then there exist constants ε > 0, T > 0 such
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that u(x, t) > −εe2Kt for almost all x ∈ Rn, 0 < t < T and ess infx∈Ru(x, T ) =
−εe2KT , where

K = ‖K0‖L∞(Rn×[τ,t0]) + 1. (2.2)

Let z(x) be a smooth function such that minx∈Rn z(x) = z(0) = 1,
supx∈Rn z(x) = z(±∞) = 3, and |zxi

(x)| ≤ 1 for i = 1, · · · , n. Define wσ(x, t) =
−ε

(
3
4 + σz(x)

)
e2Kt, for σ ∈ [0, 1]. Since w1(x, t) < u(x, t) for almost all

x ∈ Rn, and 0 ≤ t ≤ T , and w0(x, t) = − 3
4εe2Kt, there is a minimum

σ∗ ∈
(

1
8 , 1

4

]
such that wσ∗(x, t) ≤ u(x, t) for almost all x ∈ Rn, and t ∈ [0, T ].

Since wσ∗(±∞, t) ≤ − 9
8εe2Kt < u(x, t) and u(x, t) > wσ∗(x, t) for almost all

x ∈ R2, and t ∈ (0, T ], there exist (xn, tn) ∈ R1 × (0, T ] and (x̄, t̄) such that
limn→∞(xn, tn) = (x̄, t̄), limn→∞{u(xn, tn) − wσ∗(xn, tn)} = 0, the infimum of
u(x, t)−wσ∗(x, t) on R× [0, T ], and limn→∞(u−wσ∗)t(xn, tn) ≤ 0. Therefore,

0 ≥ lim
n→∞

(u− wσ∗)t(xn, tn)

≥ lim
n→∞

{(J ∗ u)(xn, tn) + K0(xn, tn)u(xn, tn)}+ 2Kεe2Kt̄
(
σ∗z(x̄) +

3
4
)

≥ lim
n→∞

{K0(xn, tn)(u− wσ∗)(xn, tn) + K0(xn, tn)wσ∗(xn, tn)

+ J ∗ (u− wσ∗)(xn, tn) + J ∗ wσ∗(xn, tn)}+ 2Kεe2Kt̄
(
σ∗z(x̄) +

3
4
)

≥ εe2Kt̄
[7
4
K − 3

2
‖K0‖ −

3
2
]

> 0.

by the choice of K in (2.2), which is a contradiction. Therefore u(x, t) ≥ 0 for
almost all x ∈ Rn and t ∈ [τ, t0].

Let v(x, t) = eKtu(x, t). Then we have vt(x, t) ≥ J ∗ v(x, t) for x ∈ R1 and
t ∈ (τ, t0] since u(x, t) ≥ 0. Therefore, v(x, t) ≥ tJ ∗v(x, 0). After N th iteration,
we have v(x, t) ≥ tN

N !J ∗· · ·∗J ∗u(x, 0). If u ∈ Cunif (Rn× [τ, t0]) and u(x, 0) 6≡ 0,
we can choose N large enough such that J ∗ · · · ∗ J ∗ u(x, 0) > 0. Therefore, we
have v(x, t) > 0. This completes the proof. �

Lemma 2.2 Suppose u1(x, t) and u2(x, t) are super-solution and sub-solution
of (1.1), respectively, with u1(x, τ) ≥ u2(x, τ), for all x ∈ Rn and for some
τ ∈ Rn. Then u1(x, t) ≥ u2(x, t) for all x ∈ Rn and t > τ . Moreover, if
u1(x, τ) 6≡ u2(x, τ), then u1(x, t) > u2(x, t) for all x ∈ Rn and t > τ .

Proof Let v(x, t) = u1(x, t) − u2(x, t). Then v(x, τ) ≥ 0 for all x ∈ Rn and
v(x, t) satisfies

vt −K0(x, t)v − (J ∗ v)(x, t) ≥ 0 (2.3)

for all x ∈ Rn and t ≥ τ , where

K0(x, t) =
∫ 1

0

fu(u2 + θ(u1 − u2))dθ − 1. (2.4)

The result follows from Lemma 2.2. �
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We use the super- and sub-solution method employed in [6] to prove the
stability in one dimensional case. To that end, we first develop the following
lemma.

Lemma 2.3 Let φ(x−c0t) be as in Theorem 1.1 and β1 = − 1
2 max{f(−1), f(1)}.

There exist δ1 > 0 and σ1 > 0 such that, for any δ ∈ (0, δ1), ξ0 ∈ R and w±(x, t)
are super- and sub-solutions of (1.1) on (0,∞), respectively, where

w±(x, t) = φ(x1 + ξ0 ± σ1δ(1− e−β1t)− c0t)± δe−β1t (2.5)

for x ∈ Rn, t ∈ (0,∞).

Proof We prove only that w+(x, t) is a super-solution. The other can be
proved similarly.

Lw+ :=w+
t − (J ∗ w+ − w+)− f(w+)

=[σ1β1φ
′(η+(x, t))− β1 −K0(x, t)]δe−β1t

(2.6)

where

K0(x, t) =
∫ 1

0

fu(φ(η+(x, t)) + θδe−β1t)dθ,

and η+(x, t) = x1 + ξ0 + σ1δ(1 − e−β1t) − c0t. Since limx→∞ φ(±x) = ±1,
K0(x, t) → fu(±1) uniformly in t ∈ [0,∞) as η+(x, t) → ±∞ and δ → 0. So,
there exist m̄ > 0 and δ1 > 0 such that for x ∈ Rn with |η+(x, t)| ≥ m̄ and
0 < δ < δ1,

K0(x, t) < −β1, (2.7)

that is, −β1 − K0(x, t) ≥ 0 for x ∈ Rn and t ∈ R+ with |η+(x, t)| ≥ m̄.
Therefore, Lw+ ≥ 0 for x ∈ Rn and t ∈ R+ with |η+(x, t)| ≥ m̄.

For |η+(x, t))| ≤ m̄, choose

σ1 =
β1 + K

β1α(m̄)
, (2.8)

where K = sup{|fu(u)| : u ∈ [−2,+2]} and α(m̄) = min{φ(x) : x ∈ [−m̄, m̄]}.
We know that α(m̄) > 0 since φ(x) > 0 for all x ∈ R. Then, for t ≥ 0, x ∈ Rn

with |η+(x, t)| ≤ m̄ and any 0 < δ ≤ δ1, we have Lw+ ≥ 0.
Therefore Lw+ ≥ 0 for all x ∈ Rn and t ∈ (0,∞). That is, with the above

choices of δ1 and σ1, the function w+(x, t) is a super-solution for (1.1). �

Proof of Theorem 1.1 For ε > 0 given, since φ is uniformly continuous,
there exists k0 > 0 such that, for all |k| ≤ k0,

|φ(x1 + k)− φ(x1)| <
ε

2
(2.9)

for all x1 ∈ R. Let β1, σ1 and δ1 be as in Lemma 2.3. Choose δ > 0 such that
δ < min

{
ε
2 , k0

σ1
, δ1

}
. Then by Lemma 2.2, the condition

φ(x1)− δ < u0(x) < φ(x1) + δ
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implies

φ(x1 − σ1δ(1− e−β1t)− c0t)− δe−β1t

≤ u(x, t)

≤ φ(x1 + σ1δ(1− e−β1t)− c0t) + δe−β1t. (2.10)

By the choice of δ and (2.9) - (2.10), we have

|u(x, t)− φ(x0 − c0t)| < ε

for all x ∈ Rn and t > 0. That completes the proof.
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