2004-Fez conference on Differential Equations and Mechanics Electronic Journal of Differential Equations, Conference 11, 2004, pp. 23–32. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON THE WELL-POSEDNESS OF THE HEAT EQUATION ON UNBOUNDED DOMAINS

WOLFGANG ARENDT, SOUMIA LALAOUI RHALI

ABSTRACT. This work concerns the well-posedness of the heat equation in an unbounded open domain, under basic regularity assumptions on this domain.

1. INTRODUCTION

Let Ω be an open set of \mathbb{R}^n with boundary $\Gamma = \partial \Omega$ and consider the problem

$$u'(t) = \Delta u(t), \quad t \in [0, \tau]$$

$$u(t)\big|_{\Gamma} = \varphi(t), \quad t \in [0, \tau]$$

$$u(0) = u_0,$$

(1.1)

where $u_0 \in C(\overline{\Omega}), \varphi \in C([0, \tau]; C(\Gamma)), \tau > 0.$

The aim of this work is to study the well-posedness of (1.1) when Ω is unbounded. The case where Ω is bounded has been studied in [2, Chapter 6], and sufficient conditions on the initial data u_0 and the boundary condition φ are given to show that the problem (1.1) is well-posed in $C(([0, \tau]; C(\overline{\Omega})))$ whenever Ω is regular (See definition 2.1).

We point out here that the regularity assumption is equivalent when Ω is bounded to that the Dirichlet problem, (1.2),

$$u \in C(\overline{\Omega})$$

$$\Delta u = 0 \quad \text{in } \mathcal{D}(\Omega)'$$

$$u\big|_{\Gamma} = \phi,$$

(1.2)

has for all $\phi \in C(\Gamma)$ a classical solution u, that means that u is a solution of (1.2) and $u \in C^2(\Omega)$. (See [5], [9] for instance). The situation is more complicated when Ω is unbounded since one must take into account the condition at infinity that the solution of (1.2) satisfies (see Theorem 2.2), and the choice of the space $X \subset C(\overline{\Omega})$ in which the solution u(t) of (1.1) belongs will be imposed by this condition at infinity and then by the choice of the unbounded regular open set Ω .

²⁰⁰⁰ Mathematics Subject Classification. 35K05, 35K20, 47D06.

Key words and phrases. Unbounded domains; heat equation; Dirichlet problem;

 $[\]operatorname{resolvent}$ positive operators.

 $[\]textcircled{O}2004$ Texas State University - San Marcos.

Published October 15, 2004.

The second author gratefully acknowledges his support by the DAAD.

In this work, the unbounded set is taken in the case n = 1 as an interval of \mathbb{R} and as the exterior of a ball of \mathbb{R}^n for $n \ge 2$. When n = 2, we deal with the heat equation with homogeneous boundary conditions and for $n \ge 3$, the heat equation with inhomogeneous boundary conditions is studied for an exterior domain.

The organization of this work is as follows: In Section 2, we recall some preliminaries results lying between the regularity property for unbounded sets and the well-posedness of the Dirichlet problem (1.2). We also recall some existence results for Cauchy problems with resolvent positive operators. We present in Section 3 our main result, the method of proof consists on reformulating (1.1) as a Cauchy problem with the Poisson operator. Section 4 is devoted to the study of the well-posedness of this Cauchy problem, we first show that the Poisson operator has a positive resolvent in $X \times C(\Gamma)$. Using results of Section 2, we then show the well-posedness of (1.1).

2. Preliminaries

The Dirichlet Problem. Let Ω be an open set of \mathbb{R}^n with boundary $\Gamma = \partial \Omega$.

Definition 2.1 ([5]). (a) Let $z \in \Gamma$. we say that z is a regular boundary point of Ω if there exists r > 0, and $w \in C(\overline{\Omega \cap B(z, r)})$ such that

$$\Delta w \le 0, \quad \text{in } \mathcal{D}(\Omega \cap B(z, r))'$$
$$w(x) > 0, \quad x \in (\Omega \cap B(z, r)) \setminus \{z\}$$
$$w(z) = 0.$$

Then the function w is called a barrier.

(b) We say that Ω is regular if all boundary points are regular.

This regularity property is related to the Dirichlet problem (1.2) as follows.

Theorem 2.2 ([5]). Let Ω be an unbounded set, not dense in $\mathbb{R}^n (n \ge 2)$ with boundary Γ . Then the following two assertions are equivalent:

(i) For every continuous ϕ with compact support in Γ , there exists a classical solution of (1.2) satisfying the following null condition at infinity

(NC) There exists h harmonic on Ω such that $h \in C(\overline{\Omega})$, with h(x) > 0 for |x| large so that $\lim_{|x|\to+\infty} \frac{u(x)}{h(x)} = 0$.

(ii) All boundary points of Ω are regular.

Example 2.3 ([5]). Let $n \in \mathbb{N}^*$.

(a) Case of an interval of \mathbb{R} . Let $\Omega_1 =]1, \infty[$, then Ω_1 is regular and for all $\phi \in \mathbb{R}$ and all $c \in \mathbb{R}$, there exists a unique classical solution of (1.2) satisfying the condition at infinity:

$$\lim_{x \to +\infty} \frac{u(x)}{x} = c.$$

(b) Case of the exterior of a ball of \mathbb{R}^n , $n \geq 2$. Let $\Omega_n = \mathbb{R}^n \setminus B(0, 1)$, then Ω_n is regular and given u a bounded classical solution of (1.2), then $c = \lim_{|x|\to\infty} u(x)$ exists and

$$u(x) = (1 - \frac{1}{|x|^{n-2}})c + \frac{1}{\sigma_n} \int_{\partial B} \frac{|x|^2 - 1}{|t - x|^n} \phi(t) d\gamma(t)$$

is a classical solution of (1.2), with σ_n being the total surface area of the unit sphere in \mathbb{R}^n . Conversely, the function u given by the last formula is a classical solution

of (1.2). Moreover, one has:

If n = 2, then for all $\phi \in C(\partial B)$, there exists a unique classical solution of (1.2) satisfying the condition at infinity:

$$u$$
 is bounded on Ω .

This solution will have a limit at infinity which is imposed by the giving ϕ :

$$\lim_{|x| \to \infty} u(x) = \frac{1}{2\pi} \int_{\partial B} \phi(t) d\gamma(t).$$
(2.1)

If $n \geq 3$, then for all $\phi \in C(\partial B)$ and all $c \in \mathbb{R}$, there exists a unique classical solution of (1.2) satisfying the condition at infinity:

$$\lim_{|x| \to \infty} u(x) = c.$$

Note that a solution u of (1.2) satisfying the null condition at infinity (**NC**) does not necessarily satisfy:

$$\lim_{|x| \to \infty} u(x) = 0.$$

This remains true for the exterior of a compact set of \mathbb{R}^n , $n \geq 3$.

Proposition 2.4 ([5]). Let K be a compact set of \mathbb{R}^n , $n \ge 3$ with boundary Γ . If $\Omega = \mathbb{R}^n \setminus K$ is regular, then for all $\phi \in C(\Gamma)$, there exists a unique classical solution of (1.2) satisfying the condition at infinity:

$$\lim_{|x|\to\infty} u(x) = 0$$

Cauchy Problem. Let X be a Banach space and consider the inhomogeneous Cauchy Problem:

$$u'(t) = Au(t) + f(t), \quad t \in [0, \tau]$$

$$u(0) = u_0,$$

(2.2)

where $u_0 \in X$ and $f \in C([0, \tau]; X)$.

Definition 2.5. A mild solution of (ACP_f) is a function $u \in C([0, \tau]; X)$ such that $\int_0^t u(s) ds \in D(A)$ and for all $t \in [0, \tau]$,

$$u(t) = u_0 + A \int_0^t u(s)ds + \int_0^t f(s)ds$$
.

We recall now some results on resolvent positive operators and Cauchy problems, we refer to [2, Chapter 3], for more details.

Theorem 2.6 ([2]). Let A be a resolvent positive operator on a Banach lattice X, that means, there exists $w \in \mathbb{R}$ such that $(w, \infty) \subset \rho(A)$ and $R(\lambda, A) \geq 0$ for all $\lambda > w$.

(i) Let $u_0 \in D(A)$, $f_0 \in X$ such that $Au_0 + f_0 \in \overline{D(A)}$. Let $f(t) = f_0 + \int_0^t f'(s)ds$ where $f' \in L^1((0,\tau); X)$. Then (ACP_f) has a unique mild solution.

(ii) Let $f \in C([0,\tau]; X_+)$, $u_0 \in X_+$ and let u be a mild solution of (ACP_f) . Then $u(t) \ge 0$ for all $t \in [0,\tau]$.

Define now the Gaussian semigroup $(G(t))_{t\geq 0}$ on the space $C_0(\mathbb{R}^n)$ of all continuous functions vanishing at infinity by:

$$G(t)f(x) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} f(x-y)e^{-|y|^2/(4t)}dy, \quad t > 0, x \in \mathbb{R}^n, f \in C_0(\mathbb{R}^n).$$

Theorem 2.7 ([2]). The family $(G(t))_{t\geq 0}$ defines a bounded holomorphic C_0 -semigroup of angle $\frac{\pi}{2}$ on $C_0(\mathbb{R}^n)$. Its generator is the Laplacian Δ_G on $C_0(\mathbb{R}^n)$ with maximal domain; i.e.,

$$D(\Delta_G) = \{ f \in C_0(\mathbb{R}^n), \ \Delta f \in C_0(\mathbb{R}^n) \}, \Delta_G f = \Delta f,$$

here one identifies $C_0(\mathbb{R}^n)$ with a subspace of $\mathcal{D}(\mathbb{R}^n)'$.

Proposition 2.8 ([2]). Let A be the generator of a bounded C_0 -group $(U(t))_{t \in \mathbb{R}}$ on X. Then A^2 generates a bounded holomorphic C_0 -semigroup $(T(t))_{t \geq 0}$ of angle $\frac{\pi}{2}$ on X. Moreover, for t > 0,

$$T(t) = (4\pi t)^{-1/2} \int_{\mathbb{R}} e^{-|y|^2/(4t)} U(y) \, dy.$$

3. MAIN RESULT

We consider the problem (1.1) with Ω presenting the cases in Example 2.3 and Proposition 2.4. Since in the case n = 2, the condition at infinity (2.1) is imposed by the boundary function, we restrict our study of (1.1) for n = 2 to the case where $\varphi = 0$.

Theorem 3.1. Let $n \in \mathbb{N}$. Case n = 1: Let $\Omega_1 =]1, +\infty[$ with boundary $\Gamma_1 = \{1\}$ and denote by $(C_{\infty}(\overline{\Omega}_1); \|.\|_{C_{\infty}(\overline{\Omega}_1)})$ the Banach space

$$C_{\infty}(\overline{\Omega}_{1}) := \left\{ u \in C([1, +\infty[), \lim_{x \to +\infty} \frac{u(x)}{x} \text{ exists} \right\}$$

with the norm $||u||_{C_{\infty}(\overline{\Omega}_1)} = \max_{x \in [1,\infty[} |u(x)/x|.$

Then for all $u_0 \in C_{\infty}(\overline{\Omega}_1)$ and all $\varphi \in C([0,\tau])$ such that $u_0(1) = \varphi(0)$, there exists a unique mild solution $u \in C([0,\tau]; C_{\infty}(\overline{\Omega}_1))$ of the problem

$$u_t(t,x) = u''(t,x), \quad t \in [0,\tau], \ x \in]1, +\infty[$$

$$u(t,1) = \varphi(t), \quad t \in [0,\tau]$$

$$u(0,x) = u_0(x).$$
(3.1)

Case n = 2: Let $\Omega_2 = \mathbb{R}^2 \setminus B(0, 1)$ with boundary $\Gamma_2 = \partial B$ and set

$$C_{\infty}(\overline{\Omega}_2) := \{ u \in C(\overline{\Omega}_2), \ u \Big|_{\Gamma_2} = 0 \ and \ \lim_{|x| \to +\infty} u(x) = 0 \}$$

with the supremum norm $||u||_{C_{\infty}(\overline{\Omega}_2)} = \max_{x \in \Omega_2} |u(x)|$. Then for all $u_0 \in C_{\infty}(\overline{\Omega}_2)$, there exists a unique mild solution $u \in C([0,\tau]; C_{\infty}(\overline{\Omega}_2))$ of the problem

$$u'(t) = \Delta u(t), \quad t \in [0, \tau]$$

$$u|_{\Gamma_2} = 0,$$

$$u(0) = u_0.$$

(3.2)

Case $n \geq 3$: Let $\Omega_n = \mathbb{R}^n \setminus B(0,1)$ or more generally $\Omega_n = \mathbb{R}^n \setminus K$ with K being a compact set of \mathbb{R}^n with boundary Γ_n , and set

$$C_{\infty}(\overline{\Omega}_n) := \{ u \in C(\overline{\Omega}_n), \lim_{|x| \to +\infty} u(x) = 0 \}$$

with the supremum norm. If Ω_n is regular, then for all $u_0 \in C_{\infty}(\overline{\Omega}_n)$ and all $\varphi \in C([0,\tau]; C(\Gamma_n))$ such that $u_0|_{\Gamma_n} = \varphi(0)$, there exists a unique mild solution $u \in C([0,\tau]; C_{\infty}(\overline{\Omega}_n))$ of the problem

$$\begin{aligned} u'(t) &= \Delta u(t), \quad t \in [0, \tau] \\ u(t)\big|_{\Gamma_n} &= \varphi(t), \quad t \in [0, \tau] \\ u(0) &= u_0. \end{aligned}$$

$$(3.3)$$

Let Ω_n , $n \ge 1$ be defined as in Theorem 3.1 and define the operator Δ_{\max}^n on $C_{\infty}(\overline{\Omega}_n)$ as follows

$$D(\Delta_{\max}^n) = \{ u \in C_{\infty}(\overline{\Omega}_n), \Delta u \in C_{\infty}(\overline{\Omega}_n) \}$$
$$\Delta_{\max}^n u = \Delta u \quad \text{in } \mathcal{D}(\Omega_n)'.$$

We mean by mild solution of (3.3) a function $u \in C([0,\tau]; C_{\infty}(\overline{\Omega}_n))$ such that $\int_0^t u(s) ds \in D(\Delta_{\max}^n)$ and for all $t \in [0,\tau]$,

$$u(t) = u_0 + \Delta \int_0^t u(s) ds \quad \text{in } \mathcal{D}(\Omega_n)'$$
$$u(t)\big|_{\Gamma_n} = \varphi(t).$$

To prove Theorem 3.1, we will reformulate the problem (3.3) as an inhomogeneous Cauchy problem with resolvent positive operator.

4. INHOMOGENEOUS CAUCHY PROBLEM

Define for $n \ge 1$ the Poisson operators A_n with domain $D(A_n) = D(\Delta_{\max}^n) \times \{0\}$ by

$$A_{1}(u, 0) = (\Delta u, -u(1)),$$

$$A_{2}(u, 0) = (\Delta u, 0),$$

$$A_{n}(u, 0) = (\Delta u, -u|_{\Gamma_{n}}), \quad n \ge 3,$$

and consider the Cauchy problem

$$U'(t) = A_n U(t) + \Phi_n(t), \quad t \in [0, \tau]$$

$$U(0) = U_0,$$

(4.1)

where $U_0 = (u_0, 0), u_0 \in C_{\infty}(\overline{\Omega}_n)$ is the initial data, $\Phi_2 = (0, 0)$ and for $n \neq 2$, $\Phi_n(t) = (0, \varphi(t)), \varphi \in C([0, \tau]; C(\Gamma_n))$ is the boundary condition.

Proposition 4.1. Let $n \ge 1$ and $U \in C([0,\tau]; C_{\infty}(\overline{\Omega}_n) \times C(\Gamma_n))$. Then U is a mild solution of (4.1) if and only if U(t) = (u(t), 0) where $u \in C([0,\tau]; C_{\infty}(\overline{\Omega}_n))$ is the mild solution of (1.1).

The proof is immediate from the definition of A_n and the fact that $\overline{D(A_n)} = C_{\infty}(\overline{\Omega}_n) \times \{0\}.$

To show the well-posedness of (4.1), we first prove that A_n is a resolvent positive operator.

Theorem 4.2. Let $\lambda > 0$, if $n \neq 2$ then for all $(f, \phi) \in C_{\infty}(\overline{\Omega}_n) \times C(\Gamma_n)$ there exists a unique function $u \in D(\Delta_{\max}^n)$ such that

$$(\lambda - \Delta)u = f \quad in \ \mathcal{D}(\Omega_n)'$$
$$u|_{\Gamma_n} = \phi.$$
(4.2)

Moreover, if $f \leq 0$, $\phi \leq 0$, then $u \leq 0$. If n = 2, then for all $f \in C_{\infty}(\overline{\Omega}_2)$, there exists a unique function $u \in D(\Delta_{\max}^2)$ such that

$$\begin{aligned} (\lambda - \Delta)u &= f \quad in \ \mathcal{D}(\Omega_2)' \\ u \big|_{\Gamma_2} &= 0. \end{aligned} \tag{4.3}$$

Moreover, if $f \leq 0$, then $u \leq 0$.

Proof. (1) **Existence.** (a) Case n = 1: Set $C_{\infty}(\mathbb{R}) = \{f \in C(\mathbb{R}), \lim_{x \to -\infty} f(x) = 0 \text{ and } \lim_{x \to +\infty} \frac{f(x)}{x} \text{ exists} \}$ and define on $C_{\infty}(\mathbb{R})$ the translation group

$$T(t)f(x) = f(x-t), \quad t \in \mathbb{R}, \ x \in \mathbb{R}.$$

Then $(T(t))_{t \in \mathbb{R}}$ is a C_0 -group with generator A_T defined by

$$D(A_T) = \{ f \in C_{\infty}(\mathbb{R}), f' \in C_{\infty}(\mathbb{R}) \}$$
$$A_T f = f'.$$

It follows from Proposition 2.8 that A_T^2 generates a C_0 -semigroup $(G(t))_{t\geq 0}$ which is the Gaussian semigroup:

$$G(t)f(x) = (4\pi t)^{-1/2} \int_{\mathbb{R}} e^{-|y|^2/(4t)} f(x-y) dy.$$

Moreover, $G(t)C_{\infty}(\overline{\Omega}_1) \subset C_{\infty}(\overline{\Omega}_1)$ for all $t \geq 0$. Let $\lambda > 0$ and $(f, \phi) \in C_{\infty}(\overline{\Omega}_1) \times \mathbb{R}$, and take

$$v_0(x) = \int_0^{+\infty} e^{-\lambda t} G(t) f(x) dt,$$
$$v(x) = (\phi - v_0(1)) e^{-\sqrt{\lambda}(x-1)},$$

Then $u = v + v_0$ is a solution of (4.2).

(b) Case $n \geq 2$: Let $f \in C_{\infty}(\overline{\Omega}_n)$. Then f can be extended to $C_0(\mathbb{R}^n)$. Since the Gaussian semigroup generates an holomorphic C_0 -semigroup on $C_0(\mathbb{R}^n)$, we get that

$$v_0(x) = \int_0^{+\infty} e^{-\lambda t} G(t) f(x) dt,$$

is a solution of

$$(\lambda - \Delta)v = f \text{ for all } \lambda > 0. \tag{4.4}$$

Moreover, if $f \in C_{\infty}(\overline{\Omega}_n)$, then $v_0 \in C_{\infty}(\overline{\Omega}_n)$. If n = 2, then v_0 is a solution of $(\lambda - A_2)(u_0, 0) = (f, 0)$. If $n \ge 3$, it remains to show that there exists a solution of

$$\begin{aligned} (\lambda - \Delta)v &= 0, \quad \text{in } \mathcal{D}(\Omega_n)' \\ v\big|_{\Gamma_n} &= \phi - v_0\big|_{\Gamma_n} =: \psi. \end{aligned}$$

$$\tag{4.5}$$

Let $\Omega_{nk} = \Omega_n \cap B(0, R_k)$ where $(R_k)_{k \ge 1}$ is an increasing sequence of positif reals such that $R_k \to \infty$ as $k \to \infty$ and consider the following problem on $C(\overline{\Omega}_{nk})$.

$$\begin{aligned} (\lambda - \Delta)v_k &= 0 \quad \text{in } \mathcal{D}(\Omega_{nk})' \\ v_k \big|_{\Gamma_k} &= 0 \quad \text{on } \Gamma_k = \partial B(0, R_k) \\ v_k \big|_{\Gamma_k} &= \psi. \end{aligned}$$
(4.6)

Since Ω_n is regular, Ω_{nk} is regular and it follows from [10], [13] that (4.6) has a solution $v_k \in C(\overline{\Omega}_{nk})$. Our aim now is to show that the sequence $(v_k)_{k\geq 1}$ converges to the solution of (4.5), for that, we use the following maximum principle due to [2].

Theorem 4.3 (Maximum Principle for distributional solutions). Let Ω_0 be a bounded open set of \mathbb{R}^n with boundary Γ . Let $M \ge 0$, $\lambda \ge 0$, $u \in C(\overline{\Omega}_0)$ such that (i) $\lambda u - \Delta u \le 0$, in $\mathcal{D}(\Omega_0)'$ (ii) $u|_{\Gamma} \le M$, Then $u \le M$ on $\overline{\Omega}_0$.

Without loss of generality, we can assume that $\psi \geq 0$. **Claim 1**: $(v_k)_{k\geq 1}$ is an increasing bounded sequence. Indeed, by applying the Maximum principle in Ω_{nk} to v_k and $v_k - v_{k+1}$ respectively, we obtain:

$$0 \le v_k \le \|\psi\|,$$

and

$$(\lambda - \Delta)(v_k - v_{k+1}) = 0, \text{ in } \mathcal{D}(\Omega_{nk})'$$

 $(v_k - v_{k+1})|_{\Gamma_k} = -v_{k+1} \le 0,$
 $(v_k - v_{k+1})|_{\Gamma_n} = 0.$

Hence $v_k \leq v_{k+1}$ in Ω_{nk} .

Claim 2: Let $v = \lim_{k \to \infty} v_k$, then $v \in C_{\infty}(\overline{\Omega}_n)$. Indeed, denote by w_k the solution of the problem

$$\Delta w_k = 0, \quad \text{in } \mathcal{D}(\Omega_{nk})'$$
$$w_k \big|_{\Gamma_k} = 0,$$
$$w_k \big|_{\Gamma} = \psi.$$

Then $w_k \geq 0$. Define the Poisson operator B_k on $C(\overline{\Omega}_{nk}) \times C(\Gamma_n \cup \Gamma_k)$ by

$$D(B_k) = \{ w \in C(\overline{\Omega}_{nk}), \Delta w \in C(\overline{\Omega}_{nk}) \} \times \{0\},\$$

$$B_k(w,0) = (\Delta w, -(w|_{\Gamma_n}, w|_{\Gamma_k})).$$

Since Ω_{nk} is regular, we deduce from [2, Chapter 6], that B_k is a resolvent positive operator and then

$$(w_k, 0) = R(\lambda, B_k)(\lambda w_k, (\psi, 0)) \ge R(\lambda, B_k)(0, (\psi, 0)) = (v_k, 0).$$
(4.7)

On the other hand, it follows from Proposition 2.4 that for all $\Phi \in C(\Gamma_n)$, the Dirichlet problem (1.2)(with $\phi = \Phi$) has a unique solution w satisfying the condition at infinity $\lim_{|x|\to\infty} w(x) = 0$. Moreover, if $\Phi \leq 0$, then $w \leq 0$. Indeed, let $\varepsilon > 0$,

since $w \in C^1(\Omega_n)$, there exists $\Omega_0 \subset \subset \Omega_n$ such that $\operatorname{supp}(w - \varepsilon)^+ \subset \Omega_0$, Thus $(w - \varepsilon)^+ \in H^1_0(\Omega_0)$ and $\int_{\{w > \varepsilon\}} |\nabla w|^2 = 0$. Hence,

 $w \leq \varepsilon$.

Denote by w_0 the solution of (1.2) (with $\phi = \psi$) vanishing to zero at infinity, then

$$\begin{aligned} \Delta(w_k - w_0) &= 0, \quad \text{in } \mathcal{D}(\Omega_{nk})' \\ (w_k - w_0)\big|_{\Gamma_k} &= -w_{0|\Gamma_k} \le 0, \\ (w_k - w_0)\big|_{\Gamma_n} &= 0. \end{aligned}$$

Theorem 4.3 and (4.7) imply that $0 \le v_k \le w_k \le w_0$. Hence

$$\lim_{|x| \to \infty} v(x) = \lim_{|x| \to \infty} w_0(x) = 0.$$

Finally, $u = v_0 + v$ is a solution of (4.2).

(2)**Positivity and Uniqueness.** Let $(f, \phi) \in C_{\infty}(\overline{\Omega}_n) \times C(\Gamma_n)$ such that $f \leq 0$, $\phi \leq 0$ and u a solution of (4.2).

Case n = 1: Since in that case $u \in C^2(\Omega_1) \cap C(\overline{\Omega}_1)$, we apply the Phragmèn-Lindelöf principle to deduce that $u \leq 0$ whenever $f \leq 0$, $\phi \leq 0$. (See [12, Chapter 2]). By applying this maximum principle to u and -u respectively when f = 0, we get uniqueness.

Case $n \geq 2$: Since $u \in D(\Delta_{\max}^n)$, we get $u \in C^1(\Omega_n)$. Let $\Omega_0 \subset \subset \Omega_n$ such that $\operatorname{supp}(u-\varepsilon)^+ \subset \Omega_0, \varepsilon > 0$. then $(u-\varepsilon)^+ \in H_0^1(\Omega_0)$ and

$$\int f(u-\varepsilon)^{+} = \lambda \int u(u-\varepsilon)^{+} + \int \nabla u \nabla (u-\varepsilon)^{+}$$
$$= \lambda \int (u-\varepsilon)(u-\varepsilon)^{+} + \varepsilon \lambda \int (u-\varepsilon)^{+} + \int_{\{u>\varepsilon\}} |\nabla u|^{2}$$
$$\leq 0.$$

Hence $u \leq \varepsilon$.

We are now in position to show the well-posedness of the Cauchy problem (4.1). If $n \neq 2$, let $\varphi \in W^{1,1}((0,\tau); C(\Gamma_n))$ and $U_0 = (u_0,0) \in D(A_n) = D(\Delta_{\max}^n) \times \{0\}$, then

$$A_n U_0 + \Phi_n(0) = (\Delta u_0, -u_{0|\Gamma_n} + \varphi(0)).$$

Hence $A_n U_0 + \Phi_n(0) \in \overline{D(A_n)} = C_\infty(\overline{\Omega}_n) \times \{0\}$ if and only if

$$u_0\Big|_{\Gamma_{\pi}} = \varphi(0). \tag{4.8}$$

Assumption (4.8) becomes trivial in the case n = 2 since we have assumed $\varphi = 0$. On the other hand, it follows from Theorem 4.2 that A_n is a resolvent positive operator. Hence, by applying Theorems 2.6 we obtain the following result.

Proposition 4.4. Let $n \in \mathbb{N}$.

Case n = 1: Let $\Omega_1 =]1, +\infty[$. Then for all $u_0 \in D(\Delta_{\max}^1)$ and all $\varphi \in W^{1,1}((0,\tau))$ such that $u_0(1) = \varphi(0)$, there exists a unique mild solution of (4.1) with n = 1. **Case** n = 2: Let $\Omega_2 = \mathbb{R}^2 \setminus B(0,1)$. Then for all $u_0 \in D(\Delta_{\max}^2)$, there exists a unique mild solution of (4.1) with n = 2.

Case $n \geq 3$: Let $\Omega_n = \mathbb{R}^n \setminus K$ with boundary Γ_n , K being a compact set of \mathbb{R}^n . If Ω_n is regular, then for all $u_0 \in D(\Delta_{\max}^n)$ and all $\varphi \in W^{1,1}((0,\tau); C(\Gamma_n))$ such that $u_0|_{\Gamma} = \varphi(0)$, there exists a unique mild solution of (4.1).

The proof of Theorem 3.1 will be complete by combining Theorem 4.1 and the following result.

Proposition 4.5. (i) Let $u_0 \in C_{\infty}(\overline{\Omega}_1)$ and $\varphi \in C([0, \tau])$ such that $u_0(1) = \varphi(0)$, then there exists a unique mild solution of (4.1) with n = 1.

(ii) Let $u_0 \in C_{\infty}(\overline{\Omega}_2)$, then there exists a unique mild solution of (4.1) with n = 2. (iii) Assume that $\Omega_n = \mathbb{R}^n \setminus K$ is regular and let $u_0 \in C_{\infty}(\overline{\Omega}_n)$ and $\varphi \in C([0,\tau]; C(\Gamma_n))$ such that $u_0|_{\Gamma_n} = \varphi(0)$, then there exists a unique mild solution of (4.1).

Proof. Choose $u_{0_k} \in D(\Delta_{\max}^n)$ such that $u_{0_k} \to u_0$ as $k \to \infty$ in $C_{\infty}(\overline{\Omega}_n)$. Choose $\varphi_k \in W^{1,1}((0,\tau); C(\Gamma_n))$ such that $\varphi_k(0) = u_{0_k}|_{\Gamma_n}$ and $\varphi_k \to \varphi$ as $k \to \infty$ in $C([0,\tau]; C(\Gamma_n))$. By applying Proposition 4.4 and Theorem 4.1, we deduce that there exists a unique mild solution $u_k \in C_{\infty}(\overline{\Omega}_n)$ of $P_{\tau}(u_{0_k}, \varphi_k)$. We can show that

$$\|u_k\|_{C([0,\tau];C_{\infty}(\overline{\Omega}_n))} \le \max\{\|\varphi_k\|_{C([0,\tau];C(\Gamma_n))}, \|u_{0k}\|_{C_{\infty}(\overline{\Omega}_n)}\}.$$

where

$$\begin{aligned} \|\varphi_k\|_{C([0,\tau];C(\Gamma_n))} &= \sup_{0 \le t \le \tau} \|\varphi_k(t)\|_{C(\Gamma_n)} \\ \|u_k\|_{E_{\infty}(\overline{\Omega}_n)} &= \sup_{0 \le t \le \tau} \|u_k(t)\|_{E_{\infty}(\overline{\Omega}_n)} \,. \end{aligned}$$

Hence $(u_k)_{k\geq 1}$ is a Cauchy sequence in $C([0,\tau]; C_{\infty}(\overline{\Omega}_n))$. Let $u = \lim_{k\to\infty} u_k$, then $\int_0^t u(s)ds = \lim_{k\to\infty} \int_0^t u_k(s)ds \in D(\Delta_{\max}^n)$ and

$$u(t) = u_0 + \Delta \int_0^t u(s) ds \quad \text{in } \mathcal{D}(\Omega_n)'$$
$$u(t)|_{\Gamma_n} = \lim_{k \to \infty} \varphi_k(t) = \varphi(t).$$

for all $t \in [0, \tau]$.

References

- W. Arendt: Resolvent positive operator and integrated semigroups, Proc. London Math. Soc, 54, (1987), 321-349.
- [2] W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander: Vector valued Laplace transforms and Cauchy Problems. Monographs in Mathematics. Birkhäuser Verlag Basel. 2001.
- [3] W. Arendt, Ph. Bénilan, Wiener regularity and heat semigroups on spaces of continuous functions, Progress in Nonlinear Differential Equations and Applications. Escher, Simonett, eds., Birkhä user, Basel (1998), 29-49.
- [4] H. Brezis: Analyse Fonctionnelle Masson, Paris 1983.
- [5] R. Dautray, J.L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology. Springer Verlag 1999.
- [6] G. Da Prato, E. Sinestrari: Differential operators with non-dense domain. Annali Scoula Normale Superiore Pisa 14 (1987), 285-344.
- [7] L.C. Evans: Partial Differential Equations. Amer. Math. Soc., Providence, Rhode Island 1998.
- [8] G. Greiner: Perturbing the boundary conditions of a generator. Huston J. Math. 13 (1987) 213-229.
- [9] D. Gilbarg, N.S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer, Berlin 1977.
- [10] W. Littman, G. Stampacchia, H.F.Weinberger: Regular points for elliptic equations with discontinous coefficients. Ann. Scoula Norm.Sup. Pisa 17 (1963), 43-77.
- [11] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin 1983.
- [12] M.H. Protter, H.F. Weinberger: Maximum Principle in Differential Equations. Prentice-Hall Partial Differential Equations Series. 1967.

- [13] G. Stampacchia: Le problème de Dirichlet pour les é quations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier Grenoble 15 (1965) 189-256.
- [14] H.R. Thieme: Remarks on resolvent positive operators and their perturbation. Discrete and Continuous Dynamical Systems 4 (1998) 73-90.

WOLFGANG ARENDT

UNIVERSITÄT ULM, ANGEWANDTE ANALYSIS, D-89069 ULM, GERMANY *E-mail address*: arendt@mathematik.uni-ulm.de

Soumia Lalaoui Rhali

FACULTÉ POLYDISCIPLINAIRE DE TAZA, UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH, B.P: 1223 TAZA, MOROCCO

E-mail address: slalaoui@ucam.ac.ma