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CONTROLLABILITY, APPLICATIONS, AND NUMERICAL
SIMULATIONS OF CELLULAR NEURAL NETWORKS

WADIE AZIZ, TEODORO LARA

Abstract. In this work we consider the model of cellular neural network
(CNN) introduced by Chua and Yang in 1988. We impose the Von-Neumann

boundary conditions and study the controllability of corresponding system,

then these results are used in image detection by means of numerical simula-
tions.

1. Introduction

Since its introduction ([2, 3]) Cellular neural networks (CNN) have been used in
numerous problems. Among them we have: Chua’s circuit ([6]), Hopf bifurcation
model ([12]), Cellular Automata and systolic arrays ([9]), image detection ([4]),
population growth model ([5]). In none of these works the Von-Neumann boundary
conditions have been imposed; only in ([7]) periodic boundary conditions were
considered.

The system obtained, after some changes ([2, 3]) is

v̇ = −v + AG(v) + Bu + f(u, v) (1.1)

where, u, v ∈ Rmn×1, are column vectors; A,B are matrices in Rmn×mn, f(u, v)
is a nonlinear perturbation, and G(v) is a function which can be either linear or
non-linear. In this paper we set the Von-Neumann boundary conditions, consider
G(v) = v and study the controllability of the resulting system which is

v̇ = (A− I)v + Bu + I (1.2)

where A,B ∈ Rmn×mn, after using the boundary conditions, are tridiagonal matri-
ces, I is the identity matrix in Rmn×mn.

Also, we implement some numerical simulations of these results to show image
detection; specifically Chinese characters.
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Figure 1. Typical circuit of CNN ij-position.

2. Cellular Neural Networks

A CNN consists, basically, in a collection of non linear circuit displayed in a
2-dimensional array. The basic circuit of CNN is called cell. A cell is made of
elements of linear and non-linear circuit which usually are linear capacitors, linear
resistors, linear and non linear controlled sources, and independents sources. Each
cell receives external signals through its input. The state voltage of a give cell is
influenced no only by its own input through a feedback, its output; but also by the
input and output of the neighboring cells. These interactions are implemented by
voltage-controlled current sources. In the initial papers ([2, 3]) any cell in CNN
is connected only to its neighbor cells; this is accomplished by using the so called
1-neighborhood or simply neighborhood and consequently 3× 3-cloning templates.
The adjacent cells can interact directly with each other in the sense that are made
of a massive aggregate of regularity spaced cells which communicate with each other
directly only through its nearest neighbors. In the figure 1 the basic circuit of a CNN
of a cell (located at, say, position ij of the array) is depicted. Here vij is the voltage
across the cell (state of the cell) with its initial condition satisfying |vij(0)| ≤ 1.
Eij is an independent voltage source, and uij = Eij is called the input or control,
also assumed to satisfy |uij | ≤ 1. I is an independent current source, C is a linear
capacitors, Rv and Ry are linear resistors. Ivu, Ivy are linear voltage-controlled
currents sources such that at each neighbor cell, say kl, Ivy = (Ivy)kl = aklg(vkl)
are current source; Ivu = (Ivy)kl = bklukl; is nonlinear voltage-controlled source
give by Ivy = 1

Ry
g(vij) where, akl, bkl ∈ R and g is an output sigmoid function.

3. Dynamics of CNN

Definition 3.1 (r-neighborhood). The r-neighborhood of a cell cij , in a cellular
neural network is defined by

N ij = {ci1j1 : max{|i− i1|; |j − j1|} ≤ r; 1 ≤ i1 ≤ m, 1 ≤ j1 ≤ n} (3.1)

where r is a positive integer.
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We consider the case r = 1 which produces a couple of 3 × 3-matrices (cloning
templates); the feedback and control operator, given as

Ã =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , B̃ =

b11 b12 b13

b21 b22 b23

b31 b32 b33

 , (3.2)

The output feedback depends on the interactive parameters aij and the input con-
trol depends an parameters bij , v ∈ Rmn is the voltage and represents the state
vector, and u = (u11, u12, . . . , umn)T ∈ Rmn is the control (input), and the output
y = G(v)

G : Rmn → Rmn; G(v) = (g(v11), g(v12), . . . , g(vmn))T (3.3)

g is differentiable, bounded and ‖g‖ ≤ 1 (in the most general case ‖g‖ ≤ K) and
non decreasing (g′ ≥ 0); that is a sigmoid function. We also assume ‖u‖ ≤ 1,
‖u(0)‖ ≤ 1.

Definition 3.2. Let K and L be two square matrices of the same size and elements
kij , lij respectively; we define � product

K � L =
∑
i,j

kij lij . (3.4)

By imposing the Von-Neumann boundary conditions

vik = vik+1

vik−1 = vik+2

}
i = −1, . . . , n + 2, k = 0,m

vkj = vk+1j

vk−1j = vk+2j

}
j = −1, . . . ,m + 2, k = 0, n;

(3.5)

and applying the Kirchhoff Law of Voltage and Current, we obtain the equation at
cell cij ,

v̇ij = −vij + Ã� Ĝ(vij) + B̃ � ûij + I, (3.6)

and in its vector form, by taking the row order in this vector, that is, the first
n-elements are formed by the first row of matrix and so on, the resulting system is

v̇ = −v + AG(v) + Bu + I, (3.7)

where

AG(v) = (Ã� Ĝ(v11), . . . , Ã� Ĝ(vmn))T ,

Bu = (B̃ � û11, . . . , B̃ � ûmn)T , I = (I, . . . , I)T

matrices A, B are block tridiagonal, AG(v) = (Â +
◦
A)v and Bu = (B̂ +

◦
B)u with

Â =



A2 A3 0 . . . 0 0
A1 A2 A3 0 . . . 0
...

. . . . . . . . . 0 0
0 . . . A1 A2 A3 0
0 0 . . . A1 A2 A3

0 0 0 . . . A1 A2


, B̂ =



B2 B3 0 . . . 0 0
B1 B2 B3 0 . . . 0
...

. . . . . . . . . 0 0
0 . . . B1 B2 B3 0
0 0 . . . B1 B2 B3

0 0 0 . . . B1 B2


,
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Ai =



ai2 ai3 0 . . . 0

ai1
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . ai3

0 . . . . . . ai1 ai2


, i = 1, 2, 3.

The matrix B̂ has the same blocks. The perturbation matrices look like,

◦
A =



L1 + Γ2 Γ3 0 . . . 0 0
Γ1 Γ2 Γ6 0 . . . 0

0
. . . . . . . . . 0

...
. . . Γ1 Γ2 Γ3 0

... . . .
. . . Γ1 Γ2 Γ3

0 . . . . . . L2 Γ1 Γ2


,

{
L1 = A1 + Γ1

L2 = A3 + Γ3

.

Γi =



ai1 0 . . . 0
0 0

0
. . . . . .
. . . . . . . . .

0 . . . ai3 0 0

 i = 1, 2, 3.

The matrix
o

B is defined similarly.

Remark 3.3. Other types of order were tested but they produce the same type of
matrix, block tridiagonal.

Lemma 3.4. If A, B are two arbitrary square matrices of size l×l and real entries,
then (A⊗B)n = An ⊗Bn, for all n ∈ N.

Corollary 3.5. If A is a matrix of order n × n and Π = circ(0, 1, 0, . . . , 0) is
circulant matrix, then (A⊗Π)k = Ak ⊗Πk; for k = 1, . . . ,m.

4. CNN and Controllability

In this section we study the controllability of the general system (3.7) by means
of the properties of block tridiagonal matrices Instead of (3.7) we study the linear
case

v̇ = (A− I)v + Bu + I . (4.1)

The study of the controllability of (4.1) is equivalent to study the controllability of

v̇ = (A− I)v + Bu. (4.2)

Note that A− I is tridiagonal matrix same type as A.
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Lemma 4.1. Any block tridiagonal matrix

A =



A2 A3 0 . . . 0 0
A1 A2 A3 0 . . . 0
...

. . . . . . . . . 0 0
0 . . . A1 A2 A3 0
0 0 . . . A1 A2 A3

0 0 0 . . . A1 A2


can be written as A = A3 ⊗Π + A1 ⊗Πn−1 + A2 ⊗Πn.

Lemma 4.2. For every block tridiagonal matrix A, the following takes place

Ak =
k∑

i=0

k−i∑
j=0

(
k
i

) (
k − i

j

)
(Ak−i−j

3 Anj−j
1 Ai

2 ⊗Π)k−i−2j ; k ∈ N.

Proof. For l ∈ N fixed

Al = [A3 ⊗Π + A1 ⊗Πn−1 + A2 ⊗Πn]l

=
l∑

i=0

l−i∑
j=0

(
l
i

) (
l − i

i

)
(A3 ⊗Π)l−i−j(A1 ⊗Πn−1)j(A2 ⊗Πn)i

=
l∑

i=0

l−i∑
j=0

(
l
i

) (
l − i

i

)
Al−i−j

3 Aj
1A

i
2 ⊗Πl−i−2j .

�

Theorem 4.3. Let A and B be two n× n block tridiagonal matrices. Then

AkB =
k∑

i=0

k−i∑
j=0

(
k
i

) (
k − i

j

)
(Ak−i−j

3 Aj
1A

i
2)

× [B3 ⊗Π + B1 ⊗Πn−1 + B2 ⊗Πn]Πk−(i+2j)

for k ∈ N.

Proof. By induction: for k = 1,

AB =
1∑

i=0

1−i∑
j=0

(
1
i

) (
1− i

j

)
(A1−i−j

3 Aj
1A

i
2)[B3⊗Π+B1⊗Πn−1+B2⊗Πn]Π1−(i+2j).

Assume the statement of the theorem is true for k = m. Then for for k = m + 1,
we have

Am+1B = AAmB

=
m+1∑
i=0

m+1−i∑
j=0

(
m + 1

i

) (
m + 1− i

j

)
(Am+1−i−j

3 Aj
1A

i
2)

× [B3 ⊗Π + B1 ⊗Πn−1 + B2 ⊗Πn]Πm+1−(i+2j)

�
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According to [10, Theorem 3], the controllability of (4.2) depends on the rank of
(A,B). However,

Rg[R(A,B)] = Rg([B,AB, . . . , An−1B])

= Rg





C1 C2 . . . Cn−1

C1 C2 . . . Cn−1

...
...

...
C1 C2 . . . Cn−1

⊗B

D

 ,

where

C =


C1 C2 . . . Cn−1

C1 C2 . . . Cn−1

...
...

...
...

C1 C2 . . . Cn−1

 ,

B = B3 ⊗Π + B1 ⊗Πn−1 + B2 ⊗Πn,

C1 =
0∑

i=0

0−i∑
j=0

(
0
i

) (
0− i

j

)
(A0−i−j

3 Aj
1A

i
2)

C2 =
1∑

i=0

1−i∑
j=0

(
1
i

) (
1− i

j

)
(A1−i−j

3 Aj
1A

i
2)

...

Cn−1 =
n−1∑
i=0

n−1−i∑
j=0

(
n− 1

i

) (
n− 1− i

j

)
(An−1−i−j

3 Aj
1A

i
2),

and

D =


Πn 0 0 0
0 Π1−(i+2j) 0 0

0 0
. . . 0

0 0 0 Π(n−1)−(i+2j)

 .

Proposition 4.4. Let

D =


Πn 0 0 0
0 Π1−(i+2j) 0 0

0 0
. . . 0

0 0 0 Π(n−1)−(i+2j)

 .

Then |det(D)| = 1.

The proof of the above proposition can be found in [1] We are now ready to give
the main result of this section, which is quite technical, but applicable to several
situations discussed later.

Theorem 4.5. The system (4.2) is controllable if and only if Rg(C ⊗B) = n.

Proof. By [10, Theorem 3], the system (4.2) is controllable if and only if

Rg[R(A,B)] = Rg[B,AB, . . . , An−1B] .

By the above proposition this is true if and only if Rg(C ⊗B) = n. �
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Example. Let m = 3 and n = 3; let matrices Ã and B̃ be as in (3.2); let the
output y = G2(v), with G2 : R3×3 → R3×27 given as

G2(v) =
(
G(v11), G(v12), G(v13), G(v21), G(v22), G(v23), G(v31), G(v32), G(v33)

)T
.

We impose Von-Neumann the boundary conditions and get

G(v11) =

v11 v11 v12

v11 v11 v12

v21 v21 v22

 , G(v12) =

v11 v12 v13

v11 v12 v13

v21 v22 v23

 ,

G(v13) =

v12 v13 v11

v12 v13 v11

v22 v23 v21

 , G(v21) =

v11 v11 v12

v21 v21 v22

v31 v31 v32

 ,

G(v22) =

v11 v12 v13

v21 v22 v23

v31 v32 v33

 , G(v23) =

v12 v13 v11

v22 v23 v21

v32 v33 v31

 ,

G(v31) =

v21 v21 v22

v31 v31 v32

v11 v11 v12

 , G(v32) =

v21 v22 v23

v31 v32 v33

v11 v12 v13

 ,

G(v33) =

v22 v23 v21

v32 v33 v31

v12 v13 v11

 .

Now AG2(v) has the form

0BBBBBBBBBBBB@

(a11 + a12+
a21 + a22) a13 + a23 0 a31 + a32 a33 0 0 0 0
a11 + a21 a12 + a22 a13 + a23 a31 a32 a33 0 0 0
a13 + a23 a11 + a21 a12 + a22 a33 a31 a32 0 0 0
a11 + a12 a13 0 a21 + a22 a23 0 a31 + a32 a33 0

a11 a12 a13 a21 a22 a23 a31 a32 a33
a13 a11 a12 a23 a21 a22 a33 a31 a32

a31 + a32 a33 0 a11 + a12 a13 0 a21 + a22 a23 0
a31 a32 a33 a11 a12 a13 a21 a22 a23
a33 a31 a32 a13 a11 a12 a23 a21 a22

1CCCCCCCCCCCCA

0BBBBBBBBBB@

v11
v12
v13
v21
v22
v23
v31
v32
v33

1CCCCCCCCCCA
.

We write AG2(v) as

AG2(v) = (Â +
◦
A)G2(v) = ÂG2(v) +

◦
AG2(v).

Then we do the same for matrix Bu. Now (4.1) becomes

v̇ = −v + ÂG2(v) + B̂u + f(u, v) (4.3)

Note that A and B are tridiagonal matrices and f(u, v) = I +
◦
AG2(v) +

◦
Bu is

a perturbation of (4.2); if f(u, v) = 0, (4.3) is controllable, for [8] (Theorem 11),
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then (4.3) also is controllable, where
◦
AG2(v) and

◦
Bu have the form, respectively,

◦
AG2(v) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a13 + a23 0 0 a33 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a13 0 0 a23 0 0 a33 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

a33 0 0 a13 0 0 a23 0 0





v11

v12

v13

v21

v22

v23

v31

v32

v33


,

◦
Bu =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

b13 + b23 0 0 b33 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

b13 0 0 b23 0 0 b33 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

b33 0 0 b13 0 0 b23 0 0





u11

u12

u13

u21

u22

u23

u31

u32

u33


.

Remark 4.6. So far we have studied the case where G(v) = αv, α > 0; that is,
the linear case. The non-linear case

v̇ = −v + AG(v) + Bu (4.4)

can be attacked just writing down

v̇ = (A− I)v + Bu + (AG(v)−Av) = (A− I)v + Bu + A(G(v)− v) (4.5)

and imposing the condition of A(G(v)− v) being globally Lipschitz. In this case we
guarantee controllability of (4.4) if (4.5) is controllable.

Input

5 10 15 20 25 30

5

10

15

20

25

30

k=2

5 10 15 20 25 30

5

10

15

20

25

30

k=3

5 10 15 20 25 30

5

10

15

20

25

30

k=6

5 10 15 20 25 30

5

10

15

20

25

30

Figure 2. Input and some iterations by a 30× 30 matrix.
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5. Numerical Simulations

In this section we use our model of CNN in image detection; most of our examples
are Chinese characters. The idea is input an image and iterate equation (1.2) by
using Runge-Kutta 4-order method. We shall use the corner detecting CNN since
in [11], but taking b22 = 5; in other words

Ã =

0 0 0
0 2 0
0 0 0

 , B̃ =

−7/20 −1/4 −7/20
−1/4 5 −1/4
−7/20 −1/4 −7/20

 , I = 3× 10−4Amp.

First, we consider figure 2 a diamond as input and some iterations, we detect the
main character of the stroke in the first three steps of this process. In a 30 array;
and after a few iterations we reach the maximum detections.

In figure 3, we find the same behavior as in the figure 2; by taking now k (number
of iterations) a little bigger.

k=15

5 10 15 20 25 30

5

10

15

20

25

30

k=30

5 10 15 20 25 30

5

10

15

20

25

30

k=50

5 10 15 20 25 30

5

10

15

20

25

30

k=65

5 10 15 20 25 30

5

10

15

20

25

30

Figure 3. More iterations in case of the diamond.

Figure 4 is a Chinese character with an 35× 35 array. After some iterations for
k = 3 and k = 10 maximum detection is achieved.

Figure 5 is made by an iteration of the input in figure 4 with k bigger, the output
is the same as in the previous figure.

As a concluding remark, we want to mention that the two input figures chosen
here are the same as two of the chosen in ([2], [7]), but now we are imposing Von-
Neumann boundary conditions. In our case maximum detection is attained in fewer
steps that the ones in the mentioned papers.
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Input

10 20 30

5

10

15

20

25

30

35

k=1

10 20 30

k=3

5

10

15

20

25

30

35

k=10

10 20 30

5

10

15

20

25

30

35
10 20 30

5

10

15

20

25

30

35

Figure 4. Input and some iterations for a 35× 35 matrix with an ideogram.

k=15

10 20 30

5

10

15

20

25

30

35

k=35

10 20 30

5

10

15

20

25

30

35

k=44

10 20 30

5

10

15

20

25

30

35

k=65

10 20 30

5

10

15

20

25

30

35

Figure 5. 35× 35-array; some more iterations.
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