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POINTWISE REPRESENTATION METHOD

VLADIMIR MIHAJLOVICH OSIPOV, VLADIMIR VLADIMIROVICH OSIPOV

Abstract. This article suggests an approximate analytical apparatus for mod-
eling linear dynamic system of various types. This apparatus uses spline step

models and point depictions of functions and operators.

1. Introduction

The method of pointwise representations is rather efficient, analytically powerful,
and constructive for mathematical modelling of dynamical systems. This is due to
special algebraic properties of the analytic methods used for the description of
pointwise representations as finite dimensional models of functions and operators.

The method is based on the following simple idea. To any function f(τ) in the
space of continuous on [0, 1], which is an element of the Hilbert space L2(0, 1), the
following N -dimensional vector is assigned:

fT = col[f(τ (N)
1 ), . . . , f(τ (N)

ν ), . . . , f(τ (N)
N )] (1.1)

which consists of the samples of this function at the nodes of an orthogonal N -grid:

{
τ (N)
ν : cos

(
Nπτ (N)

ν

)
= 0

}
. (1.2)

Note that τ
(N)
ν = 2ν−1

2N (ν = 1, N). The vector fT is called a pointwise represen-
tation vector of the function f(τ), associated with the N -grid (1.2) which is the
Chebyshev grid.

It is known that such a grid is the best among all possible orthogonal grids from
many points of view. This means that using various types of interpolation, the
function f(τ) can be restored by its pointwise representation N -vector (1.1) with
highest accuracy.

Let us consider now the space M(0, 1) of all piecewise continuous functions de-
fined in [0, 1]. We normalize it by introducing a sup-norm:

‖f‖ = sup
τ∈[0,1]

|f(τ)|, f(τ) ∈M(0, 1) (1.3)
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Then the space C(0, 1) of all continuous functions on [0,1] becomes a subspace in
M(0, 1), and

‖ϕ‖ = sup
τ∈[0,1]

|ϕ(τ)| = max
τ∈[0,1]

|ϕ(τ)|, ϕ(τ) ∈ C(0, 1) ⊂M(0, 1) (1.4)

With this norm M(0, 1) and C(0, 1) are complete, i.e., Banach spaces. We note
that M(0, 1) is also a subset of the Hilbert space L2(0, 1). Since the product of two
piecewise continuous and bounded functions on [0,1] is again a piecewise continuous
function bounded in the same segment, the set M(0, 1) is closed with respect to
the operation of multiplication. Due to the properties of the norm (1.3),

‖fϕ‖ ≤ ‖f‖ · ‖ϕ‖, f(τ), ϕ(τ) ∈M(0, 1); (1.5)

‖1‖ = 1, (1.6)

it is not only a Banach space, but also a commutative Banach algebra with an
identity. Let’s denote it by AM(0, 1). Obviously the AC(0, 1), which is the Banach
algebra of all continuous in [0,1] functions is a subalgebra of this algebra.

2. Results

Let us define the value at a discontinuity point as an average of left and right
limits. Then any function in M(0, 1) is defined on any orthogonal N -grid and, in
particular, on the Chebyshev grid:

τ (N)
ν =

2ν − 1
2N

(ν = 1, N). (2.1)

Hence its pointwise representation N -vector will be also determined:

fT = col[f(τ (N)
1 ), . . . , f(τ (N)

ν ), . . . , f(τ (N)
N )]→ f(τ) ∈M(0, 1) (2.2)

The set of all pointwise images defined on the N -grid (2.1), is the linear N -
dimensional space RN

T which is complete for any norm. Let’s supply it with the
norm

‖fT ‖ = sup
ν
|f(τ (N)

ν )| < ‖f‖ = sup
τ∈[0,1]

|f(τ)| (2.3)

This N -vector can be presented in the form of the integral transformation

TNf(τ) =
∫ 1

0

f(τ)δT (τ)dτ = fT , f(τ) ∈M(0, 1) (2.4)

where the δ-kernel is defined by the N -grid (2.1)

δT (τ) = col[δ(τ − τ
(N)
1 ), . . . , δ(τ − τ (N)

ν ), . . . , δ(τ − τ
(N)
N )] (2.5)

Homomorhism TN : M(0, 1) → RN
T means that the pointwise representation N -

vector f is an image of not only one function f(τ) in M(0, 1), but of the whole class
of functions, and differences of any two functions of this class are functions of the
type

rT (τ) = αN (τ) cos(Nπτ), αN (τ) ∈M(0, 1), (2.6)
with zeroes in nodes of the N -grid (2.1); therefore, their pointwise transformations
have the zero image in RN

T . The set of functions (2.6) forms the kernel kerTN of
homomorphism TN :

ker TN/TNrT (τ) = 0 (2.7)
Any function f(τ) in M(0, 1) extended to an even periodic function using some

method, has an approximated model of MN (f ; τ) in the form of the discrete Fourier
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N-sum constructed by the values f(τ (N)
ν ) in the nodes of the N-grid (2.1), therefore

the pointwise representation N-vectors of the function f(τ) ∈M(0, 1) and its model
are identical, i.e. the transformation TN maps them into the same element fT ∈ RN

T .
Their difference belongs to the kernel (2.7) of the homomorphism TN :

f(τ)−MN (f ; τ) = rN (τ) ∈ ker TN ,

and, as a result,
f(τ) = MN (f ; τ) + rN (τ), (2.8)

so any function in M(0, 1) is represented as the sum of its interpolated model and
an element from ker TN . The latter one plays the role of an error of approximation
of the interpolating model.

As N →∞ the error tends to zero in the L2(0, 1) norm, since

lim
N→∞

∫ 1

0

[f(τ)−MN (f ; τ)]2dτ = lim
N→∞

∫ 1

0

[rN (τ)]2dτ = 0, (2.9)

and, hence, we have the convergence

lim
N→∞

MN (f ; τ) = f(τ) and lim
N→∞

rN (τ) = 0, (2.10)

almost everywhere in [0,1] (Carleson theorem). The set SN (0, 1) of interpolated
models MN (0, 1) is a space which is a N-dimensional subspace of M(0, 1). The
mapping PN : M(0, 1)→ SN (0, 1) is a homomorphism with the kernel (2.7).

Sets SN (0, 1) and RN
T are equivalent, since there is a one-to-one correspondence

of their elements. Moreover, they are isometrically isomorphic. Thus, it is possible
to illustrate the relation of these spaces by the diagram

M(0, 1) PN−−−−→

TN

y PN

y
SN (0, 1) RN

T

(2.11)

Arrows TN and PN show homomorphisms. The double line marks the isometric
isomorphism of spaces SN (0, 1) and RN

T .
As N grows, due to the convergence (2.10), homomorphisms tend to isometric

isomorphisms. This does not describe all algebraic properties of point vector images
of functions of M(0, 1) and all relations of the appropriate spaces as sets. It was
already specified, that the space M(0, 1) is also a commutative Banach algebra
AM(0, 1) with the usual operation of multiplication.

The space RN
T of pointwise vector images as a homomorphic image of M(0, 1)

space has the following property. Let us define in RN
T a commutative pointwise

multiplication operation for vectors. Let f(τ) and ϕ(τ) be two functions in M(0, 1)
and fT and ϕT be their pointwise vector images in RN

T , i.e.,

f(τ) TN→ fT = col
[
f(τ (N)

1 ), . . . , f(τ (N)
ν ), . . . , f(τ (N)

N )
]

ϕ(τ) TN→ ϕT = col
[
ϕ(τ (N)

1 ), . . . , ϕ(τ (N)
ν ), . . . , ϕ(τ (N)

N )
] (2.12)

Then the N-vector

ΦT = col
[
f(τ (N)

1 ) · ϕ(τ (N)
1 ), . . . , f(τ (N)

ν ) · ϕ(τ (N)
ν ), . . . , f(τ (N)

N ) · ϕ(τ (N)
N )

]
, (2.13)
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whose coordinates are products of the respective coordinates of vectors (2.12), which
can be symbolically written as fT ⊗ ϕT , then an N -vector is a pointwise represen-
tation vector of the product fT ⊗ ϕ(τ) of functions in M(0, 1):

f(τ)ϕ(τ) TN→ fT ⊗ ϕT = ΦT ∈ RN
T , (2.14)

and, according to (2.3)

‖ΦT ‖ = ‖fT ⊗ ϕT ‖ ≤ ‖fT ‖ · ‖ϕT ‖ ≤ ‖f‖ · ‖ϕ‖. (2.15)

In RN
T the identity element is defined as

1T = col[1, . . . , 1, . . . , 1]→ 1 ∈M(0, 1) (2.16)

with the unit norm ‖1T ‖ = 1 which enjoys the property

fT ⊗ 1T = 1T ⊗ fT = fT , fT ∈M(0, 1) (2.17)

Thus, the set RN
T of pointwise vector images with the introduced operation of

multiplication and with the sup-norm (2.3) is a commutative Banach algebra with
the identity for any N . Let us denote it by ARN

T . Since for any f(τ) and ϕ(τ) in
M(0, 1) the following equation is valid

TN [f(τ)ϕ(τ)] = TN [f(τ)] · TN [ϕ(τ)] = fT ⊗ ϕT , (2.18)

then the pointwise transformation TN for any N is a continuous homomorphism
not only of M(0, 1) space to space RN

T , but also of the Banach algebra AM to the
algebra ARN

T :

AM
TN→ ARN

T

However, the mapping PN : M(0, 1) → SN (0, 1) does not enjoy this property
since SN (0, 1) is a space of N-dimensional interpolated models of M(0, 1) functions
which are quadrature cosine Fourier sums, which is not an algebra with a usual
multiplication.

Besides,
PN [f(τ)ϕ(τ)] 6= PN [f(τ)] · PN [ϕ(τ)]

and apparently the relation of M(0, 1) and SN (0, 1) can be comprehensively de-
scribed by their homomorphism as a mapping of linear spaces. If we consider zero
degree splines as approximation models for the functions in M(0, 1), the situation
changes significantly.

The point is that the set of spline models

Sp0
N (fT ; τ) =

N∑
ν=1

f(τ (N)
ν )πN (τ − τ (N)

ν ), f(τ) ∈M(0, 1) (2.19)

with interpolation elements

πN (τ − τ (N)
ν ) =

{
1 τ ∈ (τ (N)

ν − 1
2N , τ

(N)
ν + 1

2N )
0 τ /∈ (τ (N)

ν − 1
2N , τ

(N)
ν + 1

2N )
(ν = 1, N) (2.20)

which look like rectangular pulses of the unit height, is not only a sup-normalized
N -dimensional subspace of step interpolation forms of M(0, 1), but also is a com-
mutative Banach algebra ASp0

N with an identity, with the usual operation of mul-
tiplication. It is a subalgebra of the algebra AM . In fact, the following property of
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elements (2.20),

πN (τ − τ (N)
ν ) · πN (τ − τ (N)

m ) =

{
πN (τ − τ

(N)
ν ) ν = m

0 ν 6= m
(ν,m = 1, N) (2.21)

implies

Sp0
N (fT ; τ) · Sp0

N (ϕT ; τ) =
N∑

ν=1

f(τ (N)
ν )ϕ(τ (N)

ν )πN (τ − τ (N)
ν ) = Sp0

N (fT ⊗ ϕT ; τ)

i.e., the product of two step spline models f(τ) and of dimension N of functions f(τ)
and ϕ(τ) from M(0, 1) is a spline model of the same dimension of the product of
these functions. In other words, the space Sp0

N (0, 1) as the set of step interpolation
forms, is closed with respect to the operation of multiplication. Furthermore,

Sp0
N (1T ; τ) = 1 ∈M(0, 1) (2.22)

Thus, the homomorphic mapping πN of M(0, 1) space to its subspace Sp0
N (0, 1)

of spline models can be considered as a homomorphism of algebra AM algebra to
algebra ASp0

N , and the latter one is isometrically isomorphic to algebra ARN
T for

any N :
AM

TN−−−−→

πN

y TN

y
ASp0

N ARN
T

(2.23)

As N → ∞ the sequence Sp0
N (fT , τ) of step interpolation forms converges almost

everywhere to any function f(τ) ∈M(0, 1) and if the latter one is continuous, then
the convergence is uniform.

At the same time functions in M(0, 1), which form the kernel kerTN of TN , con-
verge almost everywhere to zero, and homomorphisms πN and TN become isometric
isomorphisms of algebras.

Now let us consider the linear bounded operator Aτ acting from M(0, 1) to
M(0, 1) or to some subspace My(0, 1)⊂M(0, 1), in particular, in C(0, 1) to the space
of continuous in [0,1] functions. It is possible that the range is finite dimensional.
The operator Aτ

Aτx(τ) = y(τ); x(τ) ∈M(0, 1); y(τ) ∈My(0, 1)⊂M(0, 1) (2.24)

is linear

Aτ [αx1(τ)+βx2(τ)] = α ·Aτx1(τ)+β ·Aτx2(τ); x1(τ), x2(τ) ∈M(0, 1); α, β ∈ R

and its boundedness means the following inequality for sup-norms holds:

‖y‖ = ‖Aτx‖ ≤ C · ‖x‖, (2.25)

where the least possible value of a positive constant C is the norm ‖Aτ‖ of the
operator Aτ :

‖Aτ‖ = sup
x6=0

‖Aτx‖
‖x‖

. (2.26)

The boundedness of the linear operator is equivalent to its continuity is in the
following sense: images Aτx1(τ) and Aτx2(τ) of two close elements x1(τ) and
x2(τ) of M(0, 1) are also close, i.e. for every ε > 0 there is a δ > 0, such that
‖τx1 − τx2‖ < δ implies ‖Aτx1 −Aτx2‖ < ε .
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Homomorphic TN and πN which were introduced above

TNx(τ) = XT ; x(τ) ∈M(0, 1); XT ∈ RN
T

πNx(τ) = Sp0
N (XT ; τ); Sp0

N (XT ; τ) ∈ Sp0
N (0, 1)

(2.27)

are linear bounded operators. Their domain is space M(0, 1).
Operator TN maps functions of M(0, 1) into their pointwise representation vec-

tors of RN
T , associated with the Chebyshev N -grid (2.1), and the operator πN maps

them into interpolated spline models constructed on the same N-grid which form
an N -dimensional subspace Sp0

N (0, 1) of step forms of the space M(0, 1).
Let us note that because of the obvious equation

πN [πNx(τ)] = π2
Nx(τ) = πNSp0

N (XT ; τ) = Sp0
N (XT ; τ)⇒ π2

N = πN (2.28)

the operator πN is a projecting operator. Inequalities for sup-norms which were
mentioned above

‖πNx(τ)‖ = ‖Sp0
N (XT ; τ)‖ = ‖XT ‖ = ‖TNx(τ)‖ ≤ ‖x(τ)‖; x(τ) ∈M(0, 1)

imply the boundedness of operators TN and πN ; their norms are equal to one:
‖TN‖ = ‖πN‖ = 1 at any N .

Let us apply the operator of pointwise transformation TN to the operational
equation (2.24):

TN [Aτx(τ)] = TNy(τ) = Y N
T (2.29)

As a result we obtain the vector-matrix equation

AN
T ·X

(N)
T = Y

(N)
T , (2.30)

generally speaking, approximate, which is a homomorphic image of equation (2.24)
in RN

T (the N-dimensional space of point images). There may be more than one
pointwise matrix representation A

(N)
T (N ×N) which is assigned to the linear op-

erator Aτ of M(0, 1).
The problem is to find the general method of an explicit definition (choice) of

a matrix pointwise representations of the set of all possible representations for any
linear bounded operator Aτ mapping M(0, 1) into some its subspace My(0, 1).

In this connection, let us note the following important property. N-dimensional
space Sp0

N (0, 1) of approximating spline models of functions in M(0, 1) has a basis
of N rectangular impulse functions

πN (τ − τ (N)
ν ) =

{
1 τ ∈ (τ (N)

ν − 1
2N , τ

(N)
ν + 1

2N )
0 τ /∈ (τ (N)

ν − 1
2N , τ

(N)
ν + 1

2N )
(ν = 1, N) (2.31)

of the unit height, the support of 1
N and axes of symmetry in the nodes of the

Chebyshev N -grid (2.1).
Any element of Sp0

N (0, 1) can be represented as a linear combination of basis
elements, with components of a pointwise representation N -vector of the modeled
function of M(0, 1) as coefficients:

Sp0
N (XT ; τ) =

N∑
ν=1

x(τ (N)
ν )πN (τ − τ (N)

ν ) x(τ) ∈M(0, 1). (2.32)

We form a basis N -vector using basis elements (2.31) as components:

ΠN (τ) = col[πN (τ − τ
(N)
1 ), . . . , πN (τ − τ (N)

ν ), . . . , πN (τ − τ
(N)
N )],
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Then spline model (2.32) of any function (i.e., the element of the space Sp0
N (0, 1))

can be written as an inner product of the pointwise representation vector XT of
function x(τ) by the basis vector ΠN (τ):

x(τ) πN→ Sp0
N (XT ; τ) =

N∑
ν=1

x(τ (N)
ν )πN (τ − τ (N)

ν ) = (XT ,ΠN (τ)) = X+
T ΠN (τ)

(2.33)
In particular, let us find spline models of functions AτπN (τ − τ

(N)
ν ) (ν = 1, N)

which for any linear bounded operator Aτ acting in M(0, 1), are also elements of
this space. Using operator πN we project them onto the N -dimensional space of
spline models Sp0

N (0, 1), i.e., we represent them as a combination of basis elements
(2.31). Thus we obtain

πNAτπN (τ − τ (N)
ν ) =

N∑
k=1

αkνπN (τ − τ
(N)
k ) (ν = 1, N) (2.34)

The coefficients of these decomposition are components of pointwise vector images
of functions AτπN (τ − τ

(N)
ν ) (ν = 1, N).

It should be noted that the (ν − 1) first coefficients are equal to zero and the
stepwise representation (2.34) begins with the ν-th step since the original function
AτπN (τ − τ

(N)
ν ) is equal to zero up to the moment when the ν-th rectangular finite

impulse πN (τ − τ
(N)
ν ) occurs. Thus, the decomposition has the form

πNAτπN (τ − τ (N)
ν ) =

N∑
k=1

αkνπN (τ − τ
(N)
k )

= [0, . . . , 0, . . . ανν , . . . , αkν , . . . , αNν ] ·ΠN (τ)

(2.35)

(ν = 1, N) which is an inner product of a N -vector of coefficients with (ν − 1) zero
first components by the basis vector ΠN (τ).

This implies the vector-matrix representation for a vector function,

πNAτΠN (τ)

= πN



AτΠN (τ − τ
(N)
1 )

...
AτΠN (τ − τ

(N)
ν )

...
AτΠN (τ − τ

(N)
N )


=



α11 · · · αν1 · · · αN1

. . .
...

...
ανν · · · αNν

0
. . .

...
αNN

ΠN (τ)

= (A(N)
T )+ΠN

(2.36)

The symbol (A(N)
T )+ denotes an upper triangular matrix with coefficients of de-

composition (2.35) as components:

(A(N)
T )+ =



α11 · · · αν1 · · · αN1

. . .
...

...
ανν · · · αNν

0
. . .

...
αNN

 (2.37)
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This N ×N matrix is the result of transposing the lower triangular matrix

A
(N)
T =



α11

...
. . .

αν1 · · · ανν

...
...

. . .
αN1 · · · αNν · · · αNN

 (2.38)

Now let us find the spline representation πNAτSp0
N (XT , τ) as an approximate model

of function AτSp0
N (XT , τ) ∈M(0, 1).

As ‖AτSp0
N (XT , τ) − πNAτSp0

N (XT , τ)‖ → 0 when N → ∞, then for N large
enough values of these functions will differ by less than any prescribed positive
value for any linear positive operator Aτ . Taking into account (2.33) and (2.36)
and also the property of the inner product we obtain:

AτSp0
N (XT , τ) ≈ πNAτSp0

N (XT , τ) = (XT , πNAτΠN (τ))

= (XT , (A(N)
T )+ΠN (τ)) = (A(N)

T XT ,ΠN (τ))

= Sp0
N (A(N)

T XT , τ)

(2.39)

where A
(N)
T is the matrix in (2.38). It is necessary to make the final step. By the

property of a norm the following inequality

‖Aτx(τ)−AτSp0
N (XT , τ)‖ ≤ ‖Aτ‖ · ‖x(τ)− Sp0

N (XT , τ)‖ (2.40)

holds for any bounded (continuous) linear operator Aτ , any x(τ) of M(0, 1) and
any N . Since

‖x(τ)− Sp0
N (XT , τ)‖ → as N →∞ (2.41)

i.e., the sequence Sp0
N (XT , τ) of spline approximation models converges by norm

to any modeled function x(τ) in M(0, 1) (and there is even a uniform convergence,
if x(τ) is a continuous function), then the inequality (2.40) implies

‖Aτx(τ)−AτSp0
N (XT , τ)‖ → 0 as N →∞ . (2.42)

The latter convergence implies that for N large enough, taking into account (2.39),
we have any prescribed accuracy for approximating spline models

y(τ) = Aτx(τ) ≈ AτSp0
N (XT , τ) ≈ πNAτSp0

N (XT , τ)

= (A(N)
T XT ,ΠN (τ)) = Sp0

N (A(N)
T XT , τ)

(2.43)

Hence for pointwise images we obtain

Tyy(τ) = Y
(N)
T = [Aτx(τ)]T = A

(N)
T X

(N)
T ; X

(N)
T = TNx(τ). (2.44)

Thus, any linear bounded operator acting from M(0, 1) to any of its subspaces
My(0, 1)⊂M(0, 1) under the homomorphic mapping into the N -dimensional sub-
space Sp0

N (0, 1) ⊂ M(0, 1) of spline models (with basis (2.31)) has a pointwise
representation by a lower triangular matrix (2.38). The equality (2.44) for point-
wise images, generally speaking, approximate, corresponds to the operator equation
(2.24). In practice components of pointwise matrix representation of a linear op-
erator operator Aτ can be found using the projection of function AτπN (τ − τ

(N)
ν )

(ν = 1, N)) onto the subspace of spline models and their decompositions as linear
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combinations of basis elements (2.31) (decomposition of the type (2.35)). Coeffi-
cients of these decompositions form rows of the matrix which, after transposition,
is the matrix of pointwise representation A

(N)
T of the operator Aτ .

Further this method is used to find pointwise matrix representations of various
linear operators which are necessary, in particular, for the solution of linear differen-
tial equations of various types, which are transformed into algebraic (vector-matrix)
equations by pointwise representations. This can be treated as a special operator
calculus.

In particular, the pointwise matrix representation is found for the operator which
shifts the function x(τ) ∈ M(0, 1) along axis “τ” by a fixed step which is equal to
the distance between Chebyshev nodes of the grid (1.2), i.e., by the value of 1

N .
Let us call this operator the pointwise shift operator and denote it by Zτ . The

image of this operator for any bounded function x(τ) with a support in [0,1] (obvi-
ously x(τ) ∈M(0, 1)), will mean a shift of the function variable by 1

N :

Zτx(τ) = x(τ − 1
N

) τ ∈ (
1
N

, 1 +
1
N

) (2.45)

Using the general method, described above, to obtain pointwise matrix representa-
tions for linear bounded operators, the linear operator Zτ of pointwise shift in the
space RN

T of pointwise images has the matrix representation

Z =


0
1 0 0

1 0

0
. . . . . .

1 0

 (2.46)

This N ×N matrix is called the canonical right shift matrix.
The degrees of initial matrix of shift

E = Z0, Z1, Z2, . . . Zk, . . . ZN−1 (2.47)

form a linearly independent system of matrices, since their linear combinations, i.e.
matrix polynomials of degree N − 1 with real coefficients

PN−1(Z) =
N−1∑
k=0

AkZk =


A0

A1 A0 0
A2 A1 A0

...
...

. . . . . .
AN−1 · · · · · · A1 A0

 (2.48)

are triangular matrices (N×N) can be identically equal to zero only if all coefficients
are equal to zero.

A Toeplitz type matrix (2.48) is called a polynomial shift matrix.
First of all, let us note that the matrix polynomial (2.48) is a homomorphic

image in RN
T of the polynomial operator

PN−1(zτ ) =
N−1∑
k=0

Akzk
τ (2.49)
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with the shift operator Zτ as a variable, which is described as

PN−1(zτ )x(τ) =
N−1∑
k=0

Akx(τ − k

N
); x(τ) ∈M(0, 1) (2.50)

and thus sums up all successive shifts of a finite function x(τ) in M(0, 1) with the
appropriate weight coefficients {Ak}. Obviously, we have

PN−1(zτ )x(τ) TN→ PN−1(Z)XT (2.51)

The set PN−1(Z) of all possible polynomial shift matrices is a subspace of the linear
space of lower tridiagonal matrices (N×N), which is an N -dimensional linear space
with basis (2.47) of the first N degrees of N × N matrix Z. A wide class of such
matrixes arises as a set of functions of matrix Z, which is a canonical shift matrix.

Formally polynomial shift matrices appear after the change of complex variable z
of the whole rational function (polynomial) PN−1(z) of degree N −1 by the matrix
argument Z (N ×N):

PN−1(z) =
N−1∑
k=0

Akzk z→Z→
N−1∑
k=0

AkZk = PN−1(Z) (N ×N) (2.52)

Obviously, we have a one-to-one correspondence between the above polynomials
and matrices (2.52). Polynomial PN−1(z) of a complex variable z will be called a
generating polynomial of matrix PN−1(Z) (N ×N).

Let us further call polynomial shift matrices P -matrixes (N ×N).
Every P -matrix is completely defined by an ordered set of N real numbers which

are coefficients of a generating polynomial. Evidently properties of these sets of
numbers define both properties of generating polynomials and properties of appro-
priate P -matrices.

Besides, if we assume that all degrees of a variable “z”, exceeding N − 1, vanish
(these are degrees zN , zN+1 . . . ) i.e. impose the condition “z” is nilpotent with
index N , as it is valid for matrix argument Z, then we have described one more
binary operation (in addition to summation) in the space of polynomials of degree
less than or equal to N − 1, such that the space is closed with respect to this
operation. This is an operation of polynomial multiplication which satisfies all usual
properties (usual axioms of multiplication) and, in particular, is commutative.

Thus the set of generating polynomials is a more complicated algebraic structure
than a linear space. It is a commutative algebra with an identity. The set of
appropriate P -matrixes (N × N) is the same algebra, since for any pair of these
matrixes a commutative operation of multiplication with P -matrix (N × N) as a
result is described. Besides, the set of P -matrices is a linear space. The identity
matrix E (N ×N) is an identity in the matrix algebra.

Obviously these algebras are isomorphic (as sets they are simply equivalent) and
all operations follow the same rules and can be reduced to operations over coeffi-
cients of generating polynomials (elements of one algebra), which are at the same
time entrees of appropriate P -matrices (which are elements of the other algebra).

It is also possible to prove the following three statements.

Statement 2.1. The set of functions of a complex variable z, which are defined
and continuous in the unit circle |z| ≤ 1 and analytic inside this circle, form a
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Banach algebra with the identity AF , with the norm

‖ϕ(z)‖ = max
|z|≤1

|ϕ(z)|, ϕ(z) ∈ AF, (2.53)

which coincides with the l1-norm of the appropriate power series of functions in
AF :

‖ϕ(z)‖ = ‖
∞∑

k=0

ϕkzk‖ = max
|z|≤1

|
∞∑

k=0

ϕkzk| =
∞∑

k=0

|ϕk| (2.54)

The set of such power series is also a Banach algebra with the identity AGF ,
which is isometrically isomorphic to algebra AF . This statement is illustrated by
the diagram

AF AGF (2.55)

Statement 2.2. There exists projector Π(N), which is a homomorphism of normed
algebras AF , AGF and l1-normed N -algebra AGF (N) of partial sums of power
series of degree N , which are treated as elements of algebra AGF .

This statement is illustrated by the diagram

AGF (N) Π(N)

←−−−−

Π(N)

x Π(N)

x
AGF AF

(2.56)

Statement 2.3. The change of variable z by the canonical shift matrix Z (N ×N)
leads to the homomorphism of algebra AF of analytical in the circle |z| ≤ 1 functions
to the algebra AGF (N)(Z) of polynomial shift N×N matrices (P -matrices) and also
to the isometric isomorphism of an N -algebra AGF (N) of generating polynomials
to the matrix algebra AGF (N)(Z).

The diagram has the final form

AGF (N) AGF (N)(Z)

Π(N)

x Π(N)

x
AGF AF

(2.57)

Besides, using the above general method to obtain pointwise matrix represen-
tations of linear operators, it is possible to deduce P -matrix representation of the
integral operator Jτ defined as

y(τ) = Jτx(τ) =
∫ τ

0

x(τ)dτ τ ∈ [0, 1]. (2.58)

It is a linear bounded operator. Its domain is the space M(0, 1); its range is a subset
of the space of continuous functions from C(0, 1) vanishing at t = 0. Operator Jτ in
the space RN

T of pointwise vector images has the matrix representation JT (N×N):

y(τ) = Jτx(τ) =
∫ τ

0

x(τ)dτ
TN→ YT = JT XT . (2.59)

The representation JT corresponds to two-step mapping

y(τ) = Jτx(τ) πN→ SpN (JT XT ; τ) TN→ YT = JT XT (2.60)

which is the first step approximation.
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The matrix representation JT of the integration operator has the form:

Jτ
TN→ JT =

1
N



1/2
1 1/2 0
... 1 1/2

1
. . . . . .

1 1 · · · 1 1/2

 (N ×N) (2.61)

It is necessary to note, that any method, which improves the accuracy of approx-
imate equations, changes significantly the structure of the representing matrix of
the integration operator. Compared to (2.61), this not only makes the structure
more complicated, but also essentially influences analytical structure and efficiency
of the developed applied theory based on pointwise representations.

Mainly this is due to the fact that the matrix of integration (2.61) is a polynomial
shift matrix (P -matrix) and consequently for any N it can be presented as a linear
combination of the first N degrees of the canonical shift matrix Z (N ×N) which
is reduced to a rational function of the matrix variable Z:

JT =
1
N

[1
2
E +

N−1∑
k=1

Zk
]

=
1

2N

[
E + 2

N−1∑
k=1

Zk
]

=
1

2N

[
E + 2Z

N−1∑
k=1

Zk
]

=
1

2N

[
E + 2Z(E − Z)−1

]
=

1
2N

(E − Z)−1(E + Z)

(2.62)

Considered functions of a dimensionless variable τ stand for functions of time
variable “t”, defined in a finite interval [0, T ]. After the substitution t = Tτ the
equation is transformed, [0,1] is the domain for variable “τ”, while T is a parameter.
In the notation of function x(τ) ∈M(0, 1) this parameter is not included explicitly.
However we assume

x(τ) = x(Tτ) = x(t) t ∈ [0, T ], (2.63)

and components x(τ (N)
ν ) (ν = 1, N) of the pointwise representation vector XT of

the function x(τ) are function values x(Tτ
(N)
ν ) = x(t(N)

ν ) (ν = 1, N) in the nodes
of the Chebyshev time N -grid

t(N)
ν = Tτ (N)

ν =
T (2ν − 1)

2N
(ν = 1, N). (2.64)

The operator of integration over time variable “t” also involves the factor T , since

Jtx(t) =
∫ t

0

x(t)dt = T

∫ t/T

0

x(Tτ)dτ = T

∫ τ

0

x(τ)dτ = TJτx(τ). (2.65)
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For the pointwise matrix of integration we have

TJT =
T

N



1/2
1 1/2 0
... 1 1/2

1
. . . . . .

1 1 · · · 1 1/2


=

T

2N
(E − Z)−1(E + Z) = λ0(E − Z)−1(E + Z) (N ×N)

(2.66)

The scalar factor

λ0 =
T

2N
(2.67)

is a half of the time distance between two adjacent nodes of the N -grid (2.64)
and at the same time is an N -multiple eigenvalue of the matrix (2.66) with the
determinant which equals λN

0 .
The parameter (2.67) plays an important role in the research of time processes

by the method of pointwise representations: it connects the width of the spectral
characteristics (frequency ωcp.) and the characteristic time “T” in the time process
with the dimension of these representations. Really, by Kotelnikov theorem we have

λ0 =
T

2N
=

1
2

π

ωcp
⇒ λ0ωcp =

π

2
(2.68)

For the fixed frequency ωcp the parameter λ0 also should be fixed by the relation
(2.68). Thus any change of T should lead to the change of the dimension N , such
that the ratio T

N is constant. Thus Chebyshev nodes of the time N -grids are also
fixed

t(N)
ν =

T (2ν − 1)
2N

= λ0(2ν − 1) (ν = 1, N). (2.69)

as well as the values of the function x(t)t ∈ [0, T ], as components of its pointwise
representation vector XT .

Consequently, the increase of the dimension N (with the increase of T ) will mean
the addition of new components of the pointwise representation vector without any
change of all previous components, i.e. this leads to the property well known for
the Fourier coefficients. Let us introduce a polynomial shift matrix, as a function
of matrix variable Z:

J(Z) = (E − Z)−1(E + Z) = E + 2
N−1∑
k=1

Zk (2.70)

Then the matrix of integration (2.66) can be rewritten as

TJT = λ0J(Z) = λ0(E − Z)−1(E + Z)

= λ0

[
E + 2

N−1∑
k=1

Zk
]

= λ0



1
2 1
... 2 1

2
. . . . . .

2 2 · · · 2 1


(2.71)
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In the framework of the general approach, the problem of the pointwise image
of the convolution operator is investigated. The latter is treated as a compact inte-
gration operator with the difference kernel and as a commutative binary operation
which is closed in L1 - norm, which transforms M(0, 1) into a convolution normed
algebra with an identity (with the δ - function as an identity).

In the space of pointwise images RN
T a convolution of functions is mapped into a

convolution of vector images of these functions. The latter convolution is closed in
l1 -norm, which makes RN

T a convoluted algebra and ASRN
T becomes a homomor-

phic image of a functional convoluted algebra ASM . With the growth of N the
homomorphism tends to the isomorphism.

Convolution operators are very important for the theory of linear dynamical
systems, they connect an input and an output. Therefore the following fact is
significant. Pointwise modelling of convolution operators leads to the application
of usual functions of dynamic systems: transfer functions as Laplace transforms of
the kernels of convolution operators, with the role of impulse transfer characteristics
of appropriate dynamical systems.

Connections of convolution algebras with algebraic structures in the sets of func-
tions of a complex variable play an essential role when studying properties of linear
dynamical systems by their pointwise models. It is proved that

g ∗ x =
∫ t

0

g(t− η)x(η)dη
TN→ YT = W ∗

g (Z)XT , (2.72)

while the P -matrix W ∗
g (Z) can be explicitly determined by the Laplace inverse

transform G∗(λ) of the kernel g(t):

G(p)
p→ 1

λ→ G∗
λTJ→ = G∗(TJ) = G∗

[
λ0(E − Z)−1(E + Z)

]
= W ∗

g (Z). (2.73)

Here TJ is the pointwise representation of the Volterra, which is a P -matrix. Thus
input - output connection for the linear (stationary) dynamical system is modeled
in the pointwise representation of the vector-matrix equation

YT = W ∗
g (Z)XT . (2.74)
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