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ASYMPTOTIC BEHAVIOR OF DISCRETE SOLUTIONS TO
IMPULSIVE LOGISTIC EQUATIONS

HAYDAR AKÇA, EADA AHMED AL-ZAHRANI, VALÉRY COVACHEV

Abstract. We study the stability characteristics of a time-dependent system

of impulsive logistic equations by using discrete modelling.

1. Introduction

One of the most used models for a single species dynamics has been derived by
many researchers in the form of a differential equation

ẋ(t) = x(t)f(t, x(t))− g(t, x(t)), (1.1)

where the solution x(t) is the size or biomass of the resource population at time
t > 0, the function f(t, x(t)) characterizes the population change at time t, and the
function g(t, x(t)) defines the continuous effects — influences of external factors.
When g(t, x(t)) = 0, then the model is called classical logistic equation, which
represents a population isolated from external factors.

As an illustrative example, a special case of (1.1), consider the well known ele-
mentary nonlinear ordinary differential equation

dy(t)
dt

= y(t)[1− y(t)], t > 0 . (1.2)

The autonomous system has two equilibrium states: y(t) = 0 and y(t) = 1. It is not
difficult to see that the trivial solution is unstable while the positive equilibrium of
(1.2) is asymptotically stable and all solutions of (1.2) satisfy y(0) > 0 ⇒ y(t) > 0
for t > 0 and y(t) → 1 as t → ∞ and the convergence is monotonic. One of the
discrete versions of (1.2) is given by the quadratic logistic equation (an Euler-type
scheme)

y(n + 1) = y(n)[1 + h− hy(n)], h > 0, n ∈ Z+
0 . (1.3)

The trivial equilibrium of (1.3) is unstable for h > 0. The positive equilibrium of
(1.3) is asymptotically stable for 0 < h ≤ 2, for h > 2 it becomes unstable, and
oscillatory and chaotic behavior of solutions of (1.3) is possible. See more details
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in [11, 13, 14] and references therein. Equation (1.3) can be reformulated so as to
obtain the following popular logistic equation:

x(n + 1) = rx(n)[1− x(n)],

r = 1 + h, x(n) =
h

1 + h
y(n) .

(1.4)

It has infinitely many, a one-parameter family of nonzero equilibria for positive r.
The dynamical characteristics of (1.4) are well known in the literature on chaotic
systems [8, 14].

Let us consider a second order Runge-Kutta algorithm for (1.2); such an algo-
rithm leads to a discrete-time system defined by the following expressions:

x(n + 1) = x(n) +
1
2
(k1 + k2),

k1 = hx(n)(1− x(n)),

k2 = h(x(n) + k1)(1− x(n)− k1),

(1.5)

where n ∈ Z+
0 and h > 0 is a fixed constant. An algebraic simplification of (1.5)

leads to

x(n + 1) =
(
1 +

h(2 + h)
2

)
x(n)− h(2 + 3h + h2)

2
x2(n)

+
((

1 + h
)
h2

)
x3(n)− h3

2
x4(n), n ∈ Z+

0 .

(1.6)

The equilibria of (1.6) are given by x∗i , i = 1, 2, 3, 4, where

x∗1 = 0, x∗2 = 1,

x∗3 =
1
2h

(
2 + h−

√
h2 − 4

)
, x∗4 =

1
2h

(
2 + h +

√
h2 − 4

)
.

Thus it follows that for h > 2, (1.6) has four equilibrium points while its mother
version (1.2) has only two equilibria. Also for h > 2, x∗1 and x∗2 are unstable while
x∗3 and x∗4 are stable. The equilibria x∗3 and x∗4 are born through the process of
discretization of (1.2) and these are parasitic, spurious or ghost solutions of the
system.

Higher order Runge-Kutta numerical algorithms can give rise to more parasitic
solutions including periodic, quasiperiodic and chaotic behaviour. For more details
see [7, 9] and [15, 16, 17].

2. Main result

Consider the non-autonomous logistic equation
dx

dt
= r(t)x(t)

(
1− x(t)

K(t)
)
, t > 0, t 6= τk, (2.1)

∆x(t) = Ik(x(t)), t = τk, k = 1, 2, . . . , (2.2)

in which r(t) is nonnegative and K(t) is a strictly positive continuous function, and
Ik are bounded operators. In the real evolutionary processes of the population, the
perturbation or the influence from outside occurs “instantly” as impulses, and not
continuously. The duration of these perturbations is negligible compared to the
duration of the whole process, for more details about the theory of impulsive differ-
ential equations and applications see [10, 18] and references therein. Also impulsive
perturbations (harvest, taking out, hunting, fishing, etc.) are more practical and
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realistic compared to any kind of continuous harvest. For instance, a fisherman
can not fish 24 hours a day and furthermore, the seasons also determine the fishing
period. Similar considerations are applicable for hunting and taking away a huge
part of any biomass.

In system (2.1), (2.2) the instants of impulse effect τk, k = 1, 2, . . . , form a
strictly increasing sequence such that limk→∞ τk = +∞. By a solution of system
(2.1), (2.2) we mean a piecewise continuous function on [0,+∞) which satisfies
the equation (2.1) for t > 0, t 6= τk, with discontinuities of the first kind at τk,
k = 1, 2, . . . , at which it is continuous from the left and satisfies the impulsive
conditions

∆x(τk) ≡ x(τk + 0)− x(τk) = Ik(x(τk)).

The logistic equation (2.1) has been intensively studied by various researchers
[1, 2, 4] and [5, 6], considering existence of the solutions, asymptotic properties
of the solutions, sufficient conditions for the oscillation of the solutions and so on.
In this paper we will use a suitable differential equation with piecewise constant
argument to approximate the solution of the system (2.1), (2.2) and introduce a
sufficient condition for the existence of the solution of the impulsive systems. The
approximation is given by

dx

dt
= x(t)

(
r
([ t

h

]
h
)
−

r([ t
h ]h)x(t)

K([ t
h ]h)

)
,

t ∈ [nh, (n + 1)h), n ∈ Z+
0 , n 6=

[τk

h

]
,

x
(([τk

h

]
+ 1

)
h
)

= x
([τk

h

]
h
)

+ Ikx
([τk

h

]
h
)
, k = 1, 2, . . . ,

(2.3)

where h > 0 denotes a uniform discretization step size and [µ] denotes the integer
part of µ ∈ R. Then the system (2.1), (2.2) becomes

dx

dt
= r(n)x(t)− r(n)

K(n)
x2(t), t ∈ [nh, (n + 1)h), n 6= mk,

x(mk + 1) = x(mk) + Ik(x(mk)), k = 1, 2, . . . ,

(2.4)

where
[

t
h

]
= n,

[
τk

h

]
= mk, and we use the notation f(n) = f(nh).

An integration of the differential equation in (2.4) over [nh, t), where t < (n+1)h,
leads to

1
x(t)

er(n)t − 1
x(n)

er(n)nh =
er(n)t

K(n)
− er(n)nh

K(n)
, τk 6∈ [nh, t),

and by allowing t → (n + 1)h, we obtain after some simplification

x(n + 1) =
er(n)hx(n)

1 +
(

er(n)h−1
K(n)

)
x(n)

, n 6= mk,

x(mk + 1) = x(mk) + Ik(x(mk)), k = 1, 2, . . .

(2.5)

Theorem 1. Let the following conditions hold:

r(n) ≥ 0, n ∈ Z+
0 , R = sup

n∈Z+
0

r(n) < ∞, 0 < K∗ ≤ inf
n∈Z+

0

K(n),

sup
n∈Z+

0

K(n) < ∞, Ik(x(mk)) = cx(mk),
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where c > 0. Then for h > 0 satisfying the inequality h ≤ ln(1 + c)/R a solution
x(n) of (2.5) corresponding to x(0) > 0 satisfies the inequality

1
x(n)

≤ 1
x(0)

exp
(
−

n−1∑
i=0

r(i)h
)

+
n∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)
. (2.6)

Proof. Since x(n) > 0 for all n ∈ Z+
0 , we let y(n) =

1
x(n)

in (2.5), and obtain

y(n + 1) = e−r(n)hy(n) +
1− e−r(n)h

K(n)
, n ∈ Z+

0 , n 6= mk,

y(mk + 1) =
1

1 + c
y(mk), k = 1, 2, . . .

(2.7)

We will show by induction that (2.7) leads to

y(n) ≤ y(0) exp
(
−

n−1∑
i=0

r(i)h
)

+
n−1∑
j=0

1
K(j)

{
exp

(
−

n−1∑
`=j+1

r(`)h
)
− exp

(
−

n−1∑
`=j

r(`)h
)}

.

(2.8)

In fact, for n = 0 (2.8) is obviously true. Suppose that it is true for some n 6= mk.
Then from (2.7) we find

y(n + 1)

= e−r(n)hy(n) +
1− e−r(n)h

K(n)

≤ e−r(n)hy(0) exp
(
−

n−1∑
i=0

r(i)h
)

+ e−r(n)h
n−1∑
j=0

1
K(j)

{
exp

(
−

n−1∑
`=j+1

r(`)h
)
− exp

(
−

n−1∑
`=j

r(`)h
)}

+
1− e−r(n)h

K(n)

= y(0) exp
(
−

n∑
i=0

r(i)h
)

+
n−1∑
j=0

1
K(j)

{
exp

(
−

n∑
`=j+1

r(`)h
)
− exp

(
−

n∑
`=j

r(`)h
)}

+
1

K(n)

{
exp

(
−

n∑
`=n+1

r(`)h
)
− exp

(
−

n∑
`=n

r(`)h
)}

= y(0) exp
(
−

n∑
i=0

r(i)h
)

+
n∑

j=0

1
K(j)

{
exp

(
−

n∑
`=j+1

r(`)h
)
− exp

(
−

n∑
`=j

r(`)h
)}

.
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Next suppose that inequality (2.8) is true for n = mk. Then, using the inequality
exp

(
r(mk)h

)
≤ 1 + c which follows from our assumptions, we obtain

y(mk + 1)

=
1

1 + c
y(mk)

≤ e−r(mk)hy(mk)

≤ y(0) exp
(
−

mk∑
i=0

r(i)h
)

+
mk−1∑
j=0

1
K(j)

{
exp

(
−

mk∑
`=j+1

r(`)h
)
− exp

(
−

mk∑
`=j

r(`)h
)}

≤ y(0) exp
(
−

mk∑
i=0

r(i)h
)

+
mk∑
j=0

1
K(j)

{
exp

(
−

mk∑
`=j+1

r(`)h
)
− exp

(
−

mk∑
`=j

r(`)h
)}

.

Thus (2.8) is proved. By changing the summation variables in (2.8), we get

y(n) ≤ y(0) exp
(
−

n−1∑
i=0

r(i)h
)

+
n∑

m=1

1− e−r(n−m)h

K(n−m)
exp

(
−

m−1∑
`=1

r(n− `)h
)
. (2.9)

Since y(n) > 0 for all n ∈ Z+
0 , we can substitute x(n) = 1

y(n) , n ∈ Z+
0 , and this

completes the proof. �

Now we will study the asymptotic behavior of the solutions of (2.5) where r(·)
and K(·) are time dependent.

Theorem 2. Let all assumptions of Theorem 1 hold and suppose further that there
exists a number r̂ > 0 such that

lim
m→∞

1
m

{ m∑
j=1

r(n− j)
}

= r̂, m ∈ Z+, uniformly on n ∈ Z. (2.10)

Then the solution x(n) of the system (2.5) tends to x∗(n) as n →∞, where x∗(n)
is given by

x∗(n) =
[ ∞∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)]−1

in the sense that x(n)− x∗(n) → 0 as n →∞.

Proof. Since x(n) is positive, we can use y(n) = 1/x(n), n ∈ Z+
0 , and from Theorem

1 we have

y(n) ≤ y(0) exp
(
−

n−1∑
i=0

r(i)h
)

+
n∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)
,

then

y(n)−
∞∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)

≤ y(0) exp
(
−

n−1∑
i=0

r(i)h
)
−

∞∑
j=n+1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)
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and hence∣∣∣y(n)−
∞∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)∣∣∣

≤ y(0) exp
(
−

n−1∑
i=0

r(i)h
)

+
∞∑

j=n+1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)
.

(2.11)

Let us choose a number ξ satisfying 0 < ξ < r̂. From the assumption (2.10), there
corresponds a positive integer N = N(ξ) such that

n(r̂ − ξ)h ≤
n−1∑
i=0

r(i)h ≤ n(r̂ + ξ)h ∀ n ≥ N.

By substituting into (2.11), for n ≥ N we obtain∣∣∣y(n)−
∞∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)∣∣∣

≤ y(0)e−n(r̂−ξ)h +
1

K∗

∞∑
j=n+1

e−(j−1)(r̂−ξ)h

= y(0)e−n(r̂−ξ)h +
1

K∗

e−n(r̂−ξ)h

1− e−(r̂−ξ)h
→ 0 as n →∞.

Let us denote

y∗(n) =
∞∑

j=1

1− e−r(n−j)h

K(n− j)
exp

(
−

j−1∑
`=1

r(n− `)h
)

.

Then y(n)−y∗(n) → 0 as n →∞, y∗(n) > 0 for all n ∈ Z. In the following, we will
show that y∗(n) < ∞, i.e., the series y∗(n) is convergent with respect to n ∈ Z. As
above, for the number ξ there corresponds a positive integer N = N(ξ) such that

m(r̂ − ξ)h ≤
m∑

j=1

r(n− j)h ≤ m(r̂ + ξ)h for m ≥ N. (2.12)

Now, let us consider the series
∑∞

j=1 exp
(
−

∑j−1
`=1 r(n− `)h

)
and rewrite it as

∞∑
j=1

exp
(
−

j−1∑
`=1

r(n−`)h
)

=
N∑

j=1

exp
(
−

j−1∑
`=1

r(n−`)h
)

+
∞∑

j=N+1

exp
( j−1∑

`=1

r(n−`)h
)
.

We note that the integer N is positive and finite and the first sequence in the above
equality is bounded and non-negative for all n ∈ Z. Thus there exists a finite
positive real number A for which

∑N
j=1 exp

(
−

∑j−1
`=1 r(n− `)h

)
≤ A for all n ∈ Z.

Furthermore, we have that
∞∑

j=N+1

exp
(
−

j−1∑
`=1

r(n− `)h
)
≤ e−N(r̂−ξ)h

1− e−(r̂−ξ)h
.

Thus we have

y∗(n) ≤ 1
K∗

{
A +

e−N(r̂−ξ)h

1− e−(r̂−ξ)h

}
.
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As above, using the right-hand side in (2.12) and the condition supn∈Z+
0

K(n) < ∞,
we find that lim infn→∞ y∗(n) > 0. Since y(n) > 0 for all n and y(n)−y∗(n) → 0 as
n →∞, we have lim infn→∞ y(n) > 0 and supn∈Z+

0
y(n) < ∞. Thus x(n) satisfies

lim
n→∞

(x(n)− x∗(n)) = lim
n→∞

( 1
y(n)

− 1
y∗(n)

)
= 0

and the proof is complete. �
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