2004-Fez conference on Differential Equations and Mechanics Electronic Journal of Differential Equations, Conference 11, 2004, pp. 11-22. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE SOLVABILITY OF DEGENERATED QUASILINEAR ELLIPTIC PROBLEMS

YOUSSEF AKDIM, ELHOUSSINE AZROUL, MOHAMED RHOUDAF

Abstract. In this article, we study the quasilinear elliptic problem

$$
\begin{gathered}
A u=-\operatorname{div}(a(x, u, \nabla u))=f(x, u, \nabla u) \quad \text { in } \mathcal{D}^{\prime}(\Omega) \\
u=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

where A is a Leray-Lions operator from $W_{0}^{1, p}(\Omega, w)$ to its dual $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$. We show that there exists a solution in $W_{0}^{1, p}(\Omega, w)$ provided that

$$
|f(x, r, \xi)| \leq \sigma^{1 / q}\left[g(x)+|r|^{\eta} \sigma^{\eta / q}+\sum_{i=1}^{N} w_{i}^{\delta / p}(x)\left|\xi_{i}\right|^{\delta}\right],
$$

where $g(x)$ is a positive function in $L^{q^{\prime}}(\Omega)$ and $\sigma(x)$ is weight function and $0 \leq \eta<\min (p-1, q-1), 0 \leq \delta<(p-1) / q^{\prime}$.

1. Introduction

Let Ω be a bounded open set in $\mathbb{R}^{N}, N \geq 2$, and p be a real number such that $1<p<\infty$. Let $w=\left\{w_{i}(x), 0 \leq i \leq N\right\}$ be a vector weight functions on Ω; i.e., each $w_{i}(x)$ is a measurable a.e. strictly positive function on Ω, satisfying some integrability conditions (see section2). Let us consider the problem

$$
\begin{gather*}
A u=f(x, u, \nabla u) \quad \text { in } \mathcal{D}^{\prime}(\Omega) \\
u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{gather*}
$$

where A is a Leray-Lions operator $A u=-\operatorname{div}(a(x, u, \nabla u))$ and $f(x, r, \xi): \Omega \times \mathbb{R} \times$ $\mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function. Boccardo, Murat and Puel in [3] studied the problem (1.1) in the non weighted case, with f satisfying the condition

$$
|f(x, r, \xi)| \leq h(|r|)\left(1+|\xi|^{p}\right),
$$

where h is increasing function from \mathbb{R}^{+}into \mathbb{R}^{+}. The existence result is proved assuming the existence of the subsolution and supersolution in $W^{1, \infty}(\Omega)$, which play an important roll in their work. Further in [2] the author's studied the problem

[^0](1.1) with f satisfies the hypotheses
\[

$$
\begin{gather*}
|f(x, r, \xi)| \leq \beta\left[g(x)+|r|^{p-1}+|\xi|^{p-1}\right] \tag{1.2}\\
f(x, r, \xi) r \geq \alpha|r|^{p} \tag{1.3}
\end{gather*}
$$
\]

Recently, Tsang-Hai Kuo and Chiung-Chion Tsai 8 proved an existence result under the assumption

$$
|f(x, r, \xi)| \leq c\left(1+|r|^{\delta}+|\xi|^{\eta}\right)
$$

Our objective in this paper, is to study the problem 1.1 in weighted Sobolev spaces where f satisfying only the growth condition

$$
|f(x, r, \xi)| \leq \sigma^{1 / q}\left[g(x)+|r|^{\eta} \sigma^{\frac{\eta}{q}}+\sum_{i=1}^{N} w_{i}^{\delta / p}(x)\left|\xi_{i}\right|^{\delta}\right]
$$

where $g(x)$ is a positive function in $L^{q^{\prime}}(\Omega), \sigma$ is a weight function, and

$$
0 \leq \eta<\min (p-1, q-1), \quad 0 \leq \delta<\frac{p-1}{q^{\prime}}
$$

Note that we obtain the existence result without assuming the condition 1.3 and without knowing a priori the existence of subsolutions and supersolutions. Let us point out that this work can be see as a generalization of the work in [2] and [8].

2. Preliminaries and Basic Assumptions

Let Ω be a bounded open set of \mathbb{R}^{N}, p be a real number such that $1<p<\infty$, and $w=\left\{w_{i}(x), 0 \leq i \leq N\right\}$ be a vector of weight functions; i.e. every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that

$$
\begin{gather*}
w_{i} \in L_{\mathrm{loc}}^{1}(\Omega), \tag{2.1}\\
w_{i}^{-1 /(p-1)} \in L_{\mathrm{loc}}^{1}(\Omega), \tag{2.2}
\end{gather*}
$$

for any $0 \leq i \leq N$. We denote by $W^{1, p}(\Omega, w)$ the space of real-valued functions $u \in L^{p}\left(\Omega, w_{0}\right)$ such that their derivatives in the sense of distributions satisfies

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, w_{i}\right) \quad \text { for } i=1, \ldots, N .
$$

Which is a Banach space under the norm

$$
\begin{equation*}
\|u\|_{1, p, w}=\left[\int_{\Omega}|u(x)|^{p} w_{0}(x) d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right]^{1 / p} \tag{2.3}
\end{equation*}
$$

The condition (2.1) implies that $C_{0}^{\infty}(\Omega)$ is a subspace of $W^{1, p}(\Omega, w)$ and consequently, we can introduce the subspace $W_{0}^{1, p}(\Omega, w)$ of $W^{1, p}(\Omega, w)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm 2.3. Moreover, the condition 2.2 implies that $W^{1, p}(\Omega, w)$ as well as $W_{0}^{1, p}(\Omega, w)$ are reflexive Banach spaces.

We recall that the dual space of weighted Sobolev spaces $W_{0}^{1, p}(\Omega, w)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, where $w^{*}=\left\{w_{i}^{*}=w_{i}^{1-p^{\prime}}, i=1, \ldots, N\right\}$ and p^{\prime} is the conjugate of p, i.e. $p^{\prime}=\frac{p}{p-1}$. For more details we refer the reader to [5]. We start by stating the following assumptions:
(H1) The expression

$$
\begin{equation*}
\|\mid u\| \|=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.4}
\end{equation*}
$$

is a norm defined on $W_{0}^{1, p}(\Omega, w)$ and its equivalent to the norm 2.3). And there exist a weight function σ on Ω and a parameter $0<q<\infty$, such that the Hardy inequality

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{q} \sigma(x) d x\right)^{1 / q} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.5}
\end{equation*}
$$

holds for every $u \in W_{0}^{1, p}(\Omega, w)$ with a constant $c>0$. Moreover, the imbedding

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, w) \hookrightarrow \hookrightarrow L^{q}(\Omega, \sigma) \tag{2.6}
\end{equation*}
$$

is compact.
Let A be a nonlinear operator from $W_{0}^{1, p}(\Omega, w)$ into its dual $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$ defined by

$$
A(u)=-\operatorname{div}(a(x, u, \nabla u))
$$

where $a(x, r, \xi): \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory vector-valued function that satisfies the following assumption:
(H2) For $i=1, \ldots, N$,

$$
\begin{gather*}
\left|a_{i}(x, r, \xi)\right| \leq \beta w_{i}^{1 / p}(x)\left[k(x)+\sigma^{\frac{1}{p^{\prime}}}|r|^{q / p^{\prime}}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}\left|\xi_{j}\right|^{p-1}\right] \tag{2.7}\\
{[a(x, r, \xi)-a(x, r, \eta)](\xi-\eta)>0 \quad \text { for all } \xi \neq \eta \in \mathbb{R}^{N}} \tag{2.8}\\
a(x, r, \xi) \xi \geq \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p} \tag{2.9}
\end{gather*}
$$

where $k(x)$ is a positive function in $L^{p^{\prime}}(\Omega)$ and α, β are strictly positive constants.
Let $f(x, r, \xi)$ is a Carathéodory function satisfying the following assumptions:
(H3)

$$
\begin{equation*}
|f(x, r, \xi)| \leq \sigma^{1 / q}\left[g(x)+|r|^{\eta} \sigma^{\frac{\eta}{q}}+\sum_{i=1}^{N} w_{i}^{\delta / p}(x)\left|\xi_{i}\right|^{\delta}\right] \tag{2.10}
\end{equation*}
$$

where $g(x)$ is a positive function in $L^{q^{\prime}}(\Omega)$, and

$$
\begin{equation*}
0 \leq \eta<\min (p-1, q-1), \quad 0 \leq \delta<\frac{p-1}{q^{\prime}} \tag{2.11}
\end{equation*}
$$

3. Main result

Consider the problem

$$
\begin{gather*}
-\operatorname{div} a(x, u, \nabla u)=f(x, u, \nabla u) \text { in } D^{\prime}(\Omega) \\
u=0 \quad \text { on } \partial \Omega . \tag{3.1}
\end{gather*}
$$

Theorem 3.1. Under hypotheses (H1)-(H3), there exist at least one solution to (3.1).

We first give some definition and some lemmas that will be used in the proof of this theorem.
Definition Let Y be a separable reflexive Banach space, the operator B from Y to its dual Y^{*} is called of the calculus of variations type, if B is bounded and is of the from,

$$
\begin{equation*}
B(u)=B(u, u) \tag{3.2}
\end{equation*}
$$

where $(u, v) \rightarrow B(u, v)$ is an operator $Y \times Y$ into Y^{*} satisfying the following properties:

For $u \in Y$, the mapping $v \mapsto B(u, v)$ is bounded and hemicontinuous
from Y to Y^{*} and $(B(u, u)-B(u, v), u-v) \geq 0$;
for $v \in Y$, the mapping $u \mapsto B(u, v)$ is bounded and hemicontinuous from Y to Y^{*};
If $u_{n} \rightharpoonup u$ weakly in Y and if $\left(B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-u\right) \rightarrow 0$, then $B\left(u_{n}, v\right) \rightharpoonup B(u, v)$ weakly in Y^{*}, for all $v \in Y$;
If $u_{n} \rightharpoonup u$ weakly in Y and if $B\left(u_{n}, v\right) \rightharpoonup \psi$ weakly in Y^{*},
then $\left(B\left(u_{n}, v\right), u_{n}\right) \rightarrow(\psi, u)$.
Lemma 3.2 (1). Let $g \in L^{q}(\Omega, \gamma), g_{n} \in L^{q}(\Omega, \gamma)$, and $\left\|g_{n}\right\|_{q, \gamma} \leq c(1<q<\infty)$. If $g_{n}(x) \rightarrow g(x)$ a.e. in Ω, then $g_{n} \rightharpoonup g$ weakly in $L^{q}(\Omega, \gamma)$, where γ is a weight function on Ω.
Lemma 3.3. If $u_{n} \rightharpoonup u$ in $W_{0}^{1, p}(\Omega, w)$ and $v \in W_{0}^{1, p}(\Omega, w)$, then $a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow$ $a_{i}(x, u, \nabla v)$ in $L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$.
Proof. From (H2), it follows that

$$
\begin{align*}
\left|a_{i}\left(x, u_{n}, \nabla v\right)\right|^{p^{\prime}} w_{i}^{\frac{-p^{\prime}}{p}} & \leq \beta\left[k(x)+\left|u_{n}\right|^{\frac{q}{p^{\prime}}} \sigma^{\frac{1}{p^{\prime}}}+\sum_{j=1}^{N}\left|\frac{\partial v}{\partial x_{j}}\right|^{p-1} w_{j}^{\frac{1}{p^{\prime}}}\right]^{p^{\prime}} \\
& \leq \gamma\left[k(x)^{p^{\prime}}+\left|u_{n}\right|^{q} \sigma+\sum_{j=1}^{N}\left|\frac{\partial v}{\partial x_{j}}\right|^{p} w_{j}\right] \tag{3.6}
\end{align*}
$$

where β and γ are positive constants. Since $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and $W_{0}^{1, p}(\Omega, w) \hookrightarrow \hookrightarrow L^{q}(\Omega, \sigma)$, it follows that $u_{n} \rightarrow u$ strongly in $L^{q}(\Omega, \sigma)$ and $u_{n} \rightarrow u$ a.e. in Ω; hence

$$
\begin{equation*}
\left|a_{i}\left(x, u_{n}, \nabla v\right)\right|^{p^{\prime}} w_{i}^{*} \rightarrow\left|a_{i}(x, u, \nabla v)\right|^{p^{\prime}} w_{i}^{*} \quad \text { a.e. in } \Omega, \tag{3.7}
\end{equation*}
$$

and

$$
\gamma\left[k(x)^{p^{\prime}}+\left|u_{n}\right|^{q} \sigma+\sum_{j=1}^{N}\left|\frac{\partial v}{\partial x_{j}}\right|^{p} w_{i}\right] \rightarrow \gamma\left[k(x)^{p^{\prime}}+|u|^{q} \sigma+\sum_{j=1}^{N}\left|\frac{\partial v}{\partial x_{j}}\right|^{p} w_{j}\right]
$$

a.e. in Ω. Then, By Vitali's theorem,

$$
\begin{equation*}
a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow a_{i}(x, u, \nabla v) \quad \text { strongly in } L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right), \text { as } n \rightarrow+\infty \tag{3.8}
\end{equation*}
$$

Lemma 3.4 ([1]). Assume that (H1)-(H2) are satisfied, and let $\left(u_{n}\right)$ be a sequence in $W_{0}^{1, p}(\Omega, w)$ such that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and

$$
\int_{\Omega}\left[a\left(x, u_{n}, \nabla u_{n}\right)-a\left(x, u_{n}, \nabla u\right)\right] \nabla\left(u_{n}-u\right) d x \rightarrow 0
$$

Then, $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega, w)$.
For $v \in W_{0}^{1, p}(\Omega, w)$, we associate the Nemytskii operator F with respect to f,

$$
F(v, \nabla v)(x)=f(x, v, \nabla v) \text { a.e., } x \in \Omega .
$$

Lemma 3.5. The mapping $v \mapsto F(v, \nabla v)$ is continuous from the space $W_{0}^{1, p}(\Omega, w)$ to $L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$.

Proof. By hypothesis (H3), we have

$$
|f(x, r, \xi)| \leq \sigma^{1 / q}\left[g(x)+|r|^{\eta} \sigma^{\frac{\eta}{q}}+\sum_{i=1}^{N} w_{i}^{\delta / p}(x)\left|\xi_{i}\right|^{\delta}\right]
$$

Thanks to Young's inequality,

$$
\begin{aligned}
|r|^{\eta} \sigma^{\eta / q} \leq & {\left[\frac{\eta}{q-1}|r|^{q-1} \sigma^{(q-1) / q}+1\right] \leq\left[|r|^{q-1} \sigma^{q^{\prime}}+1\right] } \\
& w_{i}^{\sigma / p}\left|\xi_{i}\right|^{\sigma} \leq\left[w_{i}^{1 / q^{\prime}}\left|\xi_{i}\right|^{p / q^{\prime}}+1\right]
\end{aligned}
$$

which implies

$$
|f(x, r, \xi)| \leq \sigma^{1 / q}\left[(N+2)+g(x)+|r|^{q-1} \sigma^{1 / q^{\prime}}+\sum_{i=1}^{N} w_{i}^{1 / q^{\prime}}\left|\xi_{i}\right|^{p / q^{\prime}}\right]
$$

Then

$$
|f(x, r, \xi)|^{q^{\prime}} \sigma^{-q^{\prime} / q} \leq c_{2}\left[c_{1}+g(x)^{q^{\prime}}+|r|^{(q-1) q^{\prime}} \sigma+\sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p}\right]
$$

Since f is a Carathéodory, and for all subset E measurable, such that $|E|<\eta$, we have

$$
\int_{E}|f(x, v, \nabla v)|^{q^{\prime}} \sigma^{\frac{-q^{\prime}}{q}} d x \leq c_{2}\left[c_{3}+\int_{E}|v|^{q} \sigma d x+\int_{E} \sum_{i=1}^{N} w_{i}\left|\frac{\partial v}{\partial x_{i}}\right|^{p} d x\right]
$$

Then by Vitali's theorem, we deduce the continuous of the operator F. Moreover,

$$
\begin{equation*}
\left(\int_{\Omega}|f(x, v, \nabla v)|^{q^{\prime}} \sigma^{\frac{-q^{\prime}}{q}} d x\right)^{1 / q^{\prime}} \leq c_{2}\left[c+\left\|\left|v\| \|^{q / q^{\prime}}+\|v\|\right|^{p / q^{\prime}}\right] .\right. \tag{3.9}
\end{equation*}
$$

Proof of Theorem 3.1. Step (1) We will show that the operator $B: W_{0}^{1, p}(\Omega, w) \rightarrow$ $W^{1, p^{\prime}}\left(\Omega, w^{*}\right)$ defined by $B(v)=A(v)-f(x, v, \nabla v)$ is a calcul of variational.
Assertion 1. Let

$$
B(u, v)=-\sum_{i=1}^{N} \frac{\partial a_{i}(x, u, \nabla v)}{\partial x_{i}}-f(x, u, \nabla u)
$$

Then $B(v, v)=B(v)$ for all $v \in W_{0}^{1, p}(\Omega, w)$.
Assertion 2. We claim that the operator $v \rightarrow B(u, v)$ is bounded for all $u \in$ $W_{0}^{1, p}(\Omega, w)$. Let $\psi \in W_{0}^{1, p}(\Omega, w)$, we have

$$
\langle B(u, v), \psi)\rangle=\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}}-\int_{\Omega} f(x, u, \nabla u) \psi d x
$$

From Hölder's inequality, the growth condition 2.7 and the compact imbedding (2.6), we obtain

$$
\begin{align*}
& \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} \\
& \leq \sum_{i=1}^{N}\left(\int_{\Omega}\left|a_{i}(x, u, \nabla v)\right|^{p^{\prime}} w_{i}^{\frac{-p^{\prime}}{p}} d x\right)^{1 / p^{\prime}}\left(\int_{\Omega}\left|\frac{\partial \psi}{\partial x_{i}}\right|^{p} w_{i} d x\right)^{1 / p} \tag{3.10}\\
& \leq c_{4}\left\||\psi \|| \sum_{i=1}^{N}\left(\int_{\Omega} k(x)^{p^{\prime}}+|u|^{q} \sigma+\sum_{j=1}^{N}\left|\frac{\partial v}{\partial x_{j}}\right|^{p} w_{j} d x\right)^{1 / p^{\prime}}\right. \\
& \leq c_{5}\left\||\psi \||\left[c_{6}+\left.\||u|\|\right|^{\frac{q}{p^{\prime}}}+\|\left.|v|\right|^{p-1}\right]\right.
\end{align*}
$$

Similarly,

$$
\int_{\Omega} f(x, u, \nabla u) \psi d x \leq\left(\int_{\Omega}|f(x, u, \nabla u)|^{q^{\prime}} \sigma^{\frac{-q^{\prime}}{q}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}|\psi|^{q} \sigma d x\right)^{1 / q}
$$

by 2.5 and (3.9), we have,

$$
\begin{equation*}
\int_{\Omega} f(x, u, \nabla u) \psi d x \leq c\| \| \psi \| \mid\left[c_{7}+\left\|\left|u\| \|^{q-1}+\| \| u \|\right|^{p / q^{\prime}}\right]\right. \tag{3.11}
\end{equation*}
$$

Since u and v belong to $W_{0}^{1, p}(\Omega, w)$ and in view of 3.10 and 3.11) we deduce that $\langle B(u, v), \psi\rangle$ is bounded in $W_{0}^{1, p}(\Omega, w) \times W_{0}^{1, p}(\Omega, w)$.

We claim that the operator $v \rightarrow B(u, v)$ is hemicontinuous for all $u \in W_{0}^{1, p}(\Omega, w)$, i.e., the operator $\lambda \rightarrow\left\langle B\left(u, v_{1}+\lambda v_{2}\right), \psi\right\rangle$ is continuous for all $v_{1}, v_{2}, \psi \in W_{0}^{1, p}(\Omega, w)$. Since a_{i} is a Carathéodory function,

$$
a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \rightarrow a_{i}\left(x, u, \nabla v_{1}\right) \quad \text { a.e. in } \Omega \text { as } \lambda \rightarrow 0 .
$$

Further, we know from 2.7) that $\left(a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right)_{\lambda}\right.$ is bounded in $L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right)$; thus, by Lemma 3.2, we conclude

$$
\begin{equation*}
a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \rightharpoonup a_{i}\left(x, u, \nabla v_{1}\right) \quad \text { weakly in } L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right), \text { as } \lambda \rightarrow 0 \tag{3.12}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& \lim _{\lambda \rightarrow 0}\left\langle B\left(u, v_{1}+\lambda v_{2}\right), \psi\right\rangle \\
& =\lim _{\lambda \rightarrow 0} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u, \nabla\left(v_{1}+\lambda v_{2}\right)\right) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi d x \tag{3.13}\\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u, \nabla v_{1}\right) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi d x \\
& =\left\langle B\left(u, v_{1}\right), \psi\right\rangle \quad \text { for all } v_{1}, v_{2}, \psi \in W_{0}^{1, p}(\Omega, w)
\end{align*}
$$

Similarly, we show that $u \rightarrow\langle B(u, v), \psi\rangle$ is bounded and hemicontinuous for all $v \in W_{0}^{1, p}(\Omega, w)$. Indeed. By (3.9), we have $f\left(\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right)\right)_{\lambda}$ is bounded in $L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right)$ and as f is a Carathéodory function then

$$
f\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right) \rightarrow f\left(x, u_{1}, \nabla u_{1}\right) \quad \text { a.e. in } \Omega .
$$

Hence, Lemma 3.2 gives,

$$
\begin{equation*}
f\left(x, u_{1}+\lambda u_{2}, \nabla\left(u_{1}+\lambda u_{2}\right)\right) \rightharpoonup f\left(x, u_{1}, \nabla u_{2}\right) \quad \text { weakly in } L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right) \text { as } \lambda \rightarrow 0 \tag{3.14}
\end{equation*}
$$

On the other hand, as in (3.12), we have

$$
\begin{equation*}
a_{i}\left(x, u_{1}+\lambda u_{2}, \nabla v\right) \rightharpoonup a_{i}\left(x, u_{1}, \nabla v\right) \quad \text { in } L^{p^{\prime}}\left(\Omega, w_{1}^{*}\right), \text { as } \lambda \rightarrow 0 \tag{3.15}
\end{equation*}
$$

Combining 3.14 and 3.15, we conclude that, $u \rightarrow B(u, v)$ is bounded and hemicontinuous.
Assertion 3. From 2.8, we have,

$$
\langle B(u, u)-B(u, v), u-v\rangle=\sum_{i=1}^{N} \int_{\Omega}\left(a_{i}(x, u, \nabla u)-a_{i}(x, u, \nabla v)\right)\left(\frac{\partial u}{\partial x_{i}}-\frac{\partial v}{\partial x_{i}}\right) \geq 0
$$

Assertion 4. Assume that $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and $\left\langle B\left(u_{n}, u_{n}\right)-\right.$ $\left.B\left(u_{n}, u\right), u_{n}-u\right\rangle \rightarrow 0$, we claim that $B\left(u_{n}, v\right) \rightharpoonup B(u, v)$ weakly in $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$.

We can write $\left\langle B\left(u_{n}, u_{n}\right)-B\left(u_{n}, u\right), u_{n}-u\right\rangle \rightarrow 0$ as $n \rightarrow \infty$,

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{N}-\left[\frac{\partial}{\partial x_{i}} a_{i}\left(x, u_{n}, \nabla u_{n}\right)-\frac{\partial}{\partial x_{i}} a_{i}\left(x, u_{n}, \nabla u\right)\right], u_{n}-u\right\rangle \\
& =\sum_{i=1}^{N} \int_{\Omega}\left[a_{i}\left(x, u_{n}, \nabla u_{n}\right)-a_{i}\left(x, u_{n}, \nabla u\right)\right] \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) d x \rightarrow 0
\end{aligned}
$$

Then, by Lemma 3.4, we have $u_{n} \rightarrow u$ strongly in $W_{0}^{1, p}(\Omega, w)$ and it follows from Lemma 3.5 that

$$
\begin{equation*}
f\left(x, u_{n}, \nabla u_{n}\right) \rightarrow f(x, u, \nabla u) \quad \text { in } L^{q^{\prime}}\left(\Omega, \sigma^{1-q^{\prime}}\right) \tag{3.16}
\end{equation*}
$$

Since $u_{n} \rightarrow u$ in $L^{p}(\Omega, w)$ and by 2.7 and $W_{0}^{1, p}(\Omega, w) \hookrightarrow \hookrightarrow L^{q}(\Omega, \sigma)$, we can obtain from Lemma 3.3 that

$$
\begin{equation*}
a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow a_{i}(x, u, \nabla v) \quad \text { in } L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) \tag{3.17}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial \psi}{\partial x_{i}} d x \rightarrow \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} d x \tag{3.18}
\end{equation*}
$$

On the other hand, by Hölders inequality,

$$
\int_{\Omega}\left|f\left(x, u_{n}, \nabla u_{n}\right) \psi\right| d x \leq\left(\int_{\Omega}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right|^{q^{\prime}} \sigma^{1-q^{\prime}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}|\psi|^{q} \sigma d x\right)^{1 / q}
$$

Thanks to 3.16, 2.5), and Lebegue's dominated convergence theorem, we obtain

$$
\begin{equation*}
\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi d x \rightarrow \int_{\Omega} f(x, u, \nabla u) \psi d x \tag{3.19}
\end{equation*}
$$

Then, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\langle B\left(u_{n}, v\right), \psi\right\rangle & =\lim _{n \rightarrow \infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) \psi d x \\
& =\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial \psi}{\partial x_{i}} d x-\int_{\Omega} f(x, u, \nabla u) \psi d x \\
& =\langle B(u, v), \psi\rangle, \quad \text { for all } \psi \in W_{0}^{1, p}(\Omega, w)
\end{aligned}
$$

Assertion 5. Assume $u_{n} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega, w)$ and $B\left(u_{n}, v\right) \rightharpoonup \psi$ weakly in $W^{-1, p^{\prime}}(\Omega, w)$. We claim that $\left\langle B\left(u_{n}, v\right), u_{n}\right\rangle \rightarrow\langle\psi, u\rangle$. Thanks to $u_{n} \rightharpoonup u$ in $W_{0}^{p}(\Omega, w)$, we obtain by Lemma 3.3 .

$$
\begin{equation*}
a_{i}\left(x, u_{n}, \nabla v\right) \rightarrow a_{i}(x, u, \nabla v) \quad \text { strongly in } L^{p^{\prime}}\left(\Omega, w_{i}^{*}\right) \text { as } n \rightarrow+\infty . \tag{3.20}
\end{equation*}
$$

And so

$$
\begin{equation*}
\int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u_{n}}{\partial x_{i}} d x \rightarrow \int_{\Omega} a_{i}(x, u, \nabla v) \frac{\partial u}{\partial x_{i}} d x \tag{3.21}
\end{equation*}
$$

Hence together with

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u}{\partial x_{i}} d x-\int_{\Omega} f\left(x, u_{n}, \nabla v\right) u d x \rightarrow\langle\psi, u\rangle \tag{3.22}
\end{equation*}
$$

we have

$$
\begin{aligned}
\left.\left\langle B\left(u_{n}, v\right), u_{n}\right)\right\rangle= & \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u_{n}}{\partial x_{i}} d x-\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) u_{n} d x \\
= & \sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x+\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right) \frac{\partial u}{\partial x_{i}} d x \\
& -\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right) u d x-\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right) d x
\end{aligned}
$$

But in view of 3.20 and 3.21, we obtain

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}\left(x, u_{n}, \nabla v\right)\left(\frac{\partial u_{n}}{\partial x_{i}}-\frac{\partial u}{\partial x_{i}}\right) d x \rightarrow 0 \tag{3.23}
\end{equation*}
$$

On the other hand, by Hölder's inequality,

$$
\begin{aligned}
& \int_{\Omega}\left|f\left(x, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right)\right| d x \\
& \leq\left(\int_{\Omega}\left|f\left(x, u_{n}, \nabla u_{n}\right)\right|^{q^{\prime}} \sigma^{1-q^{\prime}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}\left|u_{n}-u\right|^{q} \sigma d x\right)^{1 / q} \\
& \leq c\left\|u_{n}-u\right\|_{L^{q}(\Omega, \sigma)} \rightarrow \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\int_{\Omega} f\left(x, u_{n}, \nabla u_{n}\right)\left(u_{n}-u\right) d x \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{3.24}
\end{equation*}
$$

Thanks to (3.22), 3.23) and 3.24, we obtain

$$
\left\langle B\left(u_{n}, v\right), u_{n}\right\rangle \rightarrow\langle\psi, u\rangle
$$

Step 2. We claim that the operator B satisfies the coercivity condition

$$
\begin{equation*}
\lim _{\||v \|| \rightarrow+\infty} \frac{\langle B(v), v\rangle}{\|\mid v\| \|}=\infty \tag{3.25}
\end{equation*}
$$

Since

$$
\langle B v, v\rangle=\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, v, \nabla v) \frac{\partial v}{\partial x_{i}} d x-\int_{\Omega} f(x, v, \nabla v) v d x
$$

Then, using 2.9, we have

$$
\begin{equation*}
\langle B v, v\rangle \geq \alpha \sum_{i=1}^{N} w_{i}\left|\frac{\partial v}{\partial x_{i}}\right|^{p}-\int_{\Omega} f(x, v, \nabla v) v d x \tag{3.26}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& \int_{\Omega} f(x, v, \nabla v) v d x \\
& \leq \int_{\Omega} \sigma^{1 / q} g(x) v d x+\int_{\Omega}|v|^{\eta+1} \sigma^{(\eta+1) / q} d x+\int_{\Omega} \sum_{i=1}^{N} w_{i}^{\delta / p}\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta} \sigma^{1 / q}|v| d x \tag{3.27}
\end{align*}
$$

Thanks to Hölder's inequality and 2.5 , we have

$$
\begin{equation*}
\int_{\Omega} \sigma^{1 / q} g(x) v d x \leq\left(\int_{\Omega}|g(x)|^{q^{\prime}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}|v|^{q} \sigma d x\right)^{1 / q} \leq c\|\mid v\| \| . \tag{3.28}
\end{equation*}
$$

On the other hand, by Hölder's inequality,

$$
\sum_{i=1}^{N} w_{i}^{\delta / p}\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta} \sigma^{1 / q}|v| \leq c \sum_{i=1}^{N}\left(\int_{\Omega} w_{i}^{\frac{\delta q^{\prime}}{p}}\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta q^{\prime}} d x\right)^{1 / q^{\prime}}\left(\int_{\Omega}|v|^{q} \sigma d x\right)^{1 / q}
$$

In view of 2.5, we have

$$
\begin{equation*}
\sum_{i=1}^{N} w_{i}^{\delta / p}\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta} \sigma^{1 / q}|v| \leq c \sum_{i=1}^{N}\left(\int_{\Omega} w_{i}^{\frac{\delta q^{\prime}}{p}}\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta q^{\prime}} d x\right)^{1 / q^{\prime}}\|\mid v\| \| . \tag{3.29}
\end{equation*}
$$

Since $0 \leq \frac{\delta q^{\prime}}{p}<1$, hence by Hölder's inequality, we deduce

$$
\begin{equation*}
\left(\int_{\Omega} w_{i}^{\delta / q^{\prime}} p\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta q^{\prime}} d x\right)^{1 / q^{\prime}} \leq\left(\int_{\Omega} w_{i}\left|\frac{\partial v}{\partial x_{i}}\right|^{p} d x\right)^{\delta / p} \tag{3.30}
\end{equation*}
$$

remark that,

$$
\begin{equation*}
(a+b)^{r} \geq c\left(a^{r}+b^{r}\right) \quad \text { if } 0 \leq r<1 \tag{3.31}
\end{equation*}
$$

Combining (3.29), (3.30 and (3.31), we conclude that

$$
\begin{equation*}
\sum_{i=1}^{N} w_{i}^{\delta / p}\left|\frac{\partial v}{\partial x_{i}}\right|^{\delta} \sigma^{1 / q}|v| \leq c\left\|\left|v\| \|\left(\sum_{i=1}^{N} \int_{\Omega} w_{i}\left|\frac{\partial v}{\partial x_{i}}\right|^{p} d x\right)^{\delta / p} \leq c\| \| v\left\|\left|\|\mid v\| \|^{\delta}\right.\right.\right.\right. \tag{3.32}
\end{equation*}
$$

Further, $0 \leq \frac{\eta+1}{q}<1$, then by Hölder's inequality and 2.6, we deduce

$$
\begin{equation*}
\int_{\Omega}|v|^{\eta+1} \sigma^{(\eta+1) / q} d x \leq c\| \| v \|\left.\right|^{\eta+1} \tag{3.33}
\end{equation*}
$$

Then from 3.26, 3.28, 3.32 and 3.33, we deduce that

$$
\langle B v, v\rangle \geq \alpha\| \| v\left\|^{p-1}-c_{1}-c_{2}\right\|\left|v\| \|^{\eta}-c_{3}\|\mid v\| \|^{\delta-1}\right.
$$

and since $p-1>\eta$ and $p>\delta$, we conclude that $\frac{\langle B v, v\rangle}{\|v\|} \rightarrow+\infty$. Finally, the proof of Theorem is complete thanks to the classical Theorem in [7].

4. Examples

Let us consider the Carathéodory functions

$$
a_{i}(x, r, \xi)=w_{i}\left|\xi_{i}\right|^{p-1} \operatorname{sgn}\left(\xi_{i}\right)
$$

Where $w_{i}(x)(i=1, \ldots, N)$ are a given weight functions strictly positive almost everywhere in Ω. We shall assume that the weight function satisfies $w_{i}(x)=w(x)$, $x \in \Omega$ for $i=0, \ldots, N$. It is easy to show that the $a_{i}(x, s, \xi)$ are Carathéodory function satisfying the growth condition (2.7) and the coercivity (2.9). On the other side, the monotonicity condition 2.8 is verified. In fact,

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(a_{i}(x, s, \xi)-a_{i}(x, s, \hat{\xi})\right)\left(\xi_{i}-\hat{\xi}_{i}\right) \\
& =w(x) \sum_{i=1}^{N-1}\left(\left|\xi_{i}\right|^{p-1} \operatorname{sgn}\left(\xi_{i}\right)-\left|\hat{\xi}_{i}\right|^{p-1} \operatorname{sgn}\left(\hat{\xi}_{i}\right)\right)\left(\xi_{i}-\hat{\xi}_{i}\right)>0
\end{aligned}
$$

for almost all $x \in \Omega$ and for all $\xi, \hat{\xi} \in \mathbb{R}^{N}$ with $\xi \neq \hat{\xi}$, since $w>0$ a.e. in Ω. We consider the Hardy inequality (2.5) in the form

$$
\left(\int_{\Omega}|u(x)|^{q} \sigma(x) d x\right)^{1 / q} \leq c\left(\int_{\Omega}|\nabla u(x)|^{p} w(x) d x\right)^{1 / p}
$$

where σ and q are defined in 2.5. In particular, let us use a special weight functions w and σ expressed in terms of the distance to the bounded $\partial \Omega$. Denote $d(x)=\operatorname{dist}(x, \partial \Omega)$ and set

$$
w(x)=d^{\lambda}(x), \quad \sigma(x)=d^{\mu}(x) .
$$

In this case, the Hardy inequality reads

$$
\left(\int_{\Omega}|u(x)|^{q} d^{\mu}(x) d x\right)^{1 / q} \leq c\left(\int_{\Omega}|\nabla u(x)|^{p} d^{\lambda}(x) d x\right)^{1 / p} .
$$

The corresponding imbedding is compact if:
(i) For, $1<p \leq q<\infty$,

$$
\begin{equation*}
\lambda<p-1, \quad \frac{N}{q}-\frac{N}{p}+1 \geq 0, \quad \frac{\mu}{q}-\frac{\lambda}{p}+\frac{N}{q}-\frac{N}{p}+1>0 . \tag{4.1}
\end{equation*}
$$

(ii) For $1 \leq q<p<\infty$,

$$
\begin{equation*}
\lambda<p-1, \quad \frac{\mu}{q}-\frac{\lambda}{p}+\frac{1}{q}-\frac{1}{p}+1>0 \tag{4.2}
\end{equation*}
$$

Remarks. 1. Condition (4.1) or Condition 4.2) is sufficient for the compact imbedding (2.6) to hold; see for example [4, example 1], [5, example 1.5], and [6, Theorems 19.17, 19.22].

Let us consider the Carathéodory function

$$
f(x, r, \xi)=d^{\frac{\mu}{q}}(x)\left(d^{\frac{\mu \delta}{q}}(x)|r|^{\eta}+\sum_{i=1}^{N} d^{\frac{\lambda \delta}{p}}(x)\left|\xi_{i}\right|^{\delta}+g(x)\right),
$$

with $g \in L^{q^{\prime}}(\Omega), \sigma(x)$ is weight function and $0 \leq \eta<\min (p-1, q-1), 0 \leq \delta<\frac{p-1}{q^{\prime}}$. Because of its definition, $f(x, r, \xi)$ satisfies the growth condition 2.10. Also the hypotheses of Theorem 3.1 are satisfied. Therefore, the problem

$$
\begin{aligned}
& \sum_{i=1}^{N} \int_{\Omega}\left(d^{\lambda}(x)\left|\frac{\partial u}{\partial x_{i}}\right|^{p-2} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{i}}\right) d x \\
& =\int_{\Omega} d^{\mu / q}(x)\left(d^{\mu \delta / q}(x)|u|^{\eta}+\sum_{i=1}^{N} d^{\lambda \delta / p}(x)\left|\xi_{i}\right|^{\delta}+g(x)\right) v d x
\end{aligned}
$$

for all $v \in W_{0}^{1, p}(\Omega, w)$, has at last one solution.

References

[1] Y. Akdim, E. Azroul, and A. Benkirane, Existence of Solution for Quasilinear Degenerated Elliptic Equations, Electronic J. Diff. Equ., Vol. 2001 No. 71, (2001) pp 1-19.
[2] L. Boccardo, F. Murat, and J. P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Math. Pur. Appl. 152 (1988) 183-196.
[3] L. Boccardo, F. Murat, and J. P. Puel, Résultats d'existences pour certains problèmes elliptiques quasilinéaires, Ann. Scuola. Norm. Sup. Pisa 11 (1984) 213-235.
[4] P. Drabek, A. Kufner, and V. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[5] P. Drabek, A. Kufner, and F. Nicolosi, Non linear elliptic equations, singular and degenerate cases, University of West Bohemia, (1996).
[6] A. Kufner, Weighted Sobolev Spaces, John Wiley and Sons, (1985).
[7] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linénaires, Dunod, Paris (1969).
[8] T. Kuo and C. Tsai, On the solvability of solution to some quasilinear elliptic problems, Taiwanese Journal of Mathematics Vol. 1, No. 4, pp 547-553, (1997).

Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, B.P. 1796 Atlas Fès, Maroc

E-mail address, Y. Akdim: akdimyoussef@yahoo.fr
E-mail address, E. Azroul: azroul_elhoussine@yahoo.fr
E-mail address, M. Rhoudaf: rhoudaf_mohamed@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35J20, 35J25, 35J70.
 Key words and phrases. Weighted Sobolev spaces; variational calculus, Hardy inequality. (C)2004 Texas State University - San Marcos.

 Published October 15, 2004.

