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ON THE SOLVABILITY OF DEGENERATED QUASILINEAR
ELLIPTIC PROBLEMS

YOUSSEF AKDIM, ELHOUSSINE AZROUL, MOHAMED RHOUDAF

Abstract. In this article, we study the quasilinear elliptic problem

Au = − div(a(x, u,∇u)) = f(x, u,∇u) in D′(Ω)

u = 0 on ∂Ω ,

where A is a Leray-Lions operator from W 1,p
0 (Ω, w) to its dual W−1,p′ (Ω, w∗).

We show that there exists a solution in W 1,p
0 (Ω, w) provided that

|f(x, r, ξ)| ≤ σ1/q [g(x) + |r|ηση/q +
N∑

i=1

w
δ/p
i (x)|ξi|δ ],

where g(x) is a positive function in Lq′ (Ω) and σ(x) is weight function and
0 ≤ η < min(p− 1, q − 1), 0 ≤ δ < (p− 1)/q′.

1. Introduction

Let Ω be a bounded open set in RN , N ≥ 2, and p be a real number such that
1 < p < ∞. Let w = {wi(x), 0 ≤ i ≤ N} be a vector weight functions on Ω;
i.e., each wi(x) is a measurable a.e. strictly positive function on Ω, satisfying some
integrability conditions (see section2). Let us consider the problem

Au = f(x, u,∇u) in D′(Ω)
u = 0 on ∂Ω,

(1.1)

where A is a Leray-Lions operator Au = −div(a(x, u,∇u)) and f(x, r, ξ) : Ω×R×
RN → R is a Carathéodory function. Boccardo, Murat and Puel in [3] studied the
problem (1.1) in the non weighted case, with f satisfying the condition

|f(x, r, ξ)| ≤ h(|r|)(1 + |ξ|p),

where h is increasing function from R+ into R+. The existence result is proved
assuming the existence of the subsolution and supersolution in W 1,∞(Ω), which
play an important roll in their work. Further in [2] the author’s studied the problem
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(1.1) with f satisfies the hypotheses

|f(x, r, ξ)| ≤ β[g(x) + |r|p−1 + |ξ|p−1], (1.2)

f(x, r, ξ)r ≥ α|r|p. (1.3)

Recently, Tsang-Hai Kuo and Chiung-Chion Tsai [8] proved an existence result
under the assumption

|f(x, r, ξ)| ≤ c(1 + |r|δ + |ξ|η).

Our objective in this paper, is to study the problem (1.1) in weighted Sobolev
spaces where f satisfying only the growth condition

|f(x, r, ξ)| ≤ σ1/q[g(x) + |r|ησ
η
q +

N∑
i=1

w
δ/p
i (x)|ξi|δ],

where g(x) is a positive function in Lq′(Ω), σ is a weight function, and

0 ≤ η < min(p− 1, q − 1), 0 ≤ δ <
p− 1
q′

.

Note that we obtain the existence result without assuming the condition (1.3) and
without knowing a priori the existence of subsolutions and supersolutions. Let us
point out that this work can be see as a generalization of the work in [2] and [8].

2. Preliminaries and Basic Assumptions

Let Ω be a bounded open set of RN , p be a real number such that 1 < p < ∞,
and w = {wi(x), 0 ≤ i ≤ N} be a vector of weight functions; i.e. every component
wi(x) is a measurable function which is strictly positive a.e. in Ω. Further, we
suppose in all our considerations that

wi ∈ L1
loc(Ω), (2.1)

w
−1/(p−1)
i ∈ L1

loc(Ω), (2.2)

for any 0 ≤ i ≤ N . We denote by W 1,p(Ω, w) the space of real-valued functions
u ∈ Lp(Ω, w0) such that their derivatives in the sense of distributions satisfies

∂u

∂xi
∈ Lp(Ω, wi) for i = 1, . . . , N.

Which is a Banach space under the norm

‖u‖1,p,w =
[ ∫

Ω

|u(x)|pw0(x) dx+
N∑

i=1

∫
Ω

|∂u(x)
∂xi

|pwi(x) dx
]1/p

. (2.3)

The condition (2.1) implies that C∞
0 (Ω) is a subspace of W 1,p(Ω, w) and conse-

quently, we can introduce the subspace W 1,p
0 (Ω, w) of W 1,p(Ω, w) as the closure of

C∞
0 (Ω) with respect to the norm (2.3). Moreover, the condition (2.2) implies that

W 1,p(Ω, w) as well as W 1,p
0 (Ω, w) are reflexive Banach spaces.

We recall that the dual space of weighted Sobolev spacesW 1,p
0 (Ω, w) is equivalent

to W−1,p′(Ω, w∗), where w∗ = {w∗
i = w1−p′

i , i = 1, . . . , N} and p′ is the conjugate
of p, i.e. p′ = p

p−1 . For more details we refer the reader to [5]. We start by stating
the following assumptions:
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(H1) The expression

‖|u‖| =
( N∑

i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx
)1/p

, (2.4)

is a norm defined on W 1,p
0 (Ω, w) and its equivalent to the norm (2.3). And

there exist a weight function σ on Ω and a parameter 0 < q <∞, such that
the Hardy inequality(∫

Ω

|u(x)|qσ(x) dx
)1/q

≤ c
( N∑

i=1

∫
Ω

| ∂u
∂xi

|pwi(x) dx
)1/p

, (2.5)

holds for every u ∈ W 1,p
0 (Ω, w) with a constant c > 0. Moreover, the

imbedding
W 1,p

0 (Ω, w) ↪→↪→ Lq(Ω, σ), (2.6)
is compact.

Let A be a nonlinear operator from W 1,p
0 (Ω, w) into its dual W−1,p′(Ω, w∗) defined

by
A(u) = −div(a(x, u,∇u)),

where a(x, r, ξ) : Ω×R×RN → RN is a Carathéodory vector-valued function that
satisfies the following assumption:

(H2) For i = 1, . . . , N ,

|ai(x, r, ξ)| ≤ βw
1/p
i (x)[k(x) + σ

1
p′ |r|q/p′ +

N∑
j=1

w
1
p′

j |ξj |p−1] (2.7)

[a(x, r, ξ)− a(x, r, η)](ξ − η) > 0 for all ξ 6= η ∈ RN ; (2.8)

a(x, r, ξ)ξ ≥ α

N∑
i=1

wi|ξi|p, (2.9)

where k(x) is a positive function in Lp′(Ω) and α, β are strictly positive
constants.

Let f(x, r, ξ) is a Carathéodory function satisfying the following assumptions:
(H3)

|f(x, r, ξ)| ≤ σ1/q[g(x) + |r|ησ
η
q +

N∑
i=1

w
δ/p
i (x)|ξi|δ], (2.10)

where g(x) is a positive function in Lq′(Ω), and

0 ≤ η < min(p− 1, q − 1), 0 ≤ δ <
p− 1
q′

. (2.11)

3. Main result

Consider the problem

−div a(x, u,∇u) = f(x, u,∇u) in D′(Ω)
u = 0 on ∂Ω .

(3.1)

Theorem 3.1. Under hypotheses (H1)-(H3), there exist at least one solution to
(3.1).
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We first give some definition and some lemmas that will be used in the proof of
this theorem.
Definition Let Y be a separable reflexive Banach space, the operator B from Y
to its dual Y ∗ is called of the calculus of variations type, if B is bounded and is of
the from,

B(u) = B(u, u), (3.2)
where (u, v) → B(u, v) is an operator Y × Y into Y ∗ satisfying the following prop-
erties:

For u ∈ Y , the mapping v 7→ B(u, v) is bounded and hemicontinuous

from Y to Y ∗ and (B(u, u)−B(u, v), u− v) ≥ 0;
(3.3)

for v ∈ Y , the mapping u 7→ B(u, v) is bounded and hemicontinuous from Y to Y ∗;
If un ⇀ u weakly in Y and if (B(un, un)−B(un, u), un − u) → 0,

then B(un, v) ⇀ B(u, v) weakly in Y ∗, for all v ∈ Y ;
(3.4)

If un ⇀ u weakly in Y and if B(un, v) ⇀ ψ weakly in Y ∗,

then (B(un, v), un) → (ψ, u).
(3.5)

Lemma 3.2 ([1]). Let g ∈ Lq(Ω, γ), gn ∈ Lq(Ω, γ), and ‖gn‖q,γ ≤ c (1 < q <∞).
If gn(x) → g(x) a.e. in Ω, then gn ⇀ g weakly in Lq(Ω, γ), where γ is a weight
function on Ω.

Lemma 3.3. If un ⇀ u in W 1,p
0 (Ω, w) and v ∈ W 1,p

0 (Ω, w), then ai(x, un,∇v) →
ai(x, u,∇v) in Lp′(Ω, w∗

i ).

Proof. From (H2), it follows that

|ai(x, un,∇v)|p
′
w

−p′
p

i ≤ β[k(x) + |un|
q
p′ σ

1
p′ +

N∑
j=1

| ∂v
∂xj

|p−1w
1
p′

j ]p
′

≤ γ[k(x)p′ + |un|qσ +
N∑

j=1

| ∂v
∂xj

|pwj ],

(3.6)

where β and γ are positive constants. Since un ⇀ u weakly in W 1,p
0 (Ω, w) and

W 1,p
0 (Ω, w) ↪→↪→ Lq(Ω, σ), it follows that un → u strongly in Lq(Ω, σ) and un → u

a.e. in Ω; hence

|ai(x, un,∇v)|p
′
w∗

i → |ai(x, u,∇v)|p
′
w∗

i a.e. in Ω, (3.7)

and

γ
[
k(x)p′ + |un|qσ +

N∑
j=1

| ∂v
∂xj

|pwi

]
→ γ

[
k(x)p′ + |u|qσ +

N∑
j=1

| ∂v
∂xj

|pwj

]
a.e. in Ω. Then, By Vitali’s theorem,

ai(x, un,∇v) → ai(x, u,∇v) strongly in Lp′(Ω, w∗
i ), as n→ +∞. (3.8)

�

Lemma 3.4 ([1]). Assume that (H1)–(H2) are satisfied, and let (un) be a sequence
in W 1,p

0 (Ω, w) such that un ⇀ u weakly in W 1,p
0 (Ω, w) and∫

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u) dx→ 0.
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Then, un → u in W 1,p
0 (Ω, w).

For v ∈W 1,p
0 (Ω, w), we associate the Nemytskii operator F with respect to f ,

F (v,∇v)(x) = f(x, v,∇v) a.e., x ∈ Ω.

Lemma 3.5. The mapping v 7→ F (v,∇v) is continuous from the space W 1,p
0 (Ω, w)

to Lq′(Ω, σ1−q′).

Proof. By hypothesis (H3), we have

|f(x, r, ξ)| ≤ σ1/q[g(x) + |r|ησ
η
q +

N∑
i=1

w
δ/p
i (x)|ξi|δ].

Thanks to Young’s inequality,

|r|ηση/q ≤ [
η

q − 1
|r|q−1σ(q−1)/q + 1] ≤ [|r|q−1σq′ + 1],

w
σ/p
i |ξi|σ ≤ [w1/q′

i |ξi|p/q′ + 1],

which implies

|f(x, r, ξ)| ≤ σ1/q[(N + 2) + g(x) + |r|q−1σ1/q′ +
N∑

i=1

w
1/q′

i |ξi|p/q′ ] .

Then

|f(x, r, ξ)|q
′
σ−q′/q ≤ c2[c1 + g(x)q′ + |r|(q−1)q′σ +

N∑
i=1

wi|ξi|p] .

Since f is a Carathéodory, and for all subset E measurable, such that |E| < η, we
have ∫

E

|f(x, v,∇v)|q
′
σ
−q′

q dx ≤ c2[c3 +
∫

E

|v|qσ dx+
∫

E

N∑
i=1

wi|
∂v

∂xi
|p dx] .

Then by Vitali’s theorem, we deduce the continuous of the operator F . Moreover,(∫
Ω

|f(x, v,∇v)|q
′
σ
−q′

q dx
)1/q′

≤ c2[c+ ‖|v‖|q/q′ + ‖|v‖|p/q′ ]. (3.9)

�

Proof of Theorem 3.1. Step (1) We will show that the operator B : W 1,p
0 (Ω, w) →

W 1,p′(Ω, w∗) defined by B(v) = A(v)− f(x, v,∇v) is a calcul of variational.
Assertion 1. Let

B(u, v) = −
N∑

i=1

∂ai(x, u,∇v)
∂xi

− f(x, u,∇u).

Then B(v, v) = B(v) for all v ∈W 1,p
0 (Ω, w).

Assertion 2. We claim that the operator v → B(u, v) is bounded for all u ∈
W 1,p

0 (Ω, w). Let ψ ∈W 1,p
0 (Ω, w), we have

〈B(u, v), ψ)〉 =
N∑

i=1

∫
Ω

ai(x, u,∇v)
∂ψ

∂xi
−

∫
Ω

f(x, u,∇u)ψ dx.
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From Hölder’s inequality, the growth condition (2.7) and the compact imbedding
(2.6), we obtain

N∑
i=1

∫
Ω

ai(x, u,∇v)
∂ψ

∂xi

≤
N∑

i=1

(∫
Ω

|ai(x, u,∇v)|p
′
w

−p′
p

i dx
)1/p′(∫

Ω

| ∂ψ
∂xi

|pwi dx
)1/p

≤ c4‖|ψ‖|
N∑

i=1

(∫
Ω

k(x)p′ + |u|qσ +
N∑

j=1

| ∂v
∂xj

|pwj dx
)1/p′

≤ c5‖|ψ‖|
[
c6 + ‖|u‖|

q
p′ + ‖|v‖|p−1

]
.

(3.10)

Similarly,∫
Ω

f(x, u,∇u)ψ dx ≤
(∫

Ω

|f(x, u,∇u)|q
′
σ
−q′

q dx
)1/q′(∫

Ω

|ψ|qσ dx
)1/q

,

by (2.5) and (3.9), we have,∫
Ω

f(x, u,∇u)ψ dx ≤ c‖|ψ‖|
[
c7 + ‖|u‖|q−1 + ‖|u‖|p/q′

]
. (3.11)

Since u and v belong to W 1,p
0 (Ω, w) and in view of (3.10) and (3.11), we deduce

that 〈B(u, v), ψ〉 is bounded in W 1,p
0 (Ω, w)×W 1,p

0 (Ω, w).
We claim that the operator v → B(u, v) is hemicontinuous for all u ∈W 1,p

0 (Ω, w),
i.e., the operator λ→ 〈B(u, v1+λv2), ψ〉 is continuous for all v1, v2, ψ ∈W 1,p

0 (Ω, w).
Since ai is a Carathéodory function,

ai(x, u,∇(v1 + λv2)) → ai(x, u,∇v1) a.e. in Ω as λ→ 0.

Further, we know from (2.7) that (ai(x, u,∇(v1 + λv2))λ is bounded in Lp′(Ω, w∗
i );

thus, by Lemma 3.2, we conclude

ai(x, u,∇(v1 + λv2)) ⇀ ai(x, u,∇v1) weakly in Lp′(Ω, w∗
i ), as λ→ 0 . (3.12)

Hence,

lim
λ→0

〈B(u, v1 + λv2), ψ〉

= lim
λ→0

N∑
i=1

∫
Ω

ai(x, u,∇(v1 + λv2))
∂ψ

∂xi
dx−

∫
Ω

f(x, u,∇u)ψ dx

=
N∑

i=1

∫
Ω

ai(x, u,∇v1)
∂ψ

∂xi
dx−

∫
Ω

f(x, u,∇u)ψ dx

= 〈B(u, v1), ψ〉 for all v1, v2, ψ ∈W 1,p
0 (Ω, w).

(3.13)

Similarly, we show that u → 〈B(u, v), ψ〉 is bounded and hemicontinuous for all
v ∈ W 1,p

0 (Ω, w). Indeed. By (3.9), we have f((x, u1 + λu2,∇(u1 + λu2)))λ is
bounded in Lq′(Ω, σ1−q′) and as f is a Carathéodory function then

f(x, u1 + λu2,∇(u1 + λu2)) → f(x, u1,∇u1) a.e. in Ω.
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Hence, Lemma 3.2 gives,

f(x, u1 + λu2,∇(u1 + λu2)) ⇀ f(x, u1,∇u2) weakly in Lq′(Ω, σ1−q′) as λ→ 0,
(3.14)

On the other hand, as in (3.12), we have

ai(x, u1 + λu2,∇v) ⇀ ai(x, u1,∇v) in Lp′(Ω, w∗
1), as λ→ 0. (3.15)

Combining (3.14) and (3.15), we conclude that, u→ B(u, v) is bounded and hemi-
continuous.
Assertion 3. From (2.8), we have,

〈B(u, u)−B(u, v), u− v〉 =
N∑

i=1

∫
Ω

(ai(x, u,∇u)− ai(x, u,∇v)) (
∂u

∂xi
− ∂v

∂xi
) ≥ 0

Assertion 4. Assume that un ⇀ u weakly in W 1,p
0 (Ω, w) and 〈B(un, un) −

B(un, u), un − u〉 → 0, we claim that B(un, v) ⇀ B(u, v) weakly in W−1,p′(Ω, w∗).
We can write 〈B(un, un)−B(un, u), un − u〉 → 0 as n→∞,

〈 N∑
i=1

−
[ ∂

∂xi
ai(x, un,∇un)− ∂

∂xi
ai(x, un,∇u)

]
, un − u

〉
=

N∑
i=1

∫
Ω

[ai(x, un,∇un)− ai(x, un,∇u)]
∂

∂xi
(un − u) dx→ 0

Then, by Lemma 3.4, we have un → u strongly in W 1,p
0 (Ω, w) and it follows from

Lemma 3.5 that

f(x, un,∇un) → f(x, u,∇u) in Lq′(Ω, σ1−q′). (3.16)

Since un → u in Lp(Ω, w) and by (2.7) and W 1,p
0 (Ω, w) ↪→↪→ Lq(Ω, σ), we can

obtain from Lemma 3.3 that

ai(x, un,∇v) → ai(x, u,∇v) in Lp′(Ω, w∗
i ) . (3.17)

This implies ∫
Ω

ai(x, un,∇v)
∂ψ

∂xi
dx→

∫
Ω

ai(x, u,∇v)
∂ψ

∂xi
dx. (3.18)

On the other hand, by Hölders inequality,∫
Ω

|f(x, un,∇un)ψ| dx ≤
(∫

Ω

|f(x, un,∇un)|q
′
σ1−q′ dx

)1/q′(∫
Ω

|ψ|qσ dx
)1/q

.

Thanks to (3.16), (2.5), and Lebegue’s dominated convergence theorem, we obtain

∫
Ω

f(x, un,∇un)ψ dx→
∫

Ω

f(x, u,∇u)ψ dx . (3.19)
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Then, we have

lim
n→∞

〈B(un, v), ψ〉 = lim
n→∞

N∑
i=1

∫
Ω

ai(x, un,∇v)
∂ψ

∂xi
dx−

∫
Ω

f(x, un,∇un)ψ dx

=
N∑

i=1

∫
Ω

ai(x, u,∇v)
∂ψ

∂xi
dx−

∫
Ω

f(x, u,∇u)ψ dx

= 〈B(u, v), ψ〉, for all ψ ∈W 1,p
0 (Ω, w).

Assertion 5. Assume un ⇀ u weakly in W 1,p
0 (Ω, w) and B(un, v) ⇀ ψ weakly

in W−1,p′(Ω, w). We claim that 〈B(un, v), un〉 → 〈ψ, u〉. Thanks to un ⇀ u in
W p

0 (Ω, w), we obtain by Lemma 3.3,

ai(x, un,∇v) → ai(x, u,∇v) strongly in Lp′(Ω, w∗
i ) as n→ +∞. (3.20)

And so ∫
Ω

ai(x, un,∇v)
∂un

∂xi
dx→

∫
Ω

ai(x, u,∇v)
∂u

∂xi
dx. (3.21)

Hence together with
N∑

i=1

∫
Ω

ai(x, un,∇v)
∂u

∂xi
dx−

∫
Ω

f(x, un,∇v)u dx→ 〈ψ, u〉, (3.22)

we have

〈B(un, v), un)〉 =
N∑

i=1

∫
Ω

ai(x, un,∇v)
∂un

∂xi
dx−

∫
Ω

f(x, un,∇un)un dx

=
N∑

i=1

∫
Ω

ai(x, un,∇v)(
∂un

∂xi
− ∂u

∂xi
) dx+

N∑
i=1

∫
Ω

ai(x, un,∇v)
∂u

∂xi
dx

−
∫

Ω

f(x, un,∇un)u dx−
∫

Ω

f(x, un,∇un)(un − u) dx.

But in view of (3.20) and (3.21), we obtain
N∑

i=1

∫
Ω

ai(x, un,∇v)(
∂un

∂xi
− ∂u

∂xi
) dx→ 0. (3.23)

On the other hand, by Hölder’s inequality,∫
Ω

|f(x, un,∇un)(un − u)| dx

≤
(∫

Ω

|f(x, un,∇un)|q
′
σ1−q′ dx

)1/q′(∫
Ω

|un − u|qσ dx
)1/q

≤ c‖un − u‖Lq(Ω,σ) → as n→∞

i.e., ∫
Ω

f(x, un,∇un)(un − u) dx→ 0 as n→∞. (3.24)

Thanks to (3.22), (3.23) and (3.24), we obtain

〈B(un, v), un〉 → 〈ψ, u〉.
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Step 2. We claim that the operator B satisfies the coercivity condition

lim
‖|v‖|→+∞

〈B(v), v〉
‖|v‖|

= ∞. (3.25)

Since

〈Bv, v〉 =
N∑

i=1

∫
Ω

ai(x, v,∇v)
∂v

∂xi
dx−

∫
Ω

f(x, v,∇v)v dx.

Then, using (2.9), we have

〈Bv, v〉 ≥ α
N∑

i=1

wi|
∂v

∂xi
|p −

∫
Ω

f(x, v,∇v)v dx. (3.26)

Moreover,∫
Ω

f(x, v,∇v)v dx

≤
∫

Ω

σ1/qg(x)v dx+
∫

Ω

|v|η+1σ(η+1)/q dx+
∫

Ω

N∑
i=1

w
δ/p
i | ∂v

∂xi
|δσ1/q|v| dx.

(3.27)

Thanks to Hölder’s inequality and (2.5), we have∫
Ω

σ1/qg(x)v dx ≤
(∫

Ω

|g(x)|q
′
dx

)1/q′(∫
Ω

|v|qσ dx
)1/q

≤ c‖|v‖|. (3.28)

On the other hand, by Hölder’s inequality,
N∑

i=1

w
δ/p
i | ∂v

∂xi
|δσ1/q|v| ≤ c

N∑
i=1

(∫
Ω

w
δq′
p

i | ∂v
∂xi

|δq′ dx
)1/q′(∫

Ω

|v|qσ dx
)1/q

.

In view of (2.5), we have
N∑

i=1

w
δ/p
i | ∂v

∂xi
|δσ1/q|v| ≤ c

N∑
i=1

(∫
Ω

w
δq′
p

i | ∂v
∂xi

|δq′ dx
)1/q′

‖|v‖|. (3.29)

Since 0 ≤ δq′

p < 1, hence by Hölder’s inequality, we deduce(∫
Ω

w
δ/q′

i p| ∂v
∂xi

|δq′ dx
)1/q′

≤
(∫

Ω

wi|
∂v

∂xi
|p dx

)δ/p

, (3.30)

remark that,
(a+ b)r ≥ c(ar + br) if 0 ≤ r < 1. (3.31)

Combining (3.29), (3.30) and (3.31), we conclude that
N∑

i=1

w
δ/p
i | ∂v

∂xi
|δσ1/q|v| ≤ c‖|v‖|

( N∑
i=1

∫
Ω

wi|
∂v

∂xi
|p dx

)δ/p

≤ c‖|v‖| ‖|v‖|δ. (3.32)

Further, 0 ≤ η+1
q < 1, then by Hölder’s inequality and (2.6), we deduce∫

Ω

|v|η+1σ(η+1)/q dx ≤ c‖|v‖|η+1. (3.33)

Then from (3.26), (3.28), (3.32) and (3.33), we deduce that

〈Bv, v〉 ≥ α‖|v‖|p−1 − c1 − c2‖|v‖|η − c3‖|v‖|δ−1
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and since p− 1 > η and p > δ, we conclude that 〈Bv,v〉
‖v‖ → +∞. Finally, the proof

of Theorem is complete thanks to the classical Theorem in [7]. �

4. Examples

Let us consider the Carathéodory functions

ai(x, r, ξ) = wi|ξi|p−1 sgn(ξi)

Where wi(x)(i = 1, . . . , N) are a given weight functions strictly positive almost
everywhere in Ω. We shall assume that the weight function satisfies wi(x) = w(x),
x ∈ Ω for i = 0, . . . , N . It is easy to show that the ai(x, s, ξ) are Carathéodory
function satisfying the growth condition (2.7) and the coercivity (2.9). On the other
side, the monotonicity condition (2.8) is verified. In fact,

N∑
i=1

(ai(x, s, ξ)− ai(x, s, ξ̂))(ξi − ξ̂i)

= w(x)
N−1∑
i=1

(|ξi|p−1 sgn(ξi)− |ξ̂i|p−1 sgn(ξ̂i))(ξi − ξ̂i) > 0

for almost all x ∈ Ω and for all ξ, ξ̂ ∈ RN with ξ 6= ξ̂, since w > 0 a.e. in Ω. We
consider the Hardy inequality (2.5) in the form(∫

Ω

|u(x)|qσ(x) dx
)1/q

≤ c
(∫

Ω

|∇u(x)|pw(x) dx
)1/p

,

where σ and q are defined in (2.5). In particular, let us use a special weight
functions w and σ expressed in terms of the distance to the bounded ∂Ω. Denote
d(x) = dist(x, ∂Ω) and set

w(x) = dλ(x), σ(x) = dµ(x).

In this case, the Hardy inequality reads(∫
Ω

|u(x)|qdµ(x) dx
)1/q

≤ c
(∫

Ω

|∇u(x)|pdλ(x) dx
)1/p

.

The corresponding imbedding is compact if:
(i) For, 1 < p ≤ q <∞,

λ < p− 1,
N

q
− N

p
+ 1 ≥ 0,

µ

q
− λ

p
+
N

q
− N

p
+ 1 > 0. (4.1)

(ii) For 1 ≤ q < p <∞,

λ < p− 1,
µ

q
− λ

p
+

1
q
− 1
p

+ 1 > 0. (4.2)

Remarks. 1. Condition (4.1) or Condition (4.2) is sufficient for the compact
imbedding (2.6) to hold; see for example [4, example 1], [5, example 1.5], and [6,
Theorems 19.17, 19.22].

Let us consider the Carathéodory function

f(x, r, ξ) = d
µ
q (x)

(
d

µδ
q (x)|r|η +

N∑
i=1

d
λδ
p (x)|ξi|δ + g(x)

)
,
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with g ∈ Lq′(Ω), σ(x) is weight function and 0 ≤ η < min(p−1, q−1), 0 ≤ δ < p−1
q′ .

Because of its definition, f(x, r, ξ) satisfies the growth condition (2.10). Also the
hypotheses of Theorem 3.1 are satisfied. Therefore, the problem

N∑
i=1

∫
Ω

(
dλ(x)| ∂u

∂xi
|p−2 ∂u

∂xi

∂v

∂xi

)
dx

=
∫

Ω

dµ/q(x)
(
dµδ/q(x)|u|η +

N∑
i=1

dλδ/p(x)|ξi|δ + g(x)
)
v dx ,

for all v ∈W 1,p
0 (Ω, w), has at last one solution.
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Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz,
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