Fifth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 10, 2003, pp 143-152.
http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

A non-resonant multi-point boundary-value problem for a p-Laplacian type operator *

Chaitan P. Gupta

Abstract

Let ϕ be an odd increasing homeomorphism from \mathbb{R} onto \mathbb{R} with $\phi(0)=$ $0, f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions and $e(t) \in L^{1}[0,1]$. Let $\xi_{i} \in(0,1), a_{i} \in \mathbb{R}, i=1,2, \ldots, m-2, \sum_{i=1}^{m-2} a_{i} \neq$ $1,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary-value problem $$
\begin{gathered} \left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\ x(0)=0, \quad \phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right) . \end{gathered}
$$

This paper gives conditions for the existence of a solution for the above boundary-value problem using some new Poincaré type a priori estimates. In the case $\phi(t) \equiv t$ for $t \in \mathbb{R}$, this problem was studied earlier by Gupta, Trofimchuk in [2] and by Gupta, Ntouyas and Tsamatos in [1]. We give a priori estimates needed for this problem that are similar to a priori estimates obtained by Gupta, Trofimchuk in [2]. We then obtain existence theorems for the above multi-point boundary-value problem using the a priori estimates and Leray-Schauder continuation theorem.

1 Introduction

Let ϕ be an odd increasing homeomorphism from \mathbb{R} onto \mathbb{R} with $\phi(0)=0, f$: $[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions, $e:[0,1] \mapsto \mathbb{R}$ be a function in $L^{1}[0,1], a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-2, \sum_{i=1}^{m-2} a_{i} \neq 1$, $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ be given. We study the problem of existence of solutions for the m-point boundary-value problem

$$
\begin{gather*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\
x(0)=0, \quad \phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right) . \tag{1.1}
\end{gather*}
$$

[^0]This problem was studied earlier in the case $\phi(t) \equiv t$ for $t \in \mathbb{R}$, by Gupta, Trofimchuk in [2] and by Gupta, Ntouyas and Tsamatos in [1]. Gupta, Ntouyas and Tsamatos had studied the problem (1.1) when all of the $a_{i} \in \mathbb{R}, i=$ $1,2, \ldots, m-2$, had the same sign by first studying the three-point boundaryvalue problem, for a given $\alpha \in \mathbb{R}, \alpha \neq 1, \eta \in(0,1)$,

$$
\begin{gather*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \\
x(0)=0, \quad x^{\prime}(1)=\alpha x^{\prime}(\eta), \tag{1.2}
\end{gather*}
$$

while Gupta, Trofimchuk in [2] studied the problem (1.1) when the $a_{i} \in \mathbb{R}$, $i=1,2, \ldots, m-2$, do not necessarily have the same sign.

We also study the three-point boundary-value problem analogue of (1.1), for a given $\alpha \in \mathbb{R}, \alpha \neq 1, \eta \in(0,1)$,

$$
\begin{gather*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right)+e(t), \quad 0<t<1, \tag{1.3}\\
x(0)=0, \quad \phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right) .
\end{gather*}
$$

The purpose of this paper is to obtain conditions for the existence of a solution for the boundary-value problem (1.1), using new estimates and inequalities involving a function $x(t)$, its derivative $x^{\prime}(t)$, the functions $\phi\left(x^{\prime}(t)\right)$ and its derivative $\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}$. These results are motivated by the so called nonlocal boundary-value problem studied by Il'in and Moiseev in [5]. We may mention that the reason for studying the three-point boundary-value problem (1.3) is that in this case we obtain a better existence theorem using a priori estimates involving L_{2} norm.

We use the classical spaces $C[0,1], C^{k}[0,1], L^{k}[0,1]$, and $L^{\infty}[0,1]$ of continuous, k-times continuously differentiable, measurable real-valued functions whose k-th power of the absolute value is Lebesgue integrable on $[0,1]$, or measurable functions that are essentially bounded on $[0,1]$. We also use the Sobolev spaces $W_{\phi}^{2, k}(0,1), k=1,2$ defined by

$$
W_{\phi}^{2, k}(0,1)=\left\{x:[0,1] \rightarrow R: x, x^{\prime} \text { abs. cont. on }[0,1],\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime} \in L^{k}[0,1]\right\}
$$

with its usual norm. We denote the norm in $L^{k}[0,1]$ by $\|\cdot\|_{k}$, and the norm in $L^{\infty}[0,1]$ by $\|\cdot\|_{\infty}$.

2 A Priori Estimates

Let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-2,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$, with $\alpha=\sum_{i=1}^{m-2} a_{i} \neq 1$ be given. Let $x(t) \in W_{\phi}^{2,1}(0,1)$ be such that $x(0)=0$, $\phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)$ be given. We are interested in obtaining a priori estimates of the form $\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} \leq C\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1}$. The following theorem gives such an estimate. We recall that for $a \in \mathbb{R}, a_{+}=\max \{a, 0\}, a_{-}=$ $\max \{-a, 0\}$ so that $a=a_{+}-a_{-}$and $|a|=a_{+}+a_{-}$.

Theorem 2.1 Let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=1,2, \ldots, m-2,0<\xi_{1}<\xi_{2}<\cdots<$ $\xi_{m-2}<1$, with $\alpha=\sum_{i=1}^{m-2} a_{i} \neq 1$ be given. Then for $x(t) \in W_{\phi}^{2,1}(0,1)$ with $x(0)=0, \phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)$ we have

$$
\begin{equation*}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1} \tag{2.1}
\end{equation*}
$$

where either $\tau=0$ or

$$
\tau=\min \left\{\frac{\sum_{i=1}^{m-2}\left(a_{i}\right)_{+}}{\sum_{i=1}^{m-2}\left(a_{i}\right)_{-}+1}, \frac{\sum_{i=1}^{m-2}\left(a_{i}\right)_{-}+1}{\sum_{i=1}^{m-2}\left(a_{i}\right)_{+}}\right\} .
$$

Proof We see that the assumption $\phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)$ implies

$$
\phi\left(x^{\prime}(1)\right)+\sum_{i=1}^{m-2}\left(a_{i}\right)_{-} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)=\sum_{i=1}^{m-2}\left(a_{i}\right)_{+} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)
$$

and thus there exist $\lambda_{1}, \lambda_{2} \in[0,1]$ such that

$$
\begin{equation*}
\left(1+\sum_{i=1}^{m-2}\left(a_{i}\right)_{-}\right) \phi\left(x^{\prime}\left(\lambda_{1}\right)\right)=\sum_{i=1}^{m-2}\left(a_{i}\right)_{+} \phi\left(x^{\prime}\left(\lambda_{2}\right)\right) \tag{2.2}
\end{equation*}
$$

If, now, either $x^{\prime}\left(\lambda_{1}\right)=0$ or $x^{\prime}\left(\lambda_{2}\right)=0$, so that either $\phi\left(x^{\prime}\left(\lambda_{1}\right)\right)=0$ or $\phi\left(x^{\prime}\left(\lambda_{2}\right)\right)=0$, then we clearly have

$$
\begin{equation*}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} \leq\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1} \tag{2.3}
\end{equation*}
$$

Suppose, now, that $x^{\prime}\left(\lambda_{1}\right) \neq 0$ and $x^{\prime}\left(\lambda_{2}\right) \neq 0$, so that $\phi\left(x^{\prime}\left(\lambda_{1}\right)\right) \neq 0$ and $\phi\left(x^{\prime}\left(\lambda_{2}\right)\right) \neq 0$. It then follows easily from equation (2.2) that $\phi\left(x^{\prime}\left(\lambda_{1}\right)\right) \neq$ $\phi\left(x^{\prime}\left(\lambda_{2}\right)\right)$, in view of the assumption $\alpha=\sum_{i=1}^{m-2} a_{i} \neq 1$. It then follows from equation (2.2), the estimate (2.3) and the equations

$$
\begin{aligned}
& \phi\left(x^{\prime}(t)\right)=\phi\left(x^{\prime}\left(\lambda_{1}\right)\right)+\int_{\lambda_{1}}^{t}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
& \phi\left(x^{\prime}(t)\right)=\phi\left(x^{\prime}\left(\lambda_{2}\right)\right)+\int_{\lambda_{2}}^{t}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s
\end{aligned}
$$

that

$$
\begin{gathered}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1} \\
\text { with } \tau=\min \left\{\frac{\sum_{i=1}^{m-2}\left(a_{i}\right)_{+}}{\sum_{i=1}^{m-2}\left(a_{i}\right)_{-}+1}, \frac{\sum_{i=1}^{m-2}\left(a_{i}\right)_{-}+1}{\sum_{i=1}^{m-2}\left(a_{i}\right)_{+}}\right\} .
\end{gathered}
$$

This completes the proof of the theorem.

Remark We note that if $a_{i} \leq 0$ for every $i=1,2, \ldots, m-2$, then $\tau=0$. Also, if $a_{i} \geq 0$ for every $i=1,2, \ldots, m-2$ so that $\alpha=\sum_{i=1}^{m-2} a_{i}=\sum_{i=1}^{m-2}\left(a_{i}\right)_{+} \geq 0$ then $\tau=\min \{\alpha, 1 / \alpha\} \in[0,1)$ since $\alpha \neq 1$, by assumption.

The following theorem gives a better estimate for the three-point boundaryvalue problem in the case of the L^{2} norm.

Theorem 2.2 Let $\alpha \in \mathbb{R}, \alpha \neq 1, \eta \in(0,1)$ be given. Let $x(t) \in W_{\phi}^{2,2}(0,1)$ be such that $\phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right)$. Then

$$
\begin{equation*}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{2} \leq C(\alpha, \eta)\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{gathered}
C(\alpha, \eta)= \begin{cases}\min \{\sqrt{F(\alpha, \eta)}, 2 / \pi\} & \text { if } \alpha \leq 0, \\
\sqrt{F(\alpha, \eta)}, & \text { if } \alpha>0,\end{cases} \\
F(\alpha, \eta)=\frac{1}{2(\alpha-1)^{2}}\left[\alpha^{2}(1-\eta)^{2}+\left(\alpha^{2}-2 \alpha\right) \eta^{2}+1\right] .
\end{gathered}
$$

Proof If $\alpha \leq 0$, we note from $\phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right)$ that there exists an $\xi \in$ $(\eta, 1)$ such that $\phi\left(x^{\prime}(\xi)\right)=0$. It follows from the Wirtinger's inequality [3, Theorem 256] that

$$
\begin{equation*}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{2} \leq \frac{2}{\pi}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2} \tag{2.5}
\end{equation*}
$$

Next, we note, again, from $\phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right)$ that for $0<t<1$,

$$
\begin{equation*}
\phi\left(x^{\prime}(t)\right)=\int_{0}^{t}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s+\frac{\alpha}{1-\alpha} \int_{0}^{\eta}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s-\frac{1}{1-\alpha} \int_{0}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \tag{2.6}
\end{equation*}
$$

Accordingly, we have for $t \in[0, \eta]$

$$
\begin{align*}
\phi\left(x^{\prime}(t)\right)= & \int_{0}^{t}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s+\frac{\alpha}{1-\alpha} \int_{0}^{\eta}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s-\frac{1}{1-\alpha} \int_{0}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
= & \int_{0}^{t}\left(1+\frac{\alpha}{1-\alpha}-\frac{1}{1-\alpha}\right)\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
& +\int_{t}^{\eta}\left(\frac{\alpha}{1-\alpha}-\frac{1}{1-\alpha}\right)\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s-\frac{1}{1-\alpha} \int_{\eta}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
= & -\int_{t}^{\eta}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s-\frac{1}{1-\alpha} \int_{\eta}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \tag{2.7}
\end{align*}
$$

and, for $t \in[\eta, 1]$

$$
\begin{align*}
\phi\left(x^{\prime}(t)\right)= & \int_{0}^{t}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s+\frac{\alpha}{1-\alpha} \int_{0}^{\eta}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s-\frac{1}{1-\alpha} \int_{0}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
= & \int_{0}^{\eta}\left(1+\frac{\alpha}{1-\alpha}-\frac{1}{1-\alpha}\right)\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s+\int_{\eta}^{t}\left(1-\frac{1}{1-\alpha}\right)\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
& -\frac{1}{1-\alpha} \int_{t}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \\
= & -\int_{\eta}^{t} \frac{\alpha}{1-\alpha}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s-\frac{1}{1-\alpha} \int_{t}^{1}\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s \tag{2.8}
\end{align*}
$$

Let us, now, define a function $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
K(t, s)= \begin{cases}-\chi_{[t, \eta]}(s)-\frac{1}{1-\alpha} \chi_{[\eta, 1]}(s), & \text { for } t \in[0, \eta], s \in[0,1] \tag{2.9}\\ -\frac{\alpha}{1-\alpha} \chi_{[\eta, t]}(s)-\frac{1}{1-\alpha} \chi_{[t, 1]}(s), & \text { for } t \in[\eta, 1], s \in[0,1]\end{cases}
$$

Now, we see from equations (2.7), (2.8) that

$$
\begin{equation*}
\phi\left(x^{\prime}(t)\right)=\int_{0}^{1} K(t, s)\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime} d s, \quad \text { for } t \in[0,1] \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{2}^{2} \leq\left(\int_{0}^{1} \int_{0}^{1}(K(t, s))^{2} d s d t\right)\left\|\left(\phi\left(x^{\prime}(s)\right)\right)^{\prime}\right\|_{2}^{2} \tag{2.11}
\end{equation*}
$$

Now, it is easy to see that

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1}(K(t, s))^{2} d s d t=\frac{1}{2(\alpha-1)^{2}}\left[\alpha^{2}(1-\eta)^{2}+\left(\alpha^{2}-2 \alpha\right) \eta^{2}+1\right] \tag{2.12}
\end{equation*}
$$

For $\alpha \leq 0$ the estimate (2.4) is now immediate from (2.5), (2.11), (2.12) and for $\alpha>0, \alpha \neq 1$, by (2.11), (2.12). This completes the proof of the theorem.

Remark It is easy to see that $C(-0.1, \eta)=2 / \pi$, for all $\eta \in(0,1)$. Indeed, $\sqrt{F(-0.1, \eta)} \geq 0.648986183$ and $2 / \pi \approx 0.6366197724$. Also $C(-2,1 / 3)=$ $\sqrt{11 / 54}$ and $C(-2,15 / 16)=2 / \pi$, since $\sqrt{F(-2,15 / 16)}=\sqrt{1030} / 48>2 / \pi$.

3 Existence Theorems

Definition A function $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies Caratheodory's conditions if
(i) For each $(x, y) \in \mathbb{R}^{2}$, the function $t \in[0,1] \rightarrow f(t, x, y) \in \mathbb{R}$ is measurable on $[0,1]$
(ii) for a.e. $t \in[0,1]$, the function $(x, y) \in \mathbb{R}^{2} \rightarrow f(t, x, y) \in \mathbb{R}$ is continuous on \mathbb{R}^{2}
(iii) for each $r>0$, there exists $\alpha_{r}(t) \in L^{1}[0,1]$ such that $|f(t, x, y)| \leq \alpha_{r}(t)$ for a.e. $t \in[0,1]$ and all $(x, y) \in \mathbb{R}^{2}$ with $\sqrt{x^{2}+y^{2}} \leq r$.

Theorem 3.1 Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions. Assume that there exist functions $p(t), q(t), r(t)$ in $L^{1}(0,1)$ such that

$$
\begin{equation*}
\left|f\left(t, x_{1}, x_{2}\right)\right| \leq p(t) \phi\left(\left|x_{1}\right|\right)+q(t) \phi\left(\left|x_{2}\right|\right)+r(t) \tag{3.1}
\end{equation*}
$$

for a.e. $t \in[0,1]$ and all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Also let $a_{i} \in \mathbb{R}, \xi_{i} \in(0,1), i=$ $1,2, \ldots, m-2,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$, with $\alpha=\sum_{i=1}^{m-2} a_{i} \neq 1$ be given. Then the boundary-value problem (1.1) has at least one solution in $C^{1}[0,1]$ provided

$$
\begin{equation*}
\|p(t)\|_{1}+\|q(t)\|_{1}+\tau<1 \tag{3.2}
\end{equation*}
$$

where τ is as defined in Theorem 2.1.
Proof It is easy to see that the boundary-value problem (1.1) is equivalent to the fixed point problem

$$
\begin{equation*}
x(t)=\int_{0}^{t} \phi^{-1}\left(\int_{0}^{s}\left[f\left(\tau, x(\tau), x^{\prime}(\tau)\right)+e(\tau)\right] d \tau+A\right) d s \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
A= & \sum_{i=1}^{m-2}\left(\frac{a_{i}}{1-\sum_{i=1}^{m-2} a_{i}}\right) \int_{0}^{\xi_{i}}\left[f\left(\tau, x(\tau), x^{\prime}(\tau)\right)+e(\tau)\right] d \tau \\
& -\frac{1}{1-\sum_{i=1}^{m-2} a_{i}} \int_{0}^{1}\left[f\left(\tau, x(\tau), x^{\prime}(\tau)\right)+e(\tau)\right] d \tau
\end{aligned}
$$

It is standard to check that the mapping

$$
x(t) \in C^{1}[0,1] \mapsto \int_{0}^{t} \phi^{-1}\left(\int_{0}^{s}\left[f\left(\tau, x(\tau), x^{\prime}(\tau)\right)+e(\tau)\right] d \tau+A\right) d s \in C^{1}[0,1]
$$

is a compact mapping. We apply the Leray-Schauder Continuation theorem (see, e.g. [4]) to obtain the existence of a solution for (3.3) or equivalently to the boundary-value problem (1.1).

To do this, it suffices to verify that the set of all possible solutions of the family of equations

$$
\begin{align*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime} & =\lambda f\left(t, x(t), x^{\prime}(t)\right)+\lambda e(t), \quad 0<t<1 \\
x(0) & =0, \quad \phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right) \tag{3.4}
\end{align*}
$$

is, a priori, bounded in $C^{1}[0,1]$ by a constant independent of $\lambda \in[0,1]$. We observe that if $x \in W_{\phi}^{2,1}(0,1)$, with $x(0)=0, \phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)$ then $x(t)=\int_{0}^{t} x^{\prime}(s) d s$. Hence, $|x(t)| \leq\left\|x^{\prime}\right\|_{\infty}$ for $t \in[0,1]$ and

$$
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1}
$$

where τ is as defined in Theorem 2.1. Also, it is easy to see that $\phi\left(\left\|x^{\prime}\right\|_{\infty}\right) \leq$ $\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty}$.

Let, now, $x(t)$ be a solution of (3.4) for some $\lambda \in[0,1]$, so that $x \in W_{\phi}^{2,1}(0,1)$ with $x(0)=0, \phi\left(x^{\prime}(1)\right)=\sum_{i=1}^{m-2} a_{i} \phi\left(x^{\prime}\left(\xi_{i}\right)\right)$. We then get from the equation in (3.4) and Theorem 2.1 t hat

$$
\begin{aligned}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} & \leq \frac{\lambda}{1-\tau}\left\|f\left(t, x(t), x^{\prime}(t)\right)+e(t)\right\|_{1} \\
& \leq \frac{1}{1-\tau}\left(\left\|p(t) \phi(|x(t)|)+q(t) \phi\left(\left|x^{\prime}(t)\right|\right)+r(t)\right\|_{1}+\|e(t)\|_{1}\right) \\
& \leq \frac{1}{1-\tau}\left(\left\{\|p(t)\|_{1}+\|q(t)\|_{1}\right\}\left\|\phi\left(\left|x^{\prime}(t)\right|\right)\right\|_{\infty}+\|r(t)\|_{1}+\|e(t)\|_{1}\right) \\
& \leq \frac{1}{1-\tau}\left(\|p(t)\|_{1}+\|q(t)\|_{1}\right)\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty}+\frac{1}{1-\tau}\left(\|r(t)\|_{1}+\|e(t)\|_{1}\right)
\end{aligned}
$$

It follows from the assumption (3.2) that there is a constant c, independent of $\lambda \in[0,1]$, such that

$$
\|x\|_{\infty} \leq\left\|x^{\prime}\right\|_{\infty} \leq c
$$

It is now immediate that the set of solutions of the family of equations (3.4) is, a priori, bounded in $C^{1}[0,1]$ by a constant, independent of $\lambda \in[0,1]$. This completes the proof of the theorem.

Remark Suppose that the the odd increasing homeomorphism ϕ in Theorem 3.1 is k-homogeneous, in the sense that $\phi(t x)=t^{k} \phi(x)$ for $t \geq 0$ and $x \in \mathbb{R}$. Then the existence condition 3.2 in Theorem 3.1 becomes

$$
\left\|t^{k} p(t)\right\|_{1}+\|q(t)\|_{1}+\tau<1
$$

Theorem 3.2 Let $f:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory's conditions. Assume that there exist functions $p(t), q(t), r(t)$ in $L^{2}(0,1)$ such that

$$
\begin{equation*}
\left|f\left(t, x_{1}, x_{2}\right)\right| \leq p(t) \phi\left(\left|x_{1}\right|\right)+q(t) \phi\left(\left|x_{2}\right|\right)+r(t) \tag{3.5}
\end{equation*}
$$

for a.e. $t \in[0,1]$ and all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Also let $\alpha \neq 1$, and $\eta \in(0,1)$ be given. Then for any given $e(t)$ in $L^{2}(0,1)$ the boundary-value problem (1.3) has at least one solution in $C^{1}[0,1]$ provided

$$
\begin{equation*}
\frac{1}{1-\tau}\|p\|_{2}+C(\alpha, \eta)\|q\|_{2}<1 \tag{3.6}
\end{equation*}
$$

where $C(\alpha, \eta)$ is as in Theorem 2.2.

Proof As in the proof of Theorem 3.1 it suffices to prove that the set of all possible solutions of the family of equations

$$
\begin{gather*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=\lambda f\left(t, x(t), x^{\prime}(t)\right)+\lambda e(t), \quad 0<t<1, \tag{3.7}\\
x(0)=0, \quad \phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right),
\end{gather*}
$$

is, a priori, bounded in $C^{1}[0,1]$ by a constant independent of $\lambda \in[0,1]$. For an $x \in W_{\phi}^{2,2}(0,1)$, with $x(0)=0$, and $\phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right)$ we use Theorem 2.1 and Theorem 2.2, above, to note that

$$
\begin{aligned}
\|\phi(|x(t)|)\|_{2} & \leq \phi\left(\|x\|_{\infty}\right) \leq \phi\left(\left\|x^{\prime}\right\|_{\infty}\right) \leq\left\|\phi\left(x^{\prime}(t)\right)\right\|_{\infty} \\
& \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1} \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2}
\end{aligned}
$$

and

$$
\begin{equation*}
\left\|\phi\left(x^{\prime}(t)\right)\right\|_{2} \leq C(\alpha, \eta)\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2} . \tag{3.8}
\end{equation*}
$$

Now, for a solution x of the family of equations (3.7) for some $\lambda \in[0,1]$ we have

$$
\begin{aligned}
\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2} & \leq \lambda\left\|f\left(t, x(t), x^{\prime}(t)\right)+e(t)\right\|_{2} \\
& \leq\left\|p(t) \phi(|x(t)|)+q(t) \phi\left(\left|x^{\prime}(t)\right|\right)+r(t)\right\|_{2}+\|e\|_{2} \\
& \leq\|p\|_{2}\|\phi(|x(t)|)\|_{2}+\|q\|_{2}\left\|\phi\left(\left|x^{\prime}(t)\right|\right)\right\|_{2}+\|r\|_{2}+\|e\|_{2} \\
& \leq\left(\frac{1}{1-\tau}\|p\|_{2}+C(\alpha, \eta)\|q\|_{2}\right)\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2}+\|r(t)\|_{2}+\|e\|_{2},
\end{aligned}
$$

in view of estimate (3.8), for a solution x of the family of equations (3.7) for some $\lambda \in[0,1]$. It then follows from (3.6) that there is a constant c independent of $\lambda \in[0,1]$ such that

$$
\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2} \leq c
$$

for a solution x of the family of equations (3.7) for some $\lambda \in[0,1]$. Finally, we see, using Theorem 2.1 that

$$
\phi\left(\|x\|_{\infty}\right) \leq \phi\left(\left\|x^{\prime}\right\|_{\infty}\right) \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{1} \leq \frac{1}{1-\tau}\left\|\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}\right\|_{2}
$$

and accordingly, the set of solutions of the family of equations (3.7) is, a priori, bounded in $C^{1}[0,1]$ by a constant independent of $\lambda \in[0,1]$. This completes the proof of Theorem 3.2.

Example 3.3 Let $\alpha \leq 0$ and $\eta \in(0,1)$ be given and $A \in \mathbb{R}$. For $e(t) \in L^{1}(0,1)$, we consider the three point boundary-value problem

$$
\begin{gather*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=t^{\frac{1}{2}} \phi(|x(t)|)+A t \phi\left(\left|x^{\prime}(t)\right|\right)+e(t), 0<t<1, \\
x(0)=0, \phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right) . \tag{3.9}
\end{gather*}
$$

We apply Theorem 3.1 to obtain a condition for the existence of a solution for the three-point boundary-value problem (3.9). Here $p(t)=t^{1 / 2}, q(t)=A t$ and $\tau=0$. Now, $\|p(t)\|_{1}=2 / 3$ and $\|q(t)\|_{1}=\frac{1}{2}|A|$. Now, if

$$
\frac{2}{3}+\frac{1}{2}|A|<1
$$

or, equivalently $|A|<2 / 3$, then Theorem 3.1 implies the existence of a solution for the three-point boundary-value problem (3.9).

Example 3.4 Let $\alpha=-2, \eta=\frac{1}{3}$ and $A \in \mathbb{R}$. For $e(t) \in L^{2}(0,1)$, we, next, consider the three point boundary-value problem

$$
\begin{gather*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=t^{\frac{1}{4}} \phi(|x(t)|)+A t^{-\frac{1}{4}} \phi\left(\left|x^{\prime}(t)\right|\right)+e(t), \quad 0<t<1, \tag{3.10}\\
x(0)=0, \quad \phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right) .
\end{gather*}
$$

We apply Theorem 3.2 to obtain a condition for the existence of a solution for the three-point boundary-value problem (3.10). Here $p(t)=t^{1 / 4}, q(t)=A t^{-1 / 4}$. Now, $\|p(t)\|_{2}=\sqrt{2 / 3}$ and $\|q(t)\|_{2}=\sqrt{2}|A|$. Now the existence condition required to apply Theorem 3.2

$$
\begin{equation*}
\sqrt{\frac{2}{3}}+\sqrt{2} C(\alpha, \eta)|A|<1 \tag{3.11}
\end{equation*}
$$

Since we have $C\left(-2, \frac{1}{3}\right)=\sqrt{\frac{11}{54}}$, we get from (3.11)

$$
\sqrt{\frac{2}{3}}+\sqrt{\frac{22}{54}}|A|<1
$$

Accordingly, we see from Theorem 3.2 that a solution for the three-point bound-ary-value problem (3.10) exists if $|A|<\sqrt{54 / 22}(1-\sqrt{2 / 3})=.28749$.

Example 3.5 Let $\alpha=-2, \eta=1 / 3$ and $A \in \mathbb{R}$. For $e(t) \in L^{2}(0,1)$, we, next, consider the three point boundary-value problem

$$
\begin{gather*}
\left(\phi\left(x^{\prime}(t)\right)\right)^{\prime}=t^{\frac{15}{32}} \phi(|x(t)|)+A t \phi\left(\left|x^{\prime}(t)\right|\right)+e(t), \quad 0<t<1, \tag{3.12}\\
x(0)=0, \quad \phi\left(x^{\prime}(1)\right)=\alpha \phi\left(x^{\prime}(\eta)\right) .
\end{gather*}
$$

We apply Theorem 3.2 to obtain a condition for the existence of a solution for the three-point boundary-value problem (3.12). Here $p(t)=t^{15 / 32}, q(t)=A t$. Now, $\|p(t)\|_{2}=4 / \sqrt{31}$ and $\|q(t)\|_{2}=|A| / \sqrt{3}$. Now the existence condition required to apply Theorem 3.2

$$
\begin{equation*}
\left.\frac{4}{\sqrt{31}}+\frac{1}{\sqrt{3}} C(\alpha, \eta)|A|\right)<1 \tag{3.13}
\end{equation*}
$$

Since, $C(-2,1 / 3)=\sqrt{11 / 54}$ and we get from (3.13)

$$
\frac{4}{\sqrt{31}}+\sqrt{\frac{11}{162}}|A|<1
$$

which implies

$$
|A|<\sqrt{\frac{162}{11}}\left(1-\frac{4}{\sqrt{31}}\right)=1.0806
$$

Now, to apply Theorem 3.1 we see that

$$
\|p(t)\|_{1}=\int_{0}^{1} t^{\frac{15}{32}} d t=\frac{32}{47}
$$

and $\|q(t)\|_{1}=\frac{1}{2}|A|$. Accordingly, we see using Theorem 3.1 a solution for the three-point boundary-value problem (3.12) exists if

$$
\frac{32}{47}+\frac{1}{2}|A|<1
$$

or, equivalently, if

$$
|A|<2\left(1-\frac{32}{47}\right)=\frac{30}{47}=0.6383
$$

We thus see that Theorem 3.2 gives a better result than Theorem 3.1.
Remark Note that if we take for $p>1$, the odd increasing homeomorphism $\phi: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\phi(t)=|t|^{p-2} t \quad \text { for } t \in \mathbb{R}
$$

then Theorems 3.1, 3.2 give existence theorems for the analogous three-point boundary-value problems for the one-dimensional analogue of the p-Laplacian. However, Theorems 3.1, 3.2 apply to more general differential operators than a p-Laplacian, since Theorems 3.1, 3.2 do not require the homeomorphism ϕ to be homogeneous as happens to be the case for the p-Laplacian.

References

[1] C. P. Gupta; S. K. Ntouyas and P. Ch. Tsamatos; Existence Results for mPoint Boundary Value Problems, Differential Equations Dynam. Systems, Vol. 2 (1994), 289-298.
[2] C. P. Gupta, S. I. Trofimchuk, Solvability of a multi-point boundary-value problem of Neumann type, Abstr. Anal. \& Appl., 4, \# 2, (1999) 71-81..
[3] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, London/New York, 1967.
[4] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in "NSF-CBMS Regional Conference Series in Math." No. 40, Amer. Math. Soc., Providence, RI, 1979.
[5] V.A. Il'in, and E. I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations, Vol. 23, No. 8, (1988), pp. 979-987.

Chaitan P. Gupta
Department of Mathematics, 084
University of Nevada, Reno
Reno, NV 89557, USA
email: gupta@unr.edu

[^0]: ${ }^{*}$ Mathematics Subject Classifications: 34B10, 34B15, 34G20.
 Key words: Multi-point boundary-value problem, three-point boundary-value problem, p-Laplacian, Leray Schauder Continuation theorem, Caratheodory's conditions.
 © 2003 Southwest Texas State University.
 Published February 28, 2003.

