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ON THE WELL-POSEDNESS OF THE HEAT EQUATION ON
UNBOUNDED DOMAINS

WOLFGANG ARENDT, SOUMIA LALAOUI RHALI

Abstract. This work concerns the well-posedness of the heat equation in an

unbounded open domain, under basic regularity assumptions on this domain.

1. Introduction

Let Ω be an open set of Rn with boundary Γ = ∂Ω and consider the problem

u′(t) = ∆u(t), t ∈ [0, τ ]

u(t)
∣∣
Γ

= ϕ(t), t ∈ [0, τ ]

u(0) = u0,

(1.1)

where u0 ∈ C(Ω), ϕ ∈ C([0, τ ];C(Γ)), τ > 0.
The aim of this work is to study the well-posedness of (1.1) when Ω is unbounded.

The case where Ω is bounded has been studied in [2, Chapter 6], and sufficient
conditions on the initial data u0 and the boundary condition ϕ are given to show
that the problem (1.1) is well-posed in C(([0, τ ];C(Ω)) whenever Ω is regular (See
definition 2.1).

We point out here that the regularity assumption is equivalent when Ω is bounded
to that the Dirichlet problem, (1.2),

u ∈ C(Ω)

∆u = 0 in D(Ω)′

u
∣∣
Γ

= φ,

(1.2)

has for all φ ∈ C(Γ) a classical solution u, that means that u is a solution of (1.2)
and u ∈ C2(Ω). (See [5], [9] for instance). The situation is more complicated when
Ω is unbounded since one must take into account the condition at infinity that the
solution of (1.2) satisfies (see Theorem 2.2), and the choice of the space X ⊂ C(Ω)
in which the solution u(t) of (1.1) belongs will be imposed by this condition at
infinity and then by the choice of the unbounded regular open set Ω.
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In this work, the unbounded set is taken in the case n = 1 as an interval of R
and as the exterior of a ball of Rn for n ≥ 2. When n = 2, we deal with the heat
equation with homogeneous boundary conditions and for n ≥ 3, the heat equation
with inhomogeneous boundary conditions is studied for an exterior domain.

The organization of this work is as follows: In Section 2, we recall some pre-
liminaries results lying between the regularity property for unbounded sets and
the well-posedness of the Dirichlet problem (1.2). We also recall some existence
results for Cauchy problems with resolvent positive operators. We present in Sec-
tion 3 our main result, the method of proof consists on reformulating (1.1) as a
Cauchy problem with the Poisson operator. Section 4 is devoted to the study of
the well-posedness of this Cauchy problem, we first show that the Poisson operator
has a positive resolvent in X ×C(Γ). Using results of Section 2, we then show the
well-posedness of (1.1).

2. Preliminaries

The Dirichlet Problem. Let Ω be an open set of Rn with boundary Γ = ∂Ω.

Definition 2.1 ([5]). (a) Let z ∈ Γ. we say that z is a regular boundary point of
Ω if there exists r > 0, and w ∈ C(Ω ∩B(z, r)) such that

∆w ≤ 0, in D(Ω ∩B(z, r))′

w(x) > 0, x ∈ (Ω ∩B(z, r))\{z}
w(z) = 0 .

Then the function w is called a barrier.
(b) We say that Ω is regular if all boundary points are regular.

This regularity property is related to the Dirichlet problem (1.2) as follows.

Theorem 2.2 ([5]). Let Ω be an unbounded set, not dense in Rn(n ≥ 2) with
boundary Γ. Then the following two assertions are equivalent:
(i) For every continuous φ with compact support in Γ, there exists a classical solu-
tion of (1.2) satisfying the following null condition at infinity

(NC) There exists h harmonic on Ω such that h ∈ C(Ω), with h(x) > 0 for |x|
large so that lim|x|→+∞

u(x)
h(x) = 0.

(ii) All boundary points of Ω are regular.

Example 2.3 ([5]). Let n ∈ N∗.
(a) Case of an interval of R. Let Ω1 =]1,∞[, then Ω1 is regular and for all φ ∈ R and
all c ∈ R, there exists a unique classical solution of (1.2) satisfying the condition
at infinity:

lim
x→+∞

u(x)
x

= c.

(b) Case of the exterior of a ball of Rn, n ≥ 2. Let Ωn = Rn \ B(0, 1), then Ωn is
regular and given u a bounded classical solution of (1.2), then c = lim|x|→∞ u(x)
exists and

u(x) = (1− 1
|x|n−2 )c+

1
σn

∫
∂B

|x|2 − 1
|t− x|n

φ(t)dγ(t)

is a classical solution of (1.2), with σn being the total surface area of the unit sphere
in Rn. Conversely, the function u given by the last formula is a classical solution
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of (1.2). Moreover, one has:
If n = 2, then for all φ ∈ C(∂B), there exists a unique classical solution of (1.2)
satisfying the condition at infinity:

u is bounded on Ω.

This solution will have a limit at infinity which is imposed by the giving φ:

lim
|x|→∞

u(x) =
1
2π

∫
∂B

φ(t)dγ(t). (2.1)

If n ≥ 3, then for all φ ∈ C(∂B) and all c ∈ R, there exists a unique classical
solution of (1.2) satisfying the condition at infinity:

lim
|x|→∞

u(x) = c.

Note that a solution u of (1.2) satisfying the null condition at infinity (NC) does
not necessarily satisfy:

lim
|x|→∞

u(x) = 0.

This remains true for the exterior of a compact set of Rn, n ≥ 3.

Proposition 2.4 ([5]). Let K be a compact set of Rn, n ≥ 3 with boundary Γ. If
Ω = Rn \K is regular, then for all φ ∈ C(Γ), there exists a unique classical solution
of (1.2) satisfying the condition at infinity:

lim
|x|→∞

u(x) = 0.

Cauchy Problem. Let X be a Banach space and consider the inhomogeneous
Cauchy Problem:

u′(t) = Au(t) + f(t), t ∈ [0, τ ]

u(0) = u0,
(2.2)

where u0 ∈ X and f ∈ C([0, τ ];X).

Definition 2.5. A mild solution of (ACPf ) is a function u ∈ C([0, τ ];X) such that∫ t

0
u(s)ds ∈ D(A) and for all t ∈ [0, τ ],

u(t) = u0 +A

∫ t

0

u(s)ds+
∫ t

0

f(s)ds .

We recall now some results on resolvent positive operators and Cauchy problems,
we refer to [2, Chapter 3], for more details.

Theorem 2.6 ([2]). Let A be a resolvent positive operator on a Banach lattice X,
that means, there exists w ∈ R such that (w,∞) ⊂ ρ(A) and R(λ,A) ≥ 0 for all
λ > w.
(i) Let u0 ∈ D(A), f0 ∈ X such that Au0 + f0 ∈ D(A). Let f(t) = f0 +

∫ t

0
f ′(s)ds

where f ′ ∈ L1((0, τ);X). Then (ACPf ) has a unique mild solution.
(ii) Let f ∈ C([0, τ ];X+), u0 ∈ X+ and let u be a mild solution of (ACPf ). Then
u(t) ≥ 0 for all t ∈ [0, τ ].

Define now the Gaussian semigroup (G(t))t≥0 on the space C0(Rn) of all contin-
uous functions vanishing at infinity by:

G(t)f(x) = (4πt)−n/2

∫
Rn

f(x− y)e−|y|
2/(4t)dy, t > 0, x ∈ Rn, f ∈ C0(Rn).
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Theorem 2.7 ([2]). The family (G(t))t≥0 defines a bounded holomorphic C0−semigroup
of angle π

2 on C0(Rn). Its generator is the Laplacian ∆G on C0(Rn) with maximal
domain; i.e.,

D(∆G) = {f ∈ C0(Rn), ∆f ∈ C0(Rn)},
∆Gf = ∆f,

here one identifies C0(Rn) with a subspace of D(Rn)′.

Proposition 2.8 ([2]). Let A be the generator of a bounded C0-group (U(t))t∈R on
X. Then A2 generates a bounded holomorphic C0-semigroup (T (t))t≥0 of angle π

2
on X. Moreover, for t > 0,

T (t) = (4πt)−1/2

∫
R
e−|y|

2/(4t)U(y) dy.

3. Main result

We consider the problem (1.1) with Ω presenting the cases in Example 2.3 and
Proposition 2.4. Since in the case n = 2, the condition at infinity (2.1) is imposed
by the boundary function, we restrict our study of (1.1) for n = 2 to the case where
ϕ = 0.

Theorem 3.1. Let n ∈ N. Case n = 1: Let Ω1 =]1,+∞[ with boundary Γ1 = {1}
and denote by

(
C∞(Ω1); ‖.‖C∞(Ω1)

)
the Banach space

C∞(Ω1) :=
{
u ∈ C([1,+∞[), lim

x→+∞

u(x)
x

exists
}

with the norm ‖u‖C∞(Ω1)
= maxx∈[1,∞[ |u(x)/x|.

Then for all u0 ∈ C∞(Ω1) and all ϕ ∈ C([0, τ ]) such that u0(1) = ϕ(0), there
exists a unique mild solution u ∈ C([0, τ ];C∞(Ω1)) of the problem

ut(t, x) = u′′(t, x), t ∈ [0, τ ], x ∈]1,+∞[

u(t, 1) = ϕ(t), t ∈ [0, τ ]

u(0, x) = u0(x).
(3.1)

Case n = 2: Let Ω2 = R2 \B(0, 1) with boundary Γ2 = ∂B and set

C∞(Ω2) := {u ∈ C(Ω2), u
∣∣
Γ2

= 0 and lim
|x|→+∞

u(x) = 0}

with the supremum norm‖u‖C∞(Ω2)
= maxx∈Ω2 |u(x)|. Then for all u0 ∈ C∞(Ω2),

there exists a unique mild solution u ∈ C([0, τ ];C∞(Ω2)) of the problem

u′(t) = ∆u(t), t ∈ [0, τ ]

u
∣∣
Γ2

= 0,

u(0) = u0.

(3.2)

Case n ≥ 3: Let Ωn = Rn \ B(0, 1) or more generally Ωn = Rn \K with K being
a compact set of Rn with boundary Γn, and set

C∞(Ωn) := {u ∈ C(Ωn), lim
|x|→+∞

u(x) = 0}
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with the supremum norm. If Ωn is regular, then for all u0 ∈ C∞(Ωn) and all
ϕ ∈ C([0, τ ];C(Γn)) such that u0

∣∣
Γn

= ϕ(0), there exists a unique mild solution
u ∈ C([0, τ ];C∞(Ωn)) of the problem

u′(t) = ∆u(t), t ∈ [0, τ ]

u(t)
∣∣
Γn

= ϕ(t), t ∈ [0, τ ]

u(0) = u0.

(3.3)

Let Ωn, n ≥ 1 be defined as in Theorem 3.1 and define the operator ∆n
max on

C∞(Ωn) as follows

D(∆n
max) = {u ∈ C∞(Ωn),∆u ∈ C∞(Ωn)}

∆n
maxu = ∆u in D(Ωn)′.

We mean by mild solution of (3.3) a function u ∈ C([0, τ ];C∞(Ωn)) such that∫ t

0
u(s)ds ∈ D(∆n

max) and for all t ∈ [0, τ ],

u(t) = u0 + ∆
∫ t

0

u(s)ds in D(Ωn)′

u(t)
∣∣
Γn

= ϕ(t).

To prove Theorem 3.1, we will reformulate the problem (3.3) as an inhomoge-
neous Cauchy problem with resolvent positive operator.

4. Inhomogeneous Cauchy Problem

Define for n ≥ 1 the Poisson operators An with domain D(An) = D(∆n
max)×{0}

by

A1(u, 0) = (∆u,−u(1)),

A2(u, 0) = (∆u, 0),

An(u, 0) = (∆u,−u
∣∣
Γn

), n ≥ 3,

and consider the Cauchy problem

U ′(t) = AnU(t) + Φn(t), t ∈ [0, τ ]

U(0) = U0,
(4.1)

where U0 = (u0, 0), u0 ∈ C∞(Ωn) is the initial data , Φ2 = (0, 0) and for n 6= 2,
Φn(t) = (0, ϕ(t)), ϕ ∈ C([0, τ ];C(Γn)) is the boundary condition.

Proposition 4.1. Let n ≥ 1 and U ∈ C([0, τ ];C∞(Ωn) × C(Γn)). Then U is a
mild solution of (4.1) if and only if U(t) = (u(t), 0) where u ∈ C([0, τ ];C∞(Ωn)) is
the mild solution of (1.1).

The proof is immediate from the definition of An and the fact that D(An) =
C∞(Ωn)× {0}.

To show the well-posedness of (4.1), we first prove that An is a resolvent positive
operator.
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Theorem 4.2. Let λ > 0, if n 6= 2 then for all (f, φ) ∈ C∞(Ωn) × C(Γn) there
exists a unique function u ∈ D(∆n

max) such that

(λ−∆)u = f in D(Ωn)′

u
∣∣
Γn

= φ.
(4.2)

Moreover, if f ≤ 0, φ ≤ 0, then u ≤ 0. If n = 2, then for all f ∈ C∞(Ω2), there
exists a unique function u ∈ D(∆2

max) such that

(λ−∆)u = f in D(Ω2)′

u
∣∣
Γ2

= 0.
(4.3)

Moreover, if f ≤ 0, then u ≤ 0.

Proof. (1) Existence. (a) Case n = 1 :
Set C∞(R) = {f ∈ C(R), limx→−∞ f(x) = 0 and limx→+∞

f(x)
x exists} and define

on C∞(R) the translation group

T (t)f(x) = f(x− t), t ∈ R, x ∈ R.

Then (T (t))t∈R is a C0−group with generator AT defined by

D(AT ) = {f ∈ C∞(R), f ′ ∈ C∞(R)}
AT f = f ′.

It follows from Proposition 2.8 that A2
T generates a C0−semigroup (G(t))t≥0 which

is the Gaussian semigroup:

G(t)f(x) = (4πt)−1/2

∫
R
e−|y|

2/(4t)f(x− y)dy.

Moreover, G(t)C∞(Ω1) ⊂ C∞(Ω1) for all t ≥ 0. Let λ > 0 and (f, φ) ∈ C∞(Ω1)×R,
and take

v0(x) =
∫ +∞

0

e−λtG(t)f(x)dt,

v(x) = (φ− v0(1))e−
√

λ(x−1),

Then u = v + v0 is a solution of (4.2).
(b) Case n ≥ 2: Let f ∈ C∞(Ωn). Then f can be extended to C0(Rn). Since the
Gaussian semigroup generates an holomorphic C0−semigroup on C0(Rn), we get
that

v0(x) =
∫ +∞

0

e−λtG(t)f(x)dt,

is a solution of
(λ−∆)v = f for all λ > 0. (4.4)

Moreover, if f ∈ C∞(Ωn), then v0 ∈ C∞(Ωn).
If n = 2, then v0 is a solution of (λ−A2)(u0, 0) = (f, 0).
If n ≥ 3, it remains to show that there exists a solution of

(λ−∆)v = 0, in D(Ωn)′

v
∣∣
Γn

= φ− v0
∣∣
Γn

=: ψ.
(4.5)



EJDE/CONF/11 HEAT EQUATION ON UNBOUNDED DOMAINS 29

Let Ωnk = Ωn ∩ B(0, Rk) where (Rk)k≥1 is an increasing sequence of positif reals
such that Rk →∞ as k →∞ and consider the following problem on C(Ωnk).

(λ−∆)vk = 0 in D(Ωnk)′

vk

∣∣
Γk

= 0 on Γk = ∂B(0, Rk)

vk

∣∣
Γn

= ψ.

(4.6)

Since Ωn is regular, Ωnk is regular and it follows from [10], [13] that (4.6) has a
solutionvk ∈ C(Ωnk). Our aim now is to show that the sequence (vk)k≥1 converges
to the solution of (4.5), for that, we use the following maximum principle due to
[2].

Theorem 4.3 (Maximum Principle for distributional solutions). Let Ω0 be a bounded
open set of Rn with boundary Γ. Let M ≥ 0, λ ≥ 0, u ∈ C(Ω0) such that
(i) λu−∆u ≤ 0, in D(Ω0)′

(ii) u
∣∣
Γ
≤M ,

Then u ≤M on Ω0.

Without loss of generality, we can assume that ψ ≥ 0.
Claim 1: (vk)k≥1 is an increasing bounded sequence. Indeed, by applying the
Maximum principle in Ωnk to vk and vk − vk+1 respectively, we obtain:

0 ≤ vk ≤ ‖ψ‖,

and

(λ−∆)(vk − vk+1) = 0, in D(Ωnk)′

(vk − vk+1)
∣∣
Γk

= −vk+1 ≤ 0,

(vk − vk+1)
∣∣
Γn

= 0.

Hence vk ≤ vk+1 in Ωnk.
Claim 2: Let v = limk→∞ vk, then v ∈ C∞(Ωn). Indeed, denote by wk the solution
of the problem

∆wk = 0, in D(Ωnk)′

wk

∣∣
Γk

= 0,

wk

∣∣
Γn

= ψ.

Then wk ≥ 0. Define the Poisson operator Bk on C(Ωnk)× C(Γn ∪ Γk) by

D(Bk) = {w ∈ C(Ωnk),∆w ∈ C(Ωnk)} × {0},
Bk(w, 0) = (∆w,−(w

∣∣
Γn
, w

∣∣
Γk

)).

Since Ωnk is regular, we deduce from [2, Chapter 6], that Bk is a resolvent positive
operator and then

(wk, 0) = R(λ,Bk)(λwk, (ψ, 0)) ≥ R(λ,Bk)(0, (ψ, 0)) = (vk, 0). (4.7)

On the other hand, it follows from Proposition 2.4 that for all Φ ∈ C(Γn), the
Dirichlet problem (1.2)(with φ = Φ) has a unique solution w satisfying the condition
at infinity lim|x|→∞ w(x) = 0. Moreover, if Φ ≤ 0, then w ≤ 0. Indeed, let ε > 0,
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since w ∈ C1(Ωn), there exists Ω0 ⊂⊂ Ωn such that supp(w − ε)+ ⊂ Ω0, Thus
(w − ε)+ ∈ H1

0 (Ω0) and
∫
{w>ε} |∇w|

2 = 0. Hence,

w ≤ ε.

Denote by w0 the solution of (1.2) (with φ = ψ) vanishing to zero at infinity, then

∆(wk − w0) = 0, in D(Ωnk)′

(wk − w0)
∣∣
Γk

= −w0|Γk
≤ 0,

(wk − w0)
∣∣
Γn

= 0.

Theorem 4.3 and (4.7) imply that 0 ≤ vk ≤ wk ≤ w0. Hence

lim
|x|→∞

v(x) = lim
|x|→∞

w0(x) = 0.

Finally, u = v0 + v is a solution of (4.2).
(2)Positivity and Uniqueness. Let (f, φ) ∈ C∞(Ωn) × C(Γn) such that f ≤ 0,
φ ≤ 0 and u a solution of (4.2).
Case n = 1: Since in that case u ∈ C2(Ω1) ∩ C(Ω1), we apply the Phragmèn-
Lindelöf principle to deduce that u ≤ 0 whenever f ≤ 0, φ ≤ 0. (See [12, Chapter
2]). By applying this maximum principle to u and −u respectively when f = 0, we
get uniqueness.
Case n ≥ 2: Since u ∈ D(∆n

max), we get u ∈ C1(Ωn). Let Ω0 ⊂⊂ Ωn such that
supp(u− ε)+ ⊂ Ω0, ε > 0. then (u− ε)+ ∈ H1

0 (Ω0) and∫
f(u− ε)+ = λ

∫
u(u− ε)+ +

∫
∇u∇(u− ε)+

= λ

∫
(u− ε)(u− ε)+ + ελ

∫
(u− ε)+ +

∫
{u>ε}

|∇u|2

≤ 0.

Hence u ≤ ε. �

We are now in position to show the well-posedness of the Cauchy problem (4.1).
If n 6= 2, let ϕ ∈ W 1,1((0, τ);C(Γn)) and U0 = (u0, 0) ∈ D(An) = D(∆n

max)× {0},
then

AnU0 + Φn(0) = (∆u0,−u0|Γn
+ ϕ(0)).

Hence AnU0 + Φn(0) ∈ D(An) = C∞(Ωn)× {0} if and only if

u0

∣∣
Γn

= ϕ(0). (4.8)

Assumption (4.8) becomes trivial in the case n = 2 since we have assumed ϕ = 0.
On the other hand, it follows from Theorem 4.2 that An is a resolvent positive
operator. Hence, by applying Theorems 2.6 we obtain the following result.

Proposition 4.4. Let n ∈ N.
Case n = 1: Let Ω1 =]1,+∞[. Then for all u0 ∈ D(∆1

max) and all ϕ ∈W 1,1((0, τ))
such that u0(1) = ϕ(0), there exists a unique mild solution of (4.1) with n = 1.
Case n = 2: Let Ω2 = R2 \ B(0, 1). Then for all u0 ∈ D(∆2

max), there exists a
unique mild solution of (4.1) with n = 2.
Case n ≥ 3: Let Ωn = Rn \K with boundary Γn, K being a compact set of Rn. If
Ωn is regular, then for all u0 ∈ D(∆n

max) and all ϕ ∈W 1,1((0, τ);C(Γn)) such that
u0

∣∣
Γn

= ϕ(0), there exists a unique mild solution of (4.1).
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The proof of Theorem 3.1 will be complete by combining Theorem 4.1 and the
following result.

Proposition 4.5. (i) Let u0 ∈ C∞(Ω1) and ϕ ∈ C([0, τ ]) such that u0(1) = ϕ(0),
then there exists a unique mild solution of (4.1) with n = 1.
(ii) Let u0 ∈ C∞(Ω2), then there exists a unique mild solution of (4.1) with n = 2.
(iii) Assume that Ωn = Rn\K is regular and let u0 ∈ C∞(Ωn) and ϕ ∈ C([0, τ ];C(Γn))
such that u0

∣∣
Γn

= ϕ(0), then there exists a unique mild solution of (4.1).

Proof. Choose u0k
∈ D(∆n

max) such that u0k
→ u0 as k →∞ in C∞(Ωn). Choose

ϕk ∈ W 1,1((0, τ);C(Γn)) such that ϕk(0) = u0k

∣∣
Γn

and ϕk → ϕas k → ∞ in
C([0, τ ];C(Γn)). By applying Proposition 4.4 and Theorem 4.1, we deduce that
there exists a unique mild solution uk ∈ C∞(Ωn) of Pτ (u0k

, ϕk). We can show that

‖uk‖C([0,τ ];C∞(Ωn)) ≤ max{‖ϕk‖C([0,τ ];C(Γn)), ‖u0k‖C∞(Ωn)}.

where
‖ϕk‖C([0,τ ];C(Γn)) = sup

0≤t≤τ
‖ϕk(t)‖C(Γn)

‖uk‖E∞(Ωn) = sup
0≤t≤τ

‖uk(t)‖E∞(Ωn) .

Hence (uk)k≥1 is a Cauchy sequence in C([0, τ ];C∞(Ωn)). Let u = limk→∞ uk,
then

∫ t

0
u(s)ds = limk→∞

∫ t

0
uk(s)ds ∈ D(∆n

max) and

u(t) = u0 + ∆
∫ t

0

u(s)ds in D(Ωn)′

u(t)
∣∣
Γn

= lim
k→∞

ϕk(t) = ϕ(t).

for all t ∈ [0, τ ]. �
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