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A non-resonant multi-point boundary-value

problem for a p-Laplacian type operator ∗

Chaitan P. Gupta

Abstract

Let φ be an odd increasing homeomorphism from R onto R with φ(0) =
0, f : [0,1] × R2 → R be a function satisfying Caratheodory’s conditions
and e(t) ∈ L1[0, 1]. Let ξi ∈ (0, 1), ai ∈ R, i = 1, 2, . . . , m− 2,

∑m−2
i=1 ai 6=

1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1 be given. This paper is concerned with
the problem of existence of a solution for the multi-point boundary-value
problem

(φ(x′(t)))′ = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) =

m−2∑
i=1

aiφ(x′(ξi)).

This paper gives conditions for the existence of a solution for the above
boundary-value problem using some new Poincaré type a priori estimates.
In the case φ(t) ≡ t for t ∈ R, this problem was studied earlier by Gupta,
Trofimchuk in [2] and by Gupta, Ntouyas and Tsamatos in [1]. We give
a priori estimates needed for this problem that are similar to a priori
estimates obtained by Gupta, Trofimchuk in [2]. We then obtain existence
theorems for the above multi-point boundary-value problem using the a
priori estimates and Leray-Schauder continuation theorem.

1 Introduction

Let φ be an odd increasing homeomorphism from R onto R with φ(0) = 0, f :
[0, 1]×R2 → R be a function satisfying Caratheodory’s conditions, e : [0, 1] 7→ R
be a function in L1[0, 1], ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2,

∑m−2
i=1 ai 6= 1,

0 < ξ1 < ξ2 < · · · < ξm−2 < 1 be given. We study the problem of existence of
solutions for the m-point boundary-value problem

(φ(x′(t)))′ = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) =
m−2∑
i=1

aiφ(x′(ξi)).
(1.1)
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This problem was studied earlier in the case φ(t) ≡ t for t ∈ R, by Gupta,
Trofimchuk in [2] and by Gupta, Ntouyas and Tsamatos in [1]. Gupta, Ntouyas
and Tsamatos had studied the problem (1.1) when all of the ai ∈ R, i =
1, 2, . . . ,m − 2, had the same sign by first studying the three-point boundary-
value problem, for a given α ∈ R, α 6= 1, η ∈ (0, 1),

x′′(t) = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, x′(1) = αx′(η),
(1.2)

while Gupta, Trofimchuk in [2] studied the problem (1.1) when the ai ∈ R,
i = 1, 2, . . . ,m− 2, do not necessarily have the same sign.

We also study the three-point boundary-value problem analogue of (1.1), for
a given α ∈ R, α 6= 1, η ∈ (0, 1),

(φ(x′(t)))′ = f(t, x(t), x′(t)) + e(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) = αφ(x′(η)).
(1.3)

The purpose of this paper is to obtain conditions for the existence of a solu-
tion for the boundary-value problem (1.1), using new estimates and inequalities
involving a function x(t), its derivative x′(t), the functions φ(x′(t)) and its
derivative (φ(x′(t)))′. These results are motivated by the so called nonlocal
boundary-value problem studied by Il’in and Moiseev in [5]. We may mention
that the reason for studying the three-point boundary-value problem (1.3) is
that in this case we obtain a better existence theorem using a priori estimates
involving L2 norm.

We use the classical spaces C[0, 1], Ck[0, 1], Lk[0, 1], and L∞[0, 1] of continu-
ous, k-times continuously differentiable, measurable real-valued functions whose
k-th power of the absolute value is Lebesgue integrable on [0, 1], or measurable
functions that are essentially bounded on [0, 1]. We also use the Sobolev spaces
W 2,k

φ (0, 1), k = 1, 2 defined by

W 2,k
φ (0, 1) =

{
x : [0, 1] → R : x, x′ abs. cont. on [0, 1], (φ(x′(t)))′ ∈ Lk[0, 1]

}
with its usual norm. We denote the norm in Lk[0, 1] by ‖ · ‖k, and the norm in
L∞[0, 1] by ‖ · ‖∞.

2 A Priori Estimates

Let ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1,
with α =

∑m−2
i=1 ai 6= 1 be given. Let x(t) ∈ W 2,1

φ (0, 1) be such that x(0) = 0,
φ(x′(1)) =

∑m−2
i=1 aiφ(x′(ξi)) be given. We are interested in obtaining a priori

estimates of the form ‖φ(x′(t))‖∞ ≤ C‖(φ(x′(t)))′‖1. The following theorem
gives such an estimate. We recall that for a ∈ R, a+ = max{a, 0}, a− =
max{−a, 0} so that a = a+ − a− and |a| = a+ + a−.
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Theorem 2.1 Let ai ∈ R, ξi ∈ (0, 1), i = 1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · <

ξm−2 < 1, with α =
∑m−2

i=1 ai 6= 1 be given. Then for x(t) ∈ W 2,1
φ (0, 1) with

x(0) = 0, φ(x′(1)) =
∑m−2

i=1 aiφ(x′(ξi)) we have

‖φ(x′(t))‖∞ ≤ 1
1− τ

‖(φ(x′(t)))′‖1 (2.1)

where either τ = 0 or

τ = min
{ ∑m−2

i=1 (ai)+∑m−2
i=1 (ai)− + 1

,

∑m−2
i=1 (ai)− + 1∑m−2

i=1 (ai)+

}
.

Proof We see that the assumption φ(x′(1)) =
∑m−2

i=1 aiφ(x′(ξi)) implies

φ(x′(1)) +
m−2∑
i=1

(ai)−φ(x′(ξi)) =
m−2∑
i=1

(ai)+φ(x′(ξi))

and thus there exist λ1, λ2 ∈ [0, 1] such that

(
1 +

m−2∑
i=1

(ai)−
)
φ(x′(λ1)) =

m−2∑
i=1

(ai)+φ(x′(λ2)). (2.2)

If, now, either x′(λ1) = 0 or x′(λ2) = 0, so that either φ(x′(λ1)) = 0 or
φ(x′(λ2)) = 0, then we clearly have

‖φ(x′(t))‖∞ ≤ ‖(φ(x′(t)))′‖1. (2.3)

Suppose, now, that x′(λ1) 6= 0 and x′(λ2) 6= 0, so that φ(x′(λ1)) 6= 0 and
φ(x′(λ2)) 6= 0. It then follows easily from equation (2.2) that φ(x′(λ1)) 6=
φ(x′(λ2)), in view of the assumption α =

∑m−2
i=1 ai 6= 1. It then follows from

equation (2.2), the estimate (2.3) and the equations

φ(x′(t)) = φ(x′(λ1)) +
∫ t

λ1

(φ(x′(s)))′ds,

φ(x′(t)) = φ(x′(λ2)) +
∫ t

λ2

(φ(x′(s)))′ds,

that

‖φ(x′(t))‖∞ ≤ 1
1− τ

‖(φ(x′(t)))′‖1

with τ = min{
∑m−2

i=1 (ai)+∑m−2
i=1 (ai)− + 1

,

∑m−2
i=1 (ai)− + 1∑m−2

i=1 (ai)+
}.

This completes the proof of the theorem. �
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Remark We note that if ai ≤ 0 for every i = 1, 2, . . . ,m−2, then τ = 0. Also,
if ai ≥ 0 for every i = 1, 2, . . . ,m − 2 so that α =

∑m−2
i=1 ai =

∑m−2
i=1 (ai)+ ≥ 0

then τ = min{α, 1/α} ∈ [0, 1) since α 6= 1, by assumption.
The following theorem gives a better estimate for the three-point boundary-

value problem in the case of the L2 norm.

Theorem 2.2 Let α ∈ R, α 6= 1, η ∈ (0, 1) be given. Let x(t) ∈ W 2,2
φ (0, 1) be

such that φ(x′(1)) = αφ(x′(η)). Then

‖φ(x′(t))‖2 ≤ C(α, η)‖(φ(x′(t)))′‖2, (2.4)

where

C(α, η) =

{
min{

√
F (α, η), 2/π} if α ≤ 0,√

F (α, η), if α > 0,

F (α, η) =
1

2(α− 1)2
[α2(1− η)2 + (α2 − 2α)η2 + 1].

Proof If α ≤ 0, we note from φ(x′(1)) = αφ(x′(η)) that there exists an ξ ∈
(η, 1) such that φ(x′(ξ)) = 0. It follows from the Wirtinger’s inequality [3,
Theorem 256] that

‖φ(x′(t))‖2 ≤
2
π
‖(φ(x′(t)))′‖2. (2.5)

Next, we note, again, from φ(x′(1)) = αφ(x′(η)) that for 0 < t < 1,

φ(x′(t)) =
∫ t

0

(φ(x′(s)))′ds +
α

1− α

∫ η

0

(φ(x′(s)))′ds− 1
1− α

∫ 1

0

(φ(x′(s)))′ds.

(2.6)
Accordingly, we have for t ∈ [0, η]

φ(x′(t)) =
∫ t

0

(φ(x′(s)))′ds +
α

1− α

∫ η

0

(φ(x′(s)))′ds− 1
1− α

∫ 1

0

(φ(x′(s)))′ds

=
∫ t

0

(1 +
α

1− α
− 1

1− α
)(φ(x′(s)))′ds

+
∫ η

t

(
α

1− α
− 1

1− α
)(φ(x′(s)))′ds− 1

1− α

∫ 1

η

(φ(x′(s)))′ds

= −
∫ η

t

(φ(x′(s)))′ds− 1
1− α

∫ 1

η

(φ(x′(s)))′ds, (2.7)
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and, for t ∈ [η, 1]

φ(x′(t)) =
∫ t

0

(φ(x′(s)))′ds +
α

1− α

∫ η

0

(φ(x′(s)))′ds− 1
1− α

∫ 1

0

(φ(x′(s)))′ds

=
∫ η

0

(1 +
α

1− α
− 1

1− α
)(φ(x′(s)))′ds +

∫ t

η

(1− 1
1− α

)(φ(x′(s)))′ds

− 1
1− α

∫ 1

t

(φ(x′(s)))′ds

= −
∫ t

η

α

1− α
(φ(x′(s)))′ds− 1

1− α

∫ 1

t

(φ(x′(s)))′ds. (2.8)

Let us, now, define a function K : [0, 1]× [0, 1] → R by

K(t, s) =

{
−χ[t,η](s)− 1

1−αχ[η,1](s), for t ∈ [0, η], s ∈ [0, 1],
− α

1−αχ[η,t](s)− 1
1−αχ[t,1](s), for t ∈ [η, 1], s ∈ [0, 1].

(2.9)

Now, we see from equations (2.7), (2.8) that

φ(x′(t)) =
∫ 1

0

K(t, s)(φ(x′(s)))′ds, for t ∈ [0, 1], (2.10)

and

‖φ(x′(t))‖2
2 ≤ (

∫ 1

0

∫ 1

0

(K(t, s))2 ds dt)‖(φ(x′(s)))′‖2
2. (2.11)

Now, it is easy to see that∫ 1

0

∫ 1

0

(K(t, s))2 ds dt =
1

2(α− 1)2
[α2(1− η)2 + (α2 − 2α)η2 + 1]. (2.12)

For α ≤ 0 the estimate (2.4) is now immediate from (2.5), (2.11), (2.12) and for
α > 0, α 6= 1, by (2.11), (2.12). This completes the proof of the theorem. �

Remark It is easy to see that C(−0.1, η) = 2/π, for all η ∈ (0, 1). Indeed,√
F (−0.1, η) ≥ 0.648986183 and 2/π ≈ 0.6366197724. Also C(−2, 1/3) =√
11/54 and C(−2, 15/16) = 2/π, since

√
F (−2, 15/16) =

√
1030/48 > 2/π.

3 Existence Theorems

Definition A function f : [0, 1]×R2 → R satisfies Caratheodory’s conditions
if

(i) For each (x,y) ∈ R2, the function t ∈ [0, 1] → f(t, x, y) ∈ R is measurable
on [0, 1]

(ii) for a.e. t ∈ [0, 1], the function (x, y) ∈ R2 → f(t, x, y) ∈ R is continuous
on R2
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(iii) for each r > 0, there exists αr(t) ∈ L1[0, 1] such that |f(t, x, y)| ≤ αr(t)
for a.e. t ∈ [0, 1] and all (x, y) ∈ R2 with

√
x2 + y2 ≤ r.

Theorem 3.1 Let f : [0, 1] × R2 → R be a function satisfying Caratheodory’s
conditions. Assume that there exist functions p(t), q(t), r(t) in L1(0, 1) such
that

|f(t, x1, x2)| ≤ p(t)φ(|x1|) + q(t)φ(|x2|) + r(t) (3.1)

for a.e. t ∈ [0, 1] and all (x1, x2) ∈ R2. Also let ai ∈ R, ξi ∈ (0, 1), i =
1, 2, . . . ,m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, with α =

∑m−2
i=1 ai 6= 1

be given. Then the boundary-value problem (1.1) has at least one solution in
C1[0, 1] provided

‖p(t)‖1 + ‖q(t)‖1 + τ < 1. (3.2)

where τ is as defined in Theorem 2.1.

Proof It is easy to see that the boundary-value problem (1.1) is equivalent to
the fixed point problem

x(t) =
∫ t

0

φ−1
( ∫ s

0

[f(τ, x(τ), x′(τ)) + e(τ)]dτ + A
)
ds, (3.3)

where

A =
m−2∑
i=1

(
ai

1−
∑m−2

i=1 ai

)
∫ ξi

0

[f(τ, x(τ), x′(τ)) + e(τ)]dτ

− 1
1−

∑m−2
i=1 ai

∫ 1

0

[f(τ, x(τ), x′(τ)) + e(τ)]dτ.

It is standard to check that the mapping

x(t) ∈ C1[0, 1] 7→
∫ t

0

φ−1(
∫ s

0

[f(τ, x(τ), x′(τ)) + e(τ)]dτ + A)ds ∈ C1[0, 1],

is a compact mapping. We apply the Leray-Schauder Continuation theorem
(see, e.g. [4]) to obtain the existence of a solution for (3.3) or equivalently to
the boundary-value problem (1.1).

To do this, it suffices to verify that the set of all possible solutions of the
family of equations

(φ(x′(t)))′ = λf(t, x(t), x′(t)) + λe(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) =
m−2∑
i=1

aiφ(x′(ξi)),
(3.4)

is, a priori, bounded in C1[0, 1] by a constant independent of λ ∈ [0, 1]. We
observe that if x ∈ W 2,1

φ (0, 1), with x(0) = 0, φ(x′(1)) =
∑m−2

i=1 aiφ(x′(ξi)) then

x(t) =
∫ t

0
x′(s)ds. Hence, |x(t)| ≤ ‖x′‖∞ for t ∈ [0, 1] and

‖φ(x′(t))‖∞ ≤ 1
1− τ

‖(φ(x′(t)))′‖1,
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where τ is as defined in Theorem 2.1. Also, it is easy to see that φ(‖x′‖∞) ≤
‖φ(x′(t))‖∞.

Let, now, x(t) be a solution of (3.4) for some λ ∈ [0, 1], so that x ∈ W 2,1
φ (0, 1)

with x(0) = 0, φ(x′(1)) =
∑m−2

i=1 aiφ(x′(ξi)). We then get from the equation in
(3.4) and Theorem 2.1 t hat

‖φ(x′(t))‖∞ ≤ λ

1− τ
‖f(t, x(t), x′(t)) + e(t)‖1

≤ 1
1− τ

(‖p(t)φ(|x(t)|) + q(t)φ(|x′(t)|) + r(t)‖1 + ‖e(t)‖1)

≤ 1
1− τ

(
{‖p(t)‖1 + ‖q(t)‖1}‖φ(|x′(t)|)‖∞ + ‖r(t)‖1 + ‖e(t)‖1

)
≤ 1

1− τ
(‖p(t)‖1 + ‖q(t)‖1)‖φ(x′(t))‖∞ +

1
1− τ

(‖r(t)‖1 + ‖e(t)‖1).

It follows from the assumption (3.2) that there is a constant c, independent of
λ ∈ [0, 1], such that

‖x‖∞ ≤ ‖x′‖∞ ≤ c.

It is now immediate that the set of solutions of the family of equations (3.4)
is, a priori, bounded in C1[0, 1] by a constant, independent of λ ∈ [0, 1]. This
completes the proof of the theorem. �

Remark Suppose that the the odd increasing homeomorphism φ in Theorem
3.1 is k-homogeneous, in the sense that φ(tx) = tkφ(x) for t ≥ 0 and x ∈ R.
Then the existence condition 3.2 in Theorem 3.1 becomes

‖tkp(t)‖1 + ‖q(t)‖1 + τ < 1.

Theorem 3.2 Let f : [0, 1] × R2 → R be a function satisfying Caratheodory’s
conditions. Assume that there exist functions p(t), q(t), r(t) in L2(0, 1) such
that

|f(t, x1, x2)| ≤ p(t)φ(|x1|) + q(t)φ(|x2|) + r(t) (3.5)

for a.e. t ∈ [0, 1] and all (x1, x2) ∈ R2. Also let α 6= 1, and η ∈ (0,1) be given.
Then for any given e(t) in L2(0, 1) the boundary-value problem (1.3) has at least
one solution in C1[0, 1] provided

1
1− τ

‖p‖2 + C(α, η)‖q‖2 < 1, (3.6)

where C(α, η) is as in Theorem 2.2.

Proof As in the proof of Theorem 3.1 it suffices to prove that the set of all
possible solutions of the family of equations

(φ(x′(t)))′ = λf(t, x(t), x′(t)) + λe(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) = αφ(x′(η)),
(3.7)
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is, a priori, bounded in C1[0,1] by a constant independent of λ ∈ [0,1]. For an
x ∈ W 2,2

φ (0,1), with x(0) = 0, and φ(x′(1)) = αφ(x′(η)) we use Theorem 2.1
and Theorem 2.2, above, to note that

‖φ(|x(t)|)‖2 ≤ φ(‖x‖∞) ≤ φ(‖x′‖∞) ≤ ‖φ(x′(t))‖∞

≤ 1
1− τ

‖(φ(x′(t)))′‖1 ≤
1

1− τ
‖(φ(x′(t)))′‖2

and
‖φ(x′(t))‖2 ≤ C(α, η)‖(φ(x′(t)))′‖2. (3.8)

Now, for a solution x of the family of equations (3.7) for some λ ∈ [0,1] we have

‖(φ(x′(t)))′‖2 ≤ λ‖f(t, x(t), x′(t)) + e(t)‖2

≤ ‖p(t)φ(|x(t)|) + q(t)φ(|x′(t)|) + r(t)‖2 + ‖e‖2

≤ ‖p‖2‖φ(|x(t)|)‖2 + ‖q‖2‖φ(|x′(t)|)‖2 + ‖r‖2 + ‖e‖2

≤ (
1

1− τ
‖p‖2 + C(α, η)‖q‖2)‖(φ(x′(t)))′‖2 + ‖r(t)‖2 + ‖e‖2,

in view of estimate (3.8), for a solution x of the family of equations (3.7) for
some λ ∈ [0,1]. It then follows from (3.6) that there is a constant c independent
of λ ∈ [0, 1] such that

‖(φ(x′(t)))′‖2 ≤ c,

for a solution x of the family of equations (3.7) for some λ ∈ [0,1]. Finally, we
see, using Theorem 2.1 that

φ(‖x‖∞) ≤ φ(‖x′‖∞) ≤ 1
1− τ

‖(φ(x′(t)))′‖1 ≤
1

1− τ
‖(φ(x′(t)))′‖2

and accordingly, the set of solutions of the family of equations (3.7) is, a priori,
bounded in C1[0, 1] by a constant independent of λ ∈ [0, 1]. This completes the
proof of Theorem 3.2. �

Example 3.3 Let α ≤ 0 and η ∈ (0, 1) be given and A ∈ R. For e(t) ∈ L1(0, 1),
we consider the three point boundary-value problem

(φ(x′(t)))′ = t
1
2 φ(|x(t)|) + Atφ(|x′(t)|) + e(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) = αφ(x′(η)).
(3.9)

We apply Theorem 3.1 to obtain a condition for the existence of a solution for
the three-point boundary-value problem (3.9). Here p(t) = t1/2, q(t) = At and
τ = 0. Now, ‖p(t)‖1 = 2/3 and ‖q(t)‖1 = 1

2 |A|. Now, if

2
3

+
1
2
|A| < 1,

or, equivalently |A| < 2/3, then Theorem 3.1 implies the existence of a solution
for the three-point boundary-value problem (3.9).
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Example 3.4 Let α = −2, η = 1
3 and A ∈ R. For e(t) ∈ L2(0, 1), we, next,

consider the three point boundary-value problem

(φ(x′(t)))′ = t
1
4 φ(|x(t)|) + At−

1
4 φ(|x′(t)|) + e(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) = αφ(x′(η)).
(3.10)

We apply Theorem 3.2 to obtain a condition for the existence of a solution for
the three-point boundary-value problem (3.10). Here p(t) = t1/4, q(t) = At−1/4.
Now, ‖p(t)‖2 =

√
2/3 and ‖q(t)‖2 =

√
2|A|. Now the existence condition re-

quired to apply Theorem 3.2√
2
3

+
√

2C(α, η)|A| < 1. (3.11)

Since we have C(−2, 1
3 ) =

√
11
54 , we get from (3.11)√

2
3

+

√
22
54
|A| < 1.

Accordingly, we see from Theorem 3.2 that a solution for the three-point bound-
ary-value problem (3.10) exists if |A| <

√
54/22(1−

√
2/3) = .287 49.

Example 3.5 Let α = −2, η = 1/3 and A ∈ R. For e(t) ∈ L2(0, 1), we, next,
consider the three point boundary-value problem

(φ(x′(t)))′ = t
15
32 φ(|x(t)|) + Atφ(|x′(t)|) + e(t), 0 < t < 1,

x(0) = 0, φ(x′(1)) = αφ(x′(η)).
(3.12)

We apply Theorem 3.2 to obtain a condition for the existence of a solution for
the three-point boundary-value problem (3.12). Here p(t) = t15/32, q(t) = At.
Now, ‖p(t)‖2 = 4/

√
31 and ‖q(t)‖2 = |A|/

√
3. Now the existence condition

required to apply Theorem 3.2

4√
31

+
1√
3
C(α, η)|A|) < 1. (3.13)

Since, C(−2, 1/3) =
√

11/54 and we get from (3.13)

4√
31

+

√
11
162

|A| < 1,

which implies

|A| <
√

162
11

(1− 4√
31

) = 1. 080 6.

Now, to apply Theorem 3.1 we see that

‖p(t)‖1 =
∫ 1

0

t
15
32 dt =

32
47



152 A non-resonant multi-point boundary-value problem EJDE/Conf/10

and ‖q(t)‖1 = 1
2 |A|. Accordingly, we see using Theorem 3.1 a solution for the

three-point boundary-value problem (3.12) exists if

32
47

+
1
2
|A| < 1,

or, equivalently, if

|A| < 2(1− 32
47

) =
30
47

= 0.6383.

We thus see that Theorem 3.2 gives a better result than Theorem 3.1.

Remark Note that if we take for p > 1, the odd increasing homeomorphism
φ : R → R defined by

φ(t) = |t|p−2t for t ∈ R,

then Theorems 3.1, 3.2 give existence theorems for the analogous three-point
boundary-value problems for the one-dimensional analogue of the p-Laplacian.
However, Theorems 3.1, 3.2 apply to more general differential operators than a
p-Laplacian, since Theorems 3.1, 3.2 do not require the homeomorphism φ to
be homogeneous as happens to be the case for the p-Laplacian.
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