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Abstract

A mathematical model is presented that describes the disinfection
of microbial biofilms by antibiotics. It is the first multi-species/multi-
substrate generalization of a continuous prototype biofilm model compris-
ing degenerating as well as fast diffusion. The boundedness of the model
solution is established. The dynamic model behaviour in dependence of
model parameters is studied by numerical simulations. A characteristic
dimensionless parameter, the disinfection number, is derived, allowing an
a priori statement whether all active biomass will be removed or not.

1 Introduction

Biofilm Modeling

Bacterial biofilms are accumulations of microorganisms in aqueous systems that
grow attached to interfaces and surfaces. The bacteria are embedded in a poly-
meric matrix which offers them protection against harmful impact from the en-
vironment. Therefore, in a biofilm bacteria live in a protected mode of growth
which enhances their ability to survive in hostile environments.

For a long time, dynamic biofilm models have been based on the seminal
work of Wanner and Gujer [19]. In their approach, the biofilm will grow only in
one direction, perpendicular to the substratum. This describes the formation
of a biofilm layer with uniform thickness. The accumulation of biomass in this
model is described by a convective mechanism, with the convection velocity
directly related to the production of new biomass. However, as is observed
in laboratory experiments, using advanced techniques such as confocal laser
scanning microscopy (CLSM) or scanning electron micrograph (SEM), in realiter
biofilms can grow in complicated spatial architectures with voids and channels,
rather than as homogeneous layers. Therefore, in recent years several models
have been proposed that also allow for a description of the evolution of spatially
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heterogeneous biofilm structures. The crucial task in multi-dimensional biofilm
modeling is to formulate a spatial biomass spreading mechanism that allows for
spatial heterogeneities and which is sensitive to the shape determining factors.
In most approaches the biomass is considered a continuum. One can distinguish
between models based on discrete, stochastic local sets of rules, e.g. [10, 13, 14,
15, 20], and the more recent fully continuous deterministic models based on
partial differential equations [6, 8]. These models either treat biomass density
as a constant [6, 10, 13] or as a dependent variable [8, 14, 15]. As an alternative
to the continuum ansatz, an individual based model was proposed in [12], in
which single bacteria are considered instead of a biomass continuum.

In this study we will generalize the prototype density-dependent diffusion-
reaction model [8] to a binary biofilm system with two biomass fractions. It
comprises degeneracy (as in the porous medium equation) as well as a singu-
larity of the diffusion coefficient. In [8], only a single-species/single-substrate
biofilm was considered. Real biofilms, however, consist of more than one popu-
lation, and often several dissolved substrates must be taken into account. Since
the overall mechanisms leading to mixing or separation of several species in a
biofilm are not yet fully understood, no general multi-species biofilm model can
be formulated at present. Instead, particular biofilm systems must be modelled
separately. As a first example we will consider a binary biofilm with active and
inert biomass in the presence of antibiotics and nutrients. A thorough math-
ematical analysis of a complex model like this is currently possible only in a
restricted way, in particular due to occurrence of both non-standard diffusion
effects. Therefore, mainly computer simulations are deployed to study the qual-
itative behaviour of the system. In the current study our main interest lies not
in the formation of spatially heterogeneous biofilm architectures but in the in-
teraction of the system’s components, mainly in the spreading mechanism in the
presence of more than one population. Therefore, we will restrict ourselves to
the one-dimensional case. However, the model can be applied to study spatial
effects as well.

Antibiotic Disinfection of Biofilms

Many bacterial infections in the human body are caused by biofilms (see [4] for
a list of examples), the treatment of which is rather complicated because the
sessile bacteria of a biofilm community are less susceptible to antibiotics than
their suspended planktonic conspecifics.

Biologists claim several different mechanisms counteracting antibiotic ther-
apy [4]: The bacteria in a biofilm communicate with each other through a cell-
to-cell signaling mechanism. This enables them to react to changing situations
as a population community instead of individually. A mathematical model for
this effect called quorum sensing was suggested and recently discussed in [5]. A
second mechanism responsible for reduced susceptibility of biofilms to antibi-
otics is the failure of antimicrobial agents to fully penetrate the biofilm. In the
present study we turn to this aspect. Diffusion of antibiotics in the biofilm is
slower than in pure water, and it is also slower than diffusion of many feed-
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ing nutrients or oxygen. Furthermore, at the biofilm surface the antibiotics are
quickly degraded in biochemical reactions. This hampers the full penetration
of the biofilm. The bacteria at the interface will be deactivated, but due to
the lack of antibiotics the microorganisms in the deeper layers of the biofilm
are not affected. Thus, they can survive and multiply. This was experimen-
tally investigated in [1], e.g. Modelling studies on this effect using inherently
one-dimensional biofilm models were reported in [7, 16, 17, 18].

The mathematical description of antibiotic disinfection of biofilms is more
complicated than a prototype single-species/single-substrate biofilm system, the
consideration of which is sufficient for the modelling of spatially heterogeneous
biofilm architectures, even if many biofilms in the human body are formed by
one single bacterial species: Not only the living organisms must be taken into
account but also inert biomass as the product of the disinfection process. More-
over, of course, besides the nutrients (including oxygen), the antibiotic itself
must be considered as a dissolved component. Hence, with active and inert
biomass, we have a binary biofilm. Previous experimental findings and re-
sults obtained with classical modelling techniques allow for a comparison of our
model’s behaviour with established results. Therefore, the antibiotic disinfec-
tion regime is an ideal candidate to test the applicability of the new biomass
spreading mechanism that was originally formulated for a mono-species model
of a biofilm system with more than one component.

2 The Basic Biofilm Model

A density-dependent diffusion-reaction model for the formation of spatially het-
erogeneous single-species/single-substrate biofilms was introduced in [8] for the
dependent variables substrate concentration C and biomass density M . The
key model features are: (i) there is a sharp boundary between biofilm and bulk
liquid, (ii) biomass spreading only takes place if the biomass density approaches
a prescribed maximum value which establishes an upper bound, and (iii) new
biomass is produced locally as long as there are nutrients available to feed bac-
teria. The system of evolution equations reads

Ct = ∇x · (DC∇xC)− γCM

K + C

Mt = ∇x · (DM (M)∇xM) +
ξ1CM

K + C
− ξ3M

(2.1)

where the density dependent biomass diffusion coefficient is given by

DM (M) = dM
Mβ

(Mmax −M)α
, α, β > 1, dM > 0 (2.2)

The parameters in (2.1) are the nutrient diffusion constant DC , the specific
maximum consumption rate γ, the Monod half-saturation constant K and the
specific maximum biomass growth rate ξ1, which all are positive. The biomass
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decay rate ξ3 is non-negative. The model is considered in a bounded domain
Ω ⊂ Rd, d = 1, 2, 3. The standard boundary conditions considered are mixed
Neumann/Dirichlet conditions.

Figure 1: Formation of a biofilm colony in time according to (2.1): First a wavy
layer develops. After nutrients get limited inside the biofilm the bigger colonies
start to dominate over the smaller ones and mushroom type structures develop
(from [8]).

In this model, the distinction between the actual biofilm and the surrounding
liquid phase is given by the biomass density. The liquid region is described by
Ω1(t) = {x ∈ Ω | M(x, t) = 0}. The biofilm itself is the region Ω2(t) = {x ∈
Ω | M(x, t) > 0}. Both regions vary in time due to the evolution of the biomass
density. The degeneracy DM (0) = 0 is responsible for model properties (i)
and the first part of (ii) as in the porous medium equation. The singularity
DM (M) →∞ as M → Mmax was introduced in order to guarantee the second
part of property (ii). Property (iii) is satisfied due to the reaction kinetics
applied. In [8] it was demonstrated by computer simulations that model (2.1)
is able to describe the formation of spatially heterogeneous biofilm structures,
such as experimentally observed mushroom-type colonies, see Figure 1. The
heterogeneity of the predicted biofilm architectures is sensitive to the initial
and boundary conditions as well as to a dimensionless parameter G that relates
biomass production and nutrient availability. In [9], existence, uniqueness, and
boundedness of the model solution were proven, in particular it was shown that
M indeed obeys the upper bound Mmax.

3 A Model For Antibiotic Disinfection

Governing Equations

The prototype biofilm model (2.1) only describes mono-species biofilms. In
order to model spatio-temporal processes of biofilms with more than one biomass
fraction, it must be adapted and generalized in an appropriate manner. A simple
example is antibiotic disinfection of biofilms, for which inert biomass must be
taken into account in addition to viable biomass. From the modelling point of
view, this is treated as a second population and a binary biofilm is obtained.
The basic setup for the disinfection process follows the model developed in [16]:
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The dissolved substrates B and C are transported due to diffusion in bulk and
biofilm, and consumed by active biomass in the biofilm. The disinfection process
is considered as a one-to-one conversion of viable biomass into inert biomass,
depending on the availability of antibiotics. Viable biomass X grows, as long
as nutrients are available, by consumption as in (2.1) and it decays due to
disinfection with antibiotics and due to natural death. The inert biomass Y
grows due to disinfection. The reaction terms are first order in B and X, and
they depend on C according to Monod kinetics. As in [16], we assume that live
and dead cells are moved together and we put this into our model framework.
Therefore, in our model the nonlinear biomass diffusion coefficient is the same
for X and Y and depends on the total density of both fractions. The upper
bound Mmax must be obeyed simultaneously by both viable and inert biomass.
Similarly, spatial spreading occurs only when this maximum value is approached
by the total biomass density. The resulting biofilm model reads

Bt =∇x · (DB∇xB)− βBX

Ct =∇x · (DC∇xC)− γXC

k + C

Xt =∇x · (DM (X + Y )∇xX) +
ξ1XC

k + C
− ξ2BX − ξ3X

Yt =∇x · (DM (X + Y )∇xY ) + ξ2BX

(3.1)

where oxygen is considered to be the limiting substrate C. The biomass diffusion
coefficient DM (M) in (3.1) is given by (2.2). Implicit in this model formulation
is the assumption that viable and dead biomass have the same maximum cell
density Mmax. Model equations (3.1) are valid in the domain Ω ⊂ Rd, d = 1, 2, 3.
All newly introduced parameters are positive. In (3.1), β and ξ2 are first order
reaction constants describing the interaction of antibiotics and biomass. DB is
the diffusion coefficient of the antibiotics. The remaining parameters of (3.1)
are as in (2.1).

In order to realistically model antibiotic penetration into the biofilm one
must take into account that the diffusion process in the solid biofilm Ω2 is
slower than in the surrounding liquid phase Ω1. This induces the further model
generalization

DB(x) =

{
DB,1 for x ∈ Ω1

DB,2 for x ∈ Ω2

(3.2)

where DB,1 and DB,2 are constants with τB := DB,2/DB,1 ≤ 1. The same
applies for the diffusion coefficient of substrate concentration C. The ratios τ
of biofilm and liquid diffusivity depend on the size and molecular weight of the
molecules (cf. [2, 18]). For various antibiotics, [18] gives typical values around
τB ≈ 0.8. For small molecules like oxygen one has τC in a good approximation
in the range 0.95 ≤ τC ≤ 1. Moreover in the case of oxygen and antibiotics, it
holds that DC ≥ DB .

The evolution equations given above are completed by appropriate initial
and boundary conditions, connecting the system Ω with the external world.
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Properties of the Disinfection Model

Boundedness of the Solution

In [9] the boundedness of the biomass density M was proven for the mono-
species model (2.1) with parameters satisfying ξ1C0

K+C0
− ξ3 > 0. This latter

condition is no severe restriction for practical considerations since otherwise the
production of new active biomass would be impossible. For mixed homogeneous
Dirichlet/Neumann boundary conditions for the biomass density, one obtains
M < Mmax almost everywhere.

The boundedness of the total biomass density X + Y < Mmax (almost
everywhere) of the antibiotic model (3.1) can be obtained as a corollary of this
theorem as follows.

Proposition 3.1 In a bounded domain Ω, the solution of the disinfection model
(3.1) with non-negative parameters satisfying ξ1C0

K+C0
− ξ3 > 0, boundary condi-

tions

B(t, x) = B0 for x ∈ ∂ΩDB ,
∂B

∂n
= 0 for x ∈ ∂ΩNB

C(t, x) = C0 for x ∈ ∂ΩDC ,
∂C

∂n
= 0 for x ∈ ∂ΩNC

X(t, x) = 0 for x ∈ ∂ΩDX ,
∂X

∂n
= 0 for x ∈ ∂ΩNX

Y (t, x) = 0 for x ∈ ∂ΩDX ,
∂Y

∂n
= 0 for x ∈ ∂ΩNX

with

∂ΩNB ∪ ∂ΩDB = ∂Ω, ∂ΩNB ∩ ∂ΩDB = ∅, ΩDB 6= ∅
∂ΩNC ∪ ∂ΩDC = ∂Ω, ∂ΩNC ∩ ∂ΩDC = ∅, ΩDC 6= ∅
∂ΩNX ∪ ∂ΩDX = ∂Ω, ∂ΩNX ∩ ∂ΩDX = ∅, ΩDX 6= ∅

and initial data with

C(0, x) ∈ L∞(Ω) ∩H1(Ω), 0 ≤ C(0, x) ≤ C0

B(0, x) ∈ L∞(Ω) ∩H1(Ω), 0 ≤ B(0, x) ≤ B0

and

X(0, x), Y (0, x) ∈ L1(Ω), 0 ≤ X(0, x), 0 ≤ Y (0, x),
X(0, x) + Y (0, x) < Mmax

satisfies
0 ≤ C(t, x) ≤ C0, 0 ≤ B(t, x) ≤ B0,

and
X + Y < Mmax almost everywhere
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Outline of proof The following steps are taken:

i) For the solutes B and C the assertion follows from the maximum principle.

ii) X and Y are non-negative by comparison and invariance theorems.

iii) Adding the evolution equations for X and Y in (3.1) yields

(X + Y )t = ∇x · (DM (X + Y )∇x(X + Y )) + X

(
γC

k + C
− ξ3

)

Since

0 ≤ X

(
γC

k + C
− ξ3

)
≤ (X + Y )

(
γC

k + C
− ξ3

)
it follows that the solution M of the corresponding boundary value problem (2.1)
is an upper bound for X+Y by monotonicity and comparison arguments. Hence,
‖X + Y ‖L∞(R+×Ω) ≤ ‖M‖L∞(R+×Ω) < Mmax follows by the main theorem
proven in [9].

Note that in many applications Y (0, x) ≡ 0 everywhere in Ω. Then, the
initial conditions for X are the same as the ones for the total biomass M in [9].

Similarly, the finite speed of the propagation of the interface between Ω1

and Ω2 is established. That is, for small X + Y the diffusion operator in (3.1)
behaves like the degenerating density-dependent diffusion operator of the porous
medium equation.

Initial Penetration of Solutes

Since the transport and reaction processes governing the evolution of substrates
are much faster than the evolution and formation of biomass (cf. [11]), a quasi-
steady state scenario is investigated under the assumption of frozen biomass X
and Y . The substrates C and B relax to an equilibrium very quickly. This differ-
ence in characteristic time-scales is the reason why the actual initial conditions
for B and C in (3.1) are not of particular importance.

At initial time t = 0 of the disinfection process, we have constant X ≡ X0

in Ω2 and X ≡ 0 in Ω1, and Y ≡ 0 everywhere. In this case, the equations for
C and B decouple. In a one-dimensional setup the steady states of B satisfy a
linear second order ordinary differential equation. After rescaling the diffusion-
reaction equation, the spatially one-dimensional equation reads in dimensionless
form

0 = bxx − θ2
bb for x ≤ λ := Lf/Lz

0 = bxx for λ ≤ x ≤ 1
bx(0) = 0, b(1) = b0

(3.3)

with θ2
b = βX0L

2
f/DB,2. In the chemical engineering literature, the dimension-

less variable θb is called the Thiele number. At the interface of Ω1 and Ω2,
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the antibiotic concentration b and its diffusive flux are continuous. These two
internal boundary conditions allow for a unique solution of (3.3) that reads

b(x) =

{
b(λ) cosh(θbx)

cosh(λθb)
for x ≤ λ

b(λ) + x−λ
1−λ (b0 − b(λ)) for λ ≤ x ≤ 1

(3.4)

The concentration b(λ) at the interface of Ω1 and Ω2 can be eliminated using
the internal boundary conditions described above. This yields

b(λ) =
b0

1 + (1− λ)τbθb tanh(λθb)
(3.5)

Solution (3.4) shows how the penetration of antibiotics in the biofilm is
hampered by the diffusion-reaction mechanism quantified by the Thiele number.
A detailed investigation of this effect was carried out in [17, 18].

In the sequel, we will derive a condition for the net biomass production
preventing antibiotic disinfection, based on the analytical solution (3.4). An
analytical solution of the corresponding two-point boundary value problem for
C is not available. However, in cases where the concentration at the biofilm
interface is small, i.e. c(λ) � k (this is the case in some interesting applications,
see the parameters used in [16]), the Monod term can be approximated by a
first order reaction and one obtains a similar equation as for B, which reads

0 = cxx − θ2
cc for x ≤ λ,

0 = cxxfor λ ≤ x ≤ 1,

cx(0) = 0, c(1) = c0

(3.6)

with θ2
c = γX0L

2
f/(kDC,2). The solution of (3.6) is analogous to (3.4).

If the antibiotic concentration is sufficiently high to dampen the formation
of new viable biomass, the biomass production term in the evolution equation
(3.1) for X must be dominated by the loss term, i.e.∫ λ

0

ξ1

k
cdz ≤

∫ λ

0

(ξ2b + ξ3) dz (3.7)

Upon substituting the analytical solutions into (3.7), one obtains the following
condition for antibiotic disinfection that prevents the net production of active
biomass

1 ≤ D :=
kθc

θb
· b0ξ2 tanh(λθb) + ξ3λθb

c0ξ1 tanh(λθc)
· 1 + (1− λ)τcθc tanh(λθc)
1 + (1− λ)τbθb tanh(λθb)

(3.8)

If D < 1, the production of new viable biomass is faster than the disinfection
process.

One-dimensional Dynamic Simulations

Boundary Conditions and Numerical Scheme

As pointed out earlier, a complete analytical treatment of the model equation
(3.1) is difficult. Therefore, we carry out computer simulations to study the
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model behaviour, restricting ourselves to the one-dimensional case in this pa-
per. This, of course, can not provide information about spatially heterogeneous
biofilm structures, but it can demonstrate the interaction of the four compo-
nents of the system, antibiotics, substrates, active and inert biomass, which is
the primary purpose of this study.

For our simulations, at the substratum (x = 0) homogeneous Neumann con-
ditions are specified for all components, and Dirichlet conditions at the other
end of the domain (x = L). The boundary values for the dissolved substrates
are positive and describe unrestricted availability in the bulk. For the biomass
components, the density is kept at 0 for x = L. Thus, X +Y < Mmax is guaran-
teed by Proposition 3.1. Initially (at t = 0) no inert biomaterial is in the system,
and a homogeneous biofilm is considered with a constant distribution of active
biomass close to the maximum value. This agrees in very good approxima-
tion with the results obtained in [8] for a single-substrate/single-species biofilm.
This setup describes the disinfection process after a homogeneous biofilm with
thickness Lf has developed. The initial conditions prescribed for the dissolved
substrates B and C are not critical, as noted above since they reach a “quasi-
equilibrium” instantaneously, which is described by the analytical solution (3.4)
for B. Thus, the initial and boundary conditions read

B(x, 0) = B0, C(x, 0) = C0, Y (x, 0) = 0

X(x, 0) =

{
X0 if x ≤ Lf

0 if x > Lf ,

(3.9)

Bx(0, t) = 0, Cx(0, t) = 0, Xx(0, t)) = 0, Yx(0, t) = 0
B(L, t) = B0, C(L, t) = C0, X(L, t) = 0, Y (L, t) = 0 ,

(3.10)

where X0 < Mmax is a positive constant and Lf is the initial thickness of the
biofilm. Thus one has Ω1(0) = (Lf , L] and Ω2(0) = [0, Lf ].

Since the characteristic time scales of biofilm formation/disinfection (i.e.
the evolution equations for X and Y ) and for nutrient consumption (i.e. the
evolution equations for B and C) differ by several orders of magnitude, two
different approaches are made for the time integration of (3.1): An explicit
4th order Runge-Kutta method is deployed for the slower X and Y , while an
implicit backward Euler scheme is used for the faster processes describing B
and C. Finite volumes are used for space discretization. The nonlinear system
in the calculation of B and C is solved with a restarted Newton method.

Illustration of Model Behavior

To illustrate the behavior of model (3.1), we carry out several simulations with
changing model parameters. In the focus of our interest is the mixing of viable
and dead biomass which is governed by the spatial biomass spreading mechanism
at the core of the evolution equations for X and Y . Biofilm disinfection is an in-
teraction of several processes, such as nutrient utilization and production of new
biomass, antibiotic consumption, transfer of living biomass into dead biomass,
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and transport of soluble substrates in the biofilm by diffusion. Therefore, it
can be expected that the qualitative behavior of the model depends strongly
on how these processes balance. In the sequel, it will be investigated how the
performance of antibiotic disinfection depends on the environmental conditions,
using numerical simulations with different model parameters. The parameters
to be varied are the bulk antibiotic concentration B0, the initial biofilm thick-
ness Lf , the inital biomass density X0, and the supply of nutrients expressed
by the bulk nutrient concentration C0. The other model parameters are kept
constant throughout all simulations in this section. The model parameters are
taken from [16, 18], in order to allow a comparison of results. The variations of
these default parameters are given in the text with the simulations. In all cases
in this section λ = LF /L = 0.91 at the beginning. Thus a thin concentration
boundary layer with the same relative thickness for all cases is prescribed

Basic process description: As soon as antibiotic B is added to the system
and transported from the boundary to the biofilm, disinfection starts and inert
biomass is produced. The depth to which the antibiotics can penetrate into the
biofilm and eradicate active biomass depends on factors such as utilization rates,
diffusion coefficients, and bulk antibiotic concentration. In any case, disinfection
starts at the biofilm/bulk interface and propagates to the substratum. Due to
decay of antibiotics by viable biomass, the disinfection process is slowed down
inside the biofilm. On the other hand, as long as oxygen C and living bacteria
X are available, new biomass is produced. The biomass newly formed inside
the biofilm pushes the inert biomass at the interface and the biofilm may even
grow. Some typical simulations are shown in Figures 2, 3, and 4.

Variation of antibiotic bulk concentration: With increasing B0, the pro-
duction of inert biomass accelerates due to enhanced availability of antibiotics.
In cases of very low B0, the thickness of the biofilm may increase due to for-
mation of new active biomass. This is shown in Figure 2. In particular, for the
lowest test bulk antibiotic concentration (a), virtually no disinfection takes place
due to antibiotic limitation. In the case (b) with increased B0, inert biomass
forms at the biofilm/bulk interface. However, due to the decay of antibiotics at
the interface, they get limited in the interior of the biofilm, where no disinfection
takes place for a long time (several days). In the case (c) with further increased
B0, the active biomass at the biofilm/bulk interface is immediately converted
into dead biomass, the antibiotic does not penetrate into the biofilm fast enough.
Thus, viable biomass exists at the substratum for some time. Only in the case
(d) of a very high bulk antibiotic concentration, the entire biofilm is converted
into inert biomass within a short time (less than half a day). In the presented
simulations, Lf = 4.55 · 10−4m, C0 = 0.035gm−3, X0 = 0.95gm−3. As the
simulations demonstrate, there is no instantaneous spreading of inert biomass
inside the biofilm but rather the propagation of an inert biomass wave. This
shows that the spatio-temporal biomass spreading mechanism in our model is
able to keep populations in a biofilm separated if the reaction terms allow this.
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Figure 2: Production of inert biomass for different antibiotic bulk concentrations
B0 in time. Shown is inert biomass density Y relative to maximum biomass
density MMax: (a) B0 = 0.1gm−3, (b) B0 = 10gm−3, (c) B0 = 100gm−3, (d)
B0 = 500gm−3

This is one of the crucial properties of a reliable biofilm model. The profiles of
X for a fixed t are the same as those shown in [16].

Variation of initial biofilm thickness: In a second experiment, we investi-
gate the disinfection process in dependence of the initial biofilm thickness. Fig-
ure 3 shows simulations for B0 = 100gm−3, C0 = 0.035gm−3, X0 = 0.95gm−3.
Only for thin biofilms, i.e. case (a), the whole biofilm is disinfected quickly.
With increasing initial biofilm thickness, it becomes more and more difficult for
the antibiotics to penetrate the whole biofilm and to transform active biomass
into inert biomass. In particular for the thickest example (c), over a long pe-
riod of time virtually no disinfection takes place at the substratum. The time
which is needed for full disinfection depends nonlinearly on the initial biofilm
thickness.

Variation of initial biomass density and nutrient supply: In the last
experiment we shall investigate how the the model (3.1) depends on the bulk
oxygen concentration and on the initial biomass density. The first factor actively
controls the growth of the biofilm. The second one is of interest since the un-
derlying biofilm model (2.1) has the property that spatial spreading of biomass
only takes place when the total biomass density approaches its maximum value
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Figure 3: Disinfection of biofilms with different inital thicknesses Lf . Plotted
is the inert biomass density Y relative to the maximum biomass density Mmax:
(a) Lf = 9.1 · 10−5m, (b) Lf = 4.55 · 10−4m, (c) Lf = 6.36 · 10−4m

Mmax. Thus, in this last illustration, it will be investigated how the model
describes the growth of the binary biofilm under consideration. As an example,
Figure 4, compares the active biomass X and the total biomass M = X + Y
for different values of X0 and C0. The bulk antibiotic concentration in these
simulations is B0 = 10gm−3, the initial biofilm thickness is Lf = 9.1 ·10−5m. In
neither of the cases with increased C0 in the bulk the oxygen limitation inside
the biofilm could be overcome. Thus, a noteworthy amount of new biomass is
produced only close to the interface of Ω1 and Ω2. In case (b) with a higher
initial biomass density, the new biomass leads immediately to an increase of the
biofilm thickness. In case (a) with a lower inital biomass density, it propagates
into the biofilm leading to a compression of the total biomass by pushing both
the viable and the inert population. The growth of the biofilm starts only when
the total biomass density approaches Mmax at the interface. Again this is in
agreement with the postulation that lead to the formulation of the underlying
biofilm formation model (2.1) in [8]. In the cases (c) and (d) with lower C0,
much less new biomass is produced and the biofilm thickness remains virtually
constant over the time interval shown. Under lower bulk nutrient concentra-
tions, the active biomass density is smaller for higher C0, i.e. disinfection is
faster. Thus, increased active biomass production counteracts the conversion
into inert biomass.

The qualitative model behavior in all the simulations shown above agrees
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Figure 4: Biomass growth and disinfection for various C0 and X0. Plotted are
the total biomass density M = X +Y and the viable biomass density X, relative
to Mmax: (a) C0 = 0.1gm−3, X0 = 0.85M0, (b) C0 = 0.1gm−3, X0 = 0.95Mmax,
(c) C0 = 0.0035gm−3, X0 = 0.85Mmax, (d) C0 = 0.0035gm−3, X0 = 0.95Mmax

with the results published in [16, 17, 18]. Therefore, it may be concluded that
the spatial biomass spreading mechanism introduced in (3.1) is able to reliably
simulate binary biofilms like the system of viable and inert biomass in this study.

Growth vs. Decay of Active Biomass

Based on a frozen steady state assumption for slowly growing biomass, criterion
(3.8) was derived, which allows an a priori statement whether at initial time
net production of viable biomass takes place or whether the disinfection process
is faster than biomass growth. This criterion was based on the assumption of a
constant initial distribution of biomass and on the analytic steady state solution
(3.4) for solutes. In this section the question will be investigated whether this
criterion applies to transient processes as well. Thus, the question is, under
which circumstances can the disinfection number D be used as a parameter to
a priori decide about the qualitaive behaviour of the model over time, that is,
extinction or growth of active biomass in the system.

For this purpose many computer simulations were run covering a broad
range of model parameter sets, and hence values of D. The results are illus-
trated in Figures 5 and 6. Shown is the total active and inert biomass, rela-
tive to the active biomass at starting time. That is,

∫ L

0
X(x, t)dt/(X0Lf ) and
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Figure 5: Total active and inert biomass in the biofilm, relative to the total
biomass at initial time for several disinfection numbers D.
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Figure 6: Figure 5 continued
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∫ L

0
Y (x, t)dt/(X0Lf ).
For D � 1, the rate of disinfection is much bigger than the production rate of

new viable biomass. The total active biomass shrinks and the total inert biomass
increases. Eventually this leads to total disinfection, that is, no active biomass
remains. In the opposite case D � 1, the production of new biomass outweighs
conversion into dead material. That is, the total viable biomass grows. This
leads to an increase of the biofilm thickness. For very low D, the disinfection
rate appears negligibly small. For D ≈ 1 it is observed that the total amount
of active biomass remains almost constant over a long period of time, while the
inert biomass may increase. That is, the criterion (3.8) for disinfection applies
to the transient case as well.

With one exception, all simulations presented here were carried out with
parameters chosen such that C(λ) � k. This was one of the assumptions made
for the derivation of the disinfection criterion (3.8). Only in Figure 6b with
D = 1 this condition was not met. While in Figure 6a (also with D = 1) the total
amount of viable biomass remains unchanged in the course of the simulation, in
Figure 6b disinfection starts. This effect is generally observed: When C(λ) � k
does not hold, the disinfection process is faster than for the same D number with
lower bulk concentrations. Indeed, disinfection might start already for D < 1.
The reason for this effect is that the reaction rate ξ1c

k+c of the Monod kinetics
is bounded while the first order reaction ξ1c/k is not bounded. Therefore,
Monod kinetics lead to a lower biomass production and D underestimates the
disinfection process. This can be explained by introducing a disinfection number
DMonod based on the solution corresponding to the nonlinear reaction term in
(3.1) in the same manner as D is based on the solution of the first order equation
(3.6). Then the following holds.

Proposition 3.2 The Monod-based disinfection number DMonod and the disin-
fection number D are related by

DMonod ≥ D

Outline of proof: Let C be the solution of the steady state diffusion reaction
model with first order kinetics and C̃ the solution of the equation with Monod
kinetics. The following steps are taken:
i) The Monod disinfection number is the ratio of the integral Ib of the decay
terms and the integral of the production term in (3.1):

DMonod = Ib/Ic,M

with

Ic,M = ξ1

∫ Lf

0

C̃

k + C̃
dx =

DC,2ξ1

γ

∫ Lf

0

C̃ ′′dx =
DC,2ξ1

γ

[
C̃ ′(Lf )− C̃ ′(0)

]
Substituting the boundary and interface conditions into this expression yields

Ic,M =
DC,1ξ1

γ(L− Lf )

[
C0 − C̃(Lf )

]



EJDE/Conf/10 Hermann J. Eberl & Messoud A. Efendiev 139

In the case of first order kinetics one obtains by the same argument

D =
Ib

Ic
with Ic =

DC,1ξ1

γ(L− Lf )

[
C0 − C(Lf )

]
Ib is a constant which is independent of C or C̃.
ii) Using the interface conditions at x = Lf and the Dirichlet condition at
x = L, one obtains smooth two-point boundary value problems for C and C̃ in
the interval [0, Lf ]

0 = DC,2C
′′ − γC

k
, C ′(0) = 0,

C(Lf )
L− Lf

+ τcC
′(Lf ) =

C0

L− Lf
(3.11)

0 = DC,2C̃
′′ − γC̃

k + C̃
, C̃ ′(0) = 0,

C̃(Lf )
L− Lf

+ τcC̃
′(Lf ) =

C0

L− Lf
(3.12)

¿From U
k+U ≤ U

k for U ≥ 0 it follows that

DC,2C
′′ − γC

k + C
≥ 0

With Theorem 3.4.1 of [3] one obtains C(x) ≤ C̃(x) for all x ∈ [0, Lf ], in
particular C(Lf ) ≤ C̃(Lf ).
iii) Combining i) and ii) yields the assertion. �

Note that the evaluation of DMonod requires the quadrature of a function of
the solution of (3.12). Since no closed form for C̃ is available, it can not easily
be used as an a priori defined parameter in order to determine if disinfection
or biofilm growth takes place. However, if the first order reaction is not a valid
approximation of the Monod reaction, we still have that D > 1 will lead to
disinfection, even if the reverse criterion that D < 1 leads to growth of the
biofilm does not hold anymore.

4 Conclusion

A fully continuous biofilm formation mechanism which had been introduced in
[8] as a mono-species/mono-substrate prototype model was applied to a biofilm
system with two species. The system describes antibiotic disinfection of biofilms,
where in addition to viable biomass inert biomass must be taken into account.
This simple system has the adavantage that it was extensively studied experi-
mentally and numerically before. Thus, it offers a good opportunity to compare
the results of the new model to previously published results.

The model is a system of diffusion-reaction equations which comprises degen-
eracy as well as fast diffusion. This is the reason why a full analytical treatment
of the model is currently not possible. However, a statement about the ex-
istence, uniqueness, and boundedness of the model solution could be derived.
The qualitative dynamic behaviour of the model was investigated by computer



140 A transient density-dependent diffusion-reaction model EJDE/Conf/10

simulations. Although the simulations in the present study were restricted to
the one-dimensional case in order to allow for a comparison with classical inher-
ently one-dimensional model studies, the model is able to describe the general
three-dimensional case of spatially heterogeneous biofilms, as well. This will be
demonstrated in a forthcoming article. The new biofilm formation model was
found capable of describing the disinfection process of bacterial biofilms and the
interaction of viable and inert biomass, such as local coexistence or extinction.
Moreover, it was possible to establish an a priori criterion for the extinction of
active biomass, based on a dimensionless number combining model and system
parameters.

The spatial biomass spreading mechanism adapted for the biofilm disinfec-
tion process was based only on the assumption that inert biomass locally coexists
with viable biomass and that both fractions are moved together. This is the
case for other biofilm processes as well, like the production of extracellular poly-
meric substances (EPS). Therefore, the model suggested here is not restricted
to antibiotic disinfection but can be applied to further situations as well.
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