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THERMISTOR PROBLEM: A NONLOCAL PARABOLIC
PROBLEM

ABDERRAHMANE EL HACHIMI, MOULAY RCHID SIDI AMMI

Abstract. In this paper, we study a nonlocal parabolic problem arising in

Ohmic heating. Firstly, some existence and uniqueness results for the contin-

uous problem are proposed. secondly, a time discretization technique by Euler
forward scheme is proposed and a study of the discrete associated dynamical

system is presented.

1. Introduction

In this work, we shall deal with the following nonlocal parabolic problem

∂u

∂t
−4u = λ

f(u)
(
∫
Ω
f(u) dx)2

, in Ω×]0;T [,

u = 0 on ∂Ω×]0;T [,

u(0) = u0 in Ω,

(1.1)

where Ω ⊂ Rd (d ≥ 2) is a bounded regular domain, λ is a positive parameter and
f is a function with prescribed conditions. Let us recall first that (1.1) arises by
reducing the following system of two equations which model a thermistor problem

ut = ∇.(k(u)∇u) + σ(u)|∇ϕ|2,
∇(σ(u)∇ϕ) = 0,

(1.2)

where, u represents the temperature generated by the electric current flowing
through a conductor, ϕ the electric potential, σ(u) and k(u) are respectively the
electric and thermal conductivities. For more information, we refer the reader to
[7, 9, 10, 15].
In section 2, our gaol concerns the existence and uniqueness of weak solutions to
(1.1). Some results have been obtained by many authors in the case where N = 1
and f taking particular forms: Montesinos and Gallego [12] proved the existence of
weak solution under

0 < σ1 ≤ σ(s) ≤ σ2,∀s ∈ R. (1.3)
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In [9, 10, 15], major emphasis is placed on cases where the spatial dimension N is
1 or 2 and f is of the form f(u) = exp(u)or exp(−u). In these works, additional
regularity assumptions are made on u0 and a combination of usual Lyapounov
functional and a comparison method is the main ingredient. Our purpose is to
extend some of the results therein to problem (1.1), where here, the condition (1.3)
is weakened to (H2) below.

We recall also that the Euler forward method has been used by several authors
in the semi-discretization of non linear parabolic problems, see for example [5, 6].
Concerning the existence and uniqueness of solutions to (1.1) under particular forms
of f , we refer the reader to [2] and the references therein. On the other hand, little
is known about the solutions to the following discrete problem:

Un − τ4Un = Un−1 + λτ
f(Un)( ∫

Ω
f(Un) dx

)2 , in Ω,

Un = 0 on ∂Ω,

U0 = u0 in Ω.

(1.4)

Whereas, semi-discretization has been used for equations of the thermistor problem
in [13, 1]. Our aim here is to continue the study of problem (1.1) initiated in section
2, where an a priori L∞−estimate is derived. In addition to the usual existence and
uniqueness questions concerning the solutions of (1.3), we shall prove some results
of stability and proceed to error estimates analysis. In [1], the authors derived an
L2 and H1 norm error by requiring regularity on the solution u, for instance u, ut in
H2(Ω)∩W 1,∞(Ω). Unfortunately, such smoothness is not always possible since the
function f is non linear. We end this paper by studying the asymptotic behaviour
of the solutions to the discrete dynamical system associated with (1.3).

2. Existence and uniqueness for the continuous problem

We assume the following hypotheses:
(H1) f : R → R is a locally Lipschitzian function.
(H2) There exist positive constants σ, c1, c2 and α such that α < 4

d−2 and for all
ξ ∈ R

σ ≤ f(ξ) ≤ c1|ξ|α+1 + c2.

We adopt the following weak formulation for (1.1): u is a solution of (1.1) if and
only if

u ∈ L∞(τ,+∞,H1
0 (Ω) ∩ L∞(Ω)) with

∂u

∂t
∈ L2(τ,+∞, L2(Ω))

for any τ > 0, and satisfying∫ T

0

∫
Ω

u
∂

∂t
φ−∇u∇φdx dt =

∫ T

0

(
λ( ∫

Ω
f(u) dx

)2

∫
Ω

f(u)φdx)dt,

for any φ ∈ C∞((0,∞),Ω).

Now, we state our main result.

Theorem 2.1. Let hypotheses (H1)-(H2) be satisfied. Assume that u0 ∈ Lk0+2(Ω)
with k0 such that

k0 ≥ max
(
0,
αN

2
− 2

)
. (2.1)
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Then, there exists d0 > 0 such that if ‖u0‖k0+2 < d0, the problem (1.1) admits a
solution u verifying for all τ > 0

u ∈ L∞(τ,+∞, Lk0+2(Ω)), |u|γu ∈ L∞(τ,+∞,H1
0 (Ω)), with γ =

k0

2
.

Moreover, if u0 ∈ L∞(Ω), then u ∈ L∞(τ,+∞, L∞(Ω)) and is unique.

Remark. The value of d0 will be given in the course of the proof.

Proof. We use a Faedo-Galerkin method see [11]. Let um ⊆ D(Ω) be such that
u0m → u0 in H1

0 (Ω) and let (wj)j ⊆ H1
0 (Ω) a special basis. We seek u to be the

limit of a sequence (um)m such that

um(t) = Σm
j=1gjm(t)wj ,

where gjm is the solution of the following ordinary differential system

〈u′m, wj〉+ (um, wj) =
λ( ∫

Ω
f(um) dx

)2 〈f(um), wj〉, 1 ≤ j ≤ m,

um(0) = uom.

(2.2)

It is easy to see that (2.2) has a unique solution um according to hypotheses (H1)–
(H2) and Cartan’s existence theorem concerning ordinary differential equation (see
[3]). This solution is shown to exist on a maximal interval [0; tm[. The following
estimates enable us to assert that it can be continued on the hole interval [0;T ].
We shall denote by Ci different positive constants, depending on data, but not on
m. �

Lemma 2.2. For any τ > 0, there exists a constant c3(τ), c4(τ) such that

‖um(t)‖k0+2 ≤ c3(τ),∀t ≥ τ, (2.3)

‖um(t)‖∞ ≤ c4(τ),∀t ≥ τ. (2.4)

Proof. (i) Multiplying the first equation of (3.2) by |um|kgjm, integrating on Ω,
adding from j = 1 to m and using (H1)-(H2), yields

1
k + 2

d

dt
‖um‖k+2

k+2 +
4

(k + 2)2
‖∇|um|

k
2 um‖2

2 ≤ c5‖um‖k+α+2
k+α+2 + c6. (2.5)

By using well-known Sobolev’s and Gagliardo-Nirenberg’s inequalities, we have

‖um‖k0+α+2
k0+α+2 ≤ c7‖um‖α

k0+2‖∇|um|γum‖2
2, (2.6)

Thus, from (2.5) and (2.6), we obtain
1

k0 + 2
d

dt
‖um‖k0+2

k0+2 ≤ (c8‖um‖α
k0+2 −

4
(k0 + 2)2

)‖∇|um|γum‖2
2 + c6. (2.7)

We shall make the following compatibility condition on u0

‖u0‖k0+2 <
( 4
c8(k0 + 2)2

)1/α

= d0. (2.8)

Then, there exists a small τ > 0 such that

‖um(t)‖k0+2 < d0 for t ∈]0, τ [. (2.9)

Hence
1

k0 + 2
d

dt
‖um‖k0+2

k0+2 + c9‖∇|um|γum‖2
2 ≤ c6 ∀ 0 < t < τ. (2.10)
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By Poincaré’s inequality and after integrating, it follows that

‖um(t)‖k0+2 ≤ c10, ∀ 0 < t < τ,

Therefore, relation (3.3) is achieved by iterating successively the same process with
initial condition calculated at the last one.
(ii) By using Hôlder’s inequality, we get

‖um‖k+α+2
k+α+2 ≤ c11‖um‖θ1

k+2‖um‖θ2
k0+2‖um‖θ3

q , (2.11)

with θ1, θ2 and θ3 satisfying

θ1
k + 2

+
θ2

k0 + 2
+
θ3
q

= 1 and θ1 + θ2 + θ3 = k + α+ 2.

We require moreover
θ1

k + 2
+

θ3
2(γ + 1)

= 1.

Using the boundedness of ‖um‖k0+2, the choice of q, Sobolev’s inequality and
young’s inequality, we have from (2.11) that

c5‖um‖k+α+2
k+α+2 ≤ c12‖um‖θ1

k+2‖∇|um|γum‖
θ3

γ+1
2

≤ c13(k + 2)θ4‖um‖k+2
k+2 +

2
(k + 2)2

‖∇|um|γum‖2
2,

where θ4 is some positive constant. Hence (2.5) becomes

1
k + 2

d

dt
‖um‖k+2

k+2 +
c14

(k + 2)2
‖∇|um|γum‖2

2 ≤ c15(k + 2)θ4‖um‖k+2
k+2 + c5.

Therefore, by applying [8, lemma 4] we conclude to (3.4).
Passage to the limit in (3.2) as m → ∞. Multiplying the jth equation of
system (3.2) by gjm(t), adding these equations for j = 1, . . . ,m and integrating
with respect to the time variable, we deduce the existence of a subsequence of um

such that

um → u weak star in L∞(0, T ;L2(Ω)),

um → u weak in L2(0, T ;H1
0 (Ω)),

umt → ut weak in L2(0, T ;H−1(Ω)),

um → u strongly in L2(0, T ;L2(Ω))
mboxanda.einQT .

Straightforward standard compactness arguments allow us to assert that u is a
solution of problem (1.1)
Uniqueness. Consider u1 and u2 two weak solutions of the problem (1.1) and
define w = u1 − u2. Substracting the equations verified by u1 and u2, we obtain

dw

dt
−4w =

λ( ∫
Ω
f(u1) dx

)2

(
f(u1)− f(u2)

)

+ λ

( ∫
Ω
f(u2)− f(u1) dx

)( ∫
Ω
f(u2) + f(u1) dx

)
( ∫

Ω
f(u1) dx

)2( ∫
Ω
f(u2) dx

)2 f(u2).

(2.12)
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Taking the inner product of (2.12) by w and using (H1) and (2.4), we get

1
2
d

dt
‖w(t)‖2

2 ≤ c16‖w(t)‖2
2,

which implies that w = 0. Hence the solution is unique. �

3. The semi-discrete problem

Existence and uniqueness. We consider the Euler scheme (1.3), with Nτ = T ,
T > 0 fixed and 1 ≤ n ≤ N . In the sequel, (·, ·) will denote the associated inner
product in L2(Ω) or the duality product between H1

0 (Ω) and its dual H−1(Ω).

Theorem 3.1. Assume (H1)-(H2). Then, for each n, there exists a unique solution
Un of (1.3) in H1

0 (Ω) ∩ L∞(Ω) provided that τ is small enough.

Proof. For simplicity, we write U = Un, h(x) = Un−1. Then (1.3) becomes

U − τ4U = h(x) + λ
f(U)

(
∫
Ω
f(U) dx)2

, in Ω,

U = 0 on ∂Ω,
(3.1)

Existence. Define the map S(µ, .) by U = S(µ, v), µ ∈ [0, 1] if

U − τ4U = µg(x, v) in Ω,
U = 0 on ∂Ω,

U0 = µu0,

(3.2)

where g(x, v) = h(x) + λf(v)/
( ∫

Ω
f(v) dx

)2.
For a fixed v ∈ H1

0 (Ω), (3.2) has a unique solution U ∈ H1
0 (Ω). Then, for each

µ ∈ [0, 1], the operator S(µ, .) is well defined. Moreover, S(µ, .) is compact from
H1

0 (Ω) into it self. Indeed, using (H2), we have the estimate

|U |22 + τ |∇U |22 ≤ c17.

We can easily see that µ → S(µ, v) is continuous and that S(0, v) = U , for any v,
if and only if U = 0. From the Leray-Schauder fixed point theorem, there exists
therefore a fixed point U of S(µ, .). �

Now, we derive an a priori estimate.

Lemma 3.2. If u0 ∈ L∞(Ω), then for all n ∈ {1, . . . , N}, Un ∈ L∞(Ω).

The proof of the above lemma is similar to the one used by de Thelin in [4] in a
different problem; we shall give here only a sketch. Suppose d ≥ 2 and define

δ =

{
2d

d−2 if 2 < d,

2(α+ 2) if d = 2.

Let q1 = δ and let

qk = {(δ
2
)k−1(δ − γ)− (2− γ)} δ

δ − 2
, k ≥ 2 .

Then we have

qk+1 = (qk + 2− γ)
δ

2
with γ = α+ 2, for all k ∈ N∗.
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Lemma 3.3. For k in N∗, Un ∈ Lqk(Ω) and

|Un|∞ = lim sup |Un|qk
< +∞. (3.3)

Proof. We prove by recurrence that U ∈ Lqk . This property is true for k = 1,
since H1

0 (Ω) ⊂ Lδ(Ω). Now we show that U ∈ Lqk+1 . Let m ∈ N, 1 ≤ m ≤ k.
Multiplying (2.1) by |U |qm−γU , using (H2) and Young’s inequality, we get

(qm − γ + 1)
∫

Ω

|∇U |2|U |qm−γ dx ≤ c18|U |qm
qm

+ c19.

On the other hand,

|U |qm+2−γ
qm+1

≤ c20(1 +
qm − γ

2
)2

∫
Ω

|∇U |2|U |qm−γ dx.

Therefore,
|U |qm+2−γ

qm+1
≤ (c21 + c22|U |qm

qm
)(qm + 2− γ).

Thus,
(|U |qk+1

qk+1
)2/δ ≤ (c21 + c22|U |qk

qk
)(qk + 2− γ).

The rest of the proof follows the same lines as in [4, p. 383-384]. �

Uniqueness. Consider U and V two different solutions of (2.1) and define w =
U − V . Then, we have

w − τ4w =
λτ

(
∫
Ω
f(U) dx)2

(
f(U)− f(V )

)
+ λτ

( ∫
Ω
f(U)− f(V ) dx

)( ∫
Ω
f(V ) + f(U) dx

)
(
∫
Ω
f(U) dx)2(

∫
Ω
f(V ) dx)2

f(V ).
(3.4)

Multiplying (3.4) by w, integrating on Ω and using the L∞−estimate obtained in
lemma 3.2, we obtain

|w|22 + τ |∇w|22 ≤ c30τ |w|22.
Therefore, w = 0 when τ ≤ 1/c30.

4. Stability

Theorem 4.1. Assume (H1)-(H2). Then, there exists c(T, u0) > 0 depending on
the data but not on N such that for any n ∈ {1, . . . , N}

|Un|L∞(Ω) ≤ c(T, u0),

|Un|22 + τ
n∑

k=1

|∇Uk|22 ≤ c(T, u0),

n∑
k=1

|Uk − Uk−1|22 ≤ c(T, u0).

Proof. (i) Multiplying (1.3) by |Uk|mUk for some integer m ≥ 1, using lemma 3.2
and Hôlder’s inequality, we obtain after simplification

|Uk|m+2 ≤ |Uk−1|m+2 + c31τ. (4.1)

By induction and taking the limit in the resulting inequality as m→ +∞, we get

|Uk|L∞(Ω) ≤ c(T, u0).
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(ii) Multiplying the first equation of (1.3) by Uk and using the hypotheses on f ,
one easily has

(Uk − Uk−1, Uk) + τ |∇Uk|22 ≤ c32 τ |Uk|1.
Using the elementary identity 2a(a − b) = a2 − b2 + (a − b)2 and summing from
k = 1 to n, we obtain

|Un|22 +
n∑

k=1

|Uk − Uk−1|22 + τ
n∑

k=1

|∇Uk|22 ≤ |u0|22 + τ c33

n∑
k=1

|Uk|1.

Then, the inequalities(b) and (c) of the lemma hold by using relation (3.3) and
(a). �

5. Error estimates for solutions

We shall adopt the following notation concerning the time discretization for
problem (1.1). Let us denote the time step by τ = T

N , tn = nτ and In = (tn, tn−1)
for n = 1, . . . , N . If z is a continuous function (respectively summable), defined
in (0, T ) with values in H−1(Ω) or L2(Ω) or H1

0 (Ω), we define zn = z(tn, .), zn =
1
τ

∫
In
z(t, .)dt, z0 = z0 = z(0, .); the error en = u(t)−Un for all t ∈ In and the local

errors en
u and en defined by en

u = un(t)− Un, en = un − Un.

Theorem 5.1. Let (H1)-(H2) hold. Then, the following error bounds are satisfied

‖en‖2
L∞(0,T,H−1(Ω)) +

∫ T

0

|en|2dt ≤ c34 τ,

‖em‖H−1(Ω) ≤ c35 τ
1/2,

|∇
∫ T

0

en(t) dt|2 ≤ c36 τ
1/4.

Proof. We consider the following variational formulation of discrete problem (1.3):

(Un − Un−1, ϕ) + τ(∇Un,∇ϕ) =
λτ( ∫

Ω
f(Un) dx

)2 (f(Un), ϕ), (5.1)

for all ϕ ∈ H1
0 (Ω). Integrating the continuous problem (1.1) over In, we get

(un − un−1, ϕ) + τ(∇un,∇ϕ) = λτ

∫
In

(f(un), ϕ)( ∫
Ω
f(un) dx

)2 , ∀ϕ ∈ H1
0 (Ω) (5.2)

Subtracting (5.2) from (5.1) and adding from n = 1 to m with m ≤ N , we obtain
m∑

n=1

(en − en−1, ϕ) + τ
m∑

n=1

(∇en
u,∇ϕ)

≤ c37 τ |
m∑

n=1

(f(u)
n
− f(Un), ϕ)|+ c38 τ |

m∑
n=1

(f(Un), ϕ)|.
(5.3)

Let (−4)−1 the green operator satisfying

(∇(−4)−1ψ,∇ϕ) = (ψ,ϕ)H−1(Ω),H1
0 (Ω)

for all ψ ∈ H−1(Ω), ϕ ∈ H1
0 (Ω). Choosing ϕ = (−4)−1(en) as test function, we

then obtain
I1 + I2 ≤ I3 + I4, (5.4)
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where

I1 =
m∑

n=1

(en − en−1, (−4)−1(en)), I2 = τ

m∑
n=1

(en
u, e

n),

I3 ≤ c37τ |
m∑

n=1

(f(u)
n
− f(Un), (−4)−1(en))|,

I4 = c38τ |
m∑

n=1

(f(Un), (−4)−1(en))|.

With the aid of the elementary identity 2a(a − b) = a2 − b2 + (a − b)2 and the
property of (−4)−1, I1 reduces after straightforward calculations to

I1 =
1
2
‖em‖2

H−1(Ω) +
1
2

m∑
n=1

‖en − en−1‖2
H−1(Ω).

On the other hand

I2 = τ
m∑

n=1

(en
u, e

n)

=
m∑

n=1

∫
In

(u(t)− Un, u(t)− Un) dt+
m∑

n=1

∫
In

(u(t)− Un, un − u(t)) dt

= I21 + I22.

I22 =
m∑

n=1

∫
In

(u(t), un − u(t)) dt−
m∑

n=1

∫
In

(Un, un − u(t)) dt

= I1
22 + I2

22.

We now estimate I1
22.

|I1
22| = |

m∑
n=1

∫
In

(u(t),
∫ tn

t

∂u

∂s
ds) dt|

≤
m∑

n=1

∫
In

(
∫ tn

t

‖∂u
∂s
‖H−1(Ω) ds)‖u(t)‖H1

0 (Ω) dt

≤ τ‖∂u
∂s
‖L2(0,tm,H−1(Ω)) ‖u‖L2(0,tm,H1

0 (Ω))

≤ c39 τ.

In the same manner,

|I2
22| ≤ τ‖∂u

∂s
‖L2(0,tm,H−1(Ω))(τ

m∑
n=1

‖Un‖2
H1

0 (Ω)))
1/2 ≤ c40 τ.
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Next, we estimate the first term on the right-hand side of (5.4) by using Hôlder’s
and Young’s inequalities and (H1)

|I3| ≤ |
m∑

n=1

(
∫

In

[f(u)− f(Un)] dt, (−4)−1(en))|

≤ c41 τ
1/2

m∑
n=1

(
∫

In

|f(u)− f(Un)|22 dt)1/2‖en‖H−1(Ω)

≤ η

m∑
n=1

(
∫

In

|f(u)− f(Un)|22 dt) +
c42
η
τ

m∑
n=1

‖en‖2
H−1(Ω)

≤ c43 η
m∑

n=1

(
∫

In

|en|22 dt) +
c42
η
τ

m∑
n=1

‖en‖2
H−1(Ω).

Moreover, we have

|I4| ≤ c44 τ + c45 τ

m∑
n=1

‖en‖2
H−1(Ω).

Choosing suitably η, we conclude that

‖em‖2
H−1(Ω) +

m∑
n=1

‖en − en−1‖2
H−1(Ω) +

m∑
n=1

∫
In

|en|22 dt

≤ c46 τ + c47 τ
m∑

n=1

‖en‖2
H−1(Ω).

(5.5)

On the other hand, setting ym =
∑m

n=1 ‖en‖2
H−1(Ω), from (5.5), we get

ym − ym−1 ≤ c46 τ + c47 τy
m.

By applying the discrete Gronwall inequality, we deduce that ym ≤ c(T ).Therefore,

‖em‖H−1(Ω) ≤ c48 τ
1/2.

On the other hand, we have

sup
t∈(0,tm)

‖en(t)‖H−1(Ω) − c48τ
1/2 ≤ max

1≤n≤m
‖en(tn)‖H−1(Ω) = max

1≤n≤m
‖en‖H−1(Ω).

Thus,

‖en‖L∞(0,T,H−1(Ω)) − c48 τ
1/2 ≤ max

1≤n≤m
‖en‖H−1(Ω).

From the last inequality, we obtain

‖en‖2
L∞(0,T,H−1(Ω)) +

∫ T

0

|en|22 dt ≤ c49 τ,

m∑
n=1

‖en − en−1‖2
H−1(Ω) ≤ c49 τ.
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Choosing ϕ = τ
∑m

n=1(u
n − Un) in (5.3) , we obtain

τ

∫
Ω

(um − Um)(
m∑

n=1

(un − Un) dx) + τ2|
m∑

n=1

∇(un − Un)|22

≤ c50τ
2|

∫
Ω

m∑
n=1

(f(u)
n
− f(Un))(

m∑
n=1

(un − Un))dx|

+ c51 τ
2|

m∑
n=1

(f(Un),
m∑

n=1

(un − Un))|.

This implies

τ2|
m∑

n=1

∇(un − Un)|22 = |∇
∫ tm

0

en dt|22 ≤ τ |
∫

Ω

(um − Um)(
m∑

n=1

(un − Un) dx)|

+ c50τ
2|

∫
Ω

m∑
n=1

(f(u)
n
− f(Un))(

m∑
n=1

(un − Un)dx|

+ c51 τ
2|

m∑
n=1

(f(Un),
m∑

n=1

(un − Un))|.

≤ I + II + III.

Clearly

I ≤ ‖em‖H−1(Ω)(
m∑

n=1

∫
In

‖u(t)‖H1
0 (Ω) dt+ τ

m∑
n=1

‖Un‖H1
0 (Ω))

≤ c52‖em‖H−1(Ω) ≤ c53τ
1/2.

We get also

II ≤ (
∫

Ω

(
m∑

n=1

∫
In

(f(u)− f(Un)) dt)2 dx)1/2 × (
∫

Ω

(
m∑

n=1

∫
In

(u(t)− Un) dt)2 dx)1/2

≤ T 2(
m∑

n=1

∫
In

|f(u)− f(Un|22 dt)1/2 × (
m∑

n=1

∫
In

|u(t)− Un|22 dt)1/2

≤ T 2(
m∑

n=1

∫
In

|f(u)− f(Un|22 dt)1/2 × (2‖u‖2
L2(0,T,H1

0 (Ω)) + 2τ
m∑

n=1

|Un|22)1/2

≤ c54 τ
1/2.

The last inequality follows by using simultaneously the L∞−estimate of u(t) , Un

and the error bound given in (4.1). Arguing as in the previous estimate, we get

III ≤ T 2(
m∑

n=1

∫
In

|f(Un|22 dt)1/2 × (2‖u‖2
L2(0,T,H1

0 (Ω)) + 2τ
m∑

n=1

|Un|22)1/2.

Using again the hypothesis (H1) and the estimates above, we obtain

III ≤ c55 τ
1/2.

Finally collecting these results, it follows that

|∇
∫ T

0

en dt|22 ≤ c56 τ
1/2.
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This completes the proof. �

Corollary 5.2. Under hypotheses (H1)-(H2), problem (1.3) generates a continuous
semi-group Sτ defined by SτU

n−1 = Un.

6. The semi-discrete dynamical system

The aim here is to study the discrete dynamical system (1.3) via the concepts of
absorbing sets and global attractors (see Temam [14]).

Theorem 6.1. The semi-group associated with (1.3) possesses a compact attractor
Aτ which is bounded in H1

0 (Ω) ∩ L∞(Ω) for τ small enough.

Proof. We begin by showing the existence of an absorbing set in H1
0 (Ω) ∩ L∞(Ω).

(i) Denoting yn
m = |Un|m+2 and yn = |Un|L∞(Ω), then from (4.1), we have

yn
m ≤ c57 y

n−1
m + c58τ.

Letting m approach infinity, we deduce that

yn ≤ c57 y
n−1 + c58τ.

On the other hand, we have

τ

n0+N∑
n=n0

yn ≤ a1, ∀n0 ≥ nτ ,

for some positive real number a1 which do not depend on n0.
Applying the discrete uniform Gronwall’s lemma ([14]), we get

|Un|L∞(Ω) ≤ c59, ∀n ≥ nτ ,

which implies the existence of absorbing sets in L∞(Ω).
(ii) To obtain existence of absorbing sets in H1

0 (Ω), multiply (1.3) by Un − Un−1.
By using Hôlder’s and Poincaré’s inequalities, we have

|∇Un|22 ≤ |∇Un−1|22 + c60τ, ∀n ≥ nτ .

Using again the relation (b) and the discrete uniform Gronwall’s lemma, we get

‖Un‖H1
0 (Ω) ≤ c61, ∀n ≥ nτ .

Therefore, the existence of absorbing sets in H1
0 (Ω) is proved. Applying Temam

[14, Theorem 1.1], we therefore get the result. �
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