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METHOD OF RELAXATION APPLIED TO OPTIMIZATION OF
DISCRETE SYSTEMS

JEAN LOUIS CALVET, JUAN CARDILLO,
JEAN CLAUDE HENNET, FERENC SZIGETI

Abstract. In this work, the relaxation method is presented and then applied

to the optimization of a family of discrete systems. Thus, a condition for the
relationship between the minimum of the original problem and of the relaxed

problem is translated to an equivalent condition of minimum principle. Several

examples illustrate this technique and the condition obtained.

1. Introduction

The relaxation technique can be describe in a simple way for the minimization of
a function on a finite domain, f : {1, 2, . . . , n} → < as follows: To each function on
the domain Zn = {1, 2, . . . , n}, associate another function on the set of probability
measures as,

P̂ = {P = (p(i)) : 0 ≤ p(i)
n∑

i=1

p(i) = 1}, (1.1)

in the form:

i 7→ f(i) ⇐⇒ P → EP (f) =
n∑

i=1

p(i)f(i). (1.2)

Also, P̂ , the domain of the mathematical expectation, is a natural extension of the
domain Zn. Indeed, to each i ∈ Zn we can be associated the probability measure

Pi = (0, . . . , 0, 1
i
, 0 . . . , 0), (1.3)

that is,

pi(j) =

{
1, j = i,

0, j 6= i .
(1.4)

It is easy to see that the global minimum of the nonlinear problem mini∈Zn
f(i)

and the minimum of the lineaf function coincides in i0 → Pi0 .
The extension of a nonlinear function to a lineal function using the presented

technique is called the relaxation method. For classic control systems, J. Warga and
others used the relaxation technique since 1960’s. Surprisingly in the previous years
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the use of this technique has resurfaced, but in another context. Thus, instead of
using of combinatorial optimization, we propose using relaxed problems, with the
aim of diminishing the computational complexity. In [5, 6] is has been analyzed the
equivalence between the original problem and the relaxed problem

In this work, we outline the relaxation problem in the context of the optimization
from a class of discrete events processes (discrete events systems) equipped with
concave and convex cost functions. The first one, generically, always guarantees the
equivalence between the original problem and the relaxed problem; moreover, the
optimality criteria is given in the classical form of the minimum principle. While
for the second problem, it is a consequence of the separation theorem for convex
set. The equivalence between the original problem and the relaxed one, is also a
classical minimum principle.

2. Discrete Event Process Optimization Problem (Discrete Event
System)

Consider the optimization problem

x(k + 1) = A(u(k))x(k) + b(u(k)), x(0) = 0, (2.1)

where A : {−1, 1}m → Rn×n, b : {−1, 1}m → Rn, are functions with finite domain,
defined on the set {−1, 1}m of the vertices of the hypercube of dimension m. The
sequence u(0), u(1), . . . , u(K−1) is denominated control (decision). The trajectory
associated to the control is the sequence x(0), x(1), . . . , x(K), calculated for (2.1).
The cost function Φ : Rn → R is defined by J(x, u) = Φ(x(K)).

Now, the objective is to find a sequence u∗(0), u∗(1), . . . , u∗(K − 1) , such that,
for the corresponding trajectory x∗(0), x∗(1), . . . , x∗(K),

J(x∗, u∗) = Φ(x∗(K)) ≤ Φ(x(K)) = J(x, u), (2.2)

be satisfied, for every u(0), u(1), . . . , u(K−1). The minimum principle is a necessary
condition for the optimal control u∗(0), u∗(1), . . . , u∗(K − 1).

To state our results, we need the concept of varied trajectory

xi,u(0), xi,u(1), . . . , xi,u(K)

and the dual trajectory ϕi,u(i + 1), ϕi,u(i + 2), . . . , ϕi,u(K):

xi,u(k) = x∗(k), k ≤ i,

xi,u(i + 1) = A(u)x∗(i) + b(u),

xi,u(k + 1) = A(u∗(k))xi,u(k) + b(u∗(k)), k > i,

ϕi,u(k) = A(u∗(k))T ϕi,u(k + 1),

ϕi,u(K) = RΦ(x∗(K);xi,u(K)), k > i,

where

RΦ(x∗(K);x(K)) =
∫ 1

0

gradΦ(x∗(K) + t(xi,u(k)− x∗(K)). (2.3)

Then the optimality criterion is the inequality:

〈ϕi,u(i + 1), A(u∗(i))x∗(i) + b(u∗(i))〉 ≤ 〈ϕi,u(i + 1), A(u(i))x∗(i) + b(u(i))〉 (2.4)

for everything i and u. (see minimum principle on finite domains [2]). Here the
relaxation is defined using the dynamics for i, and the probability measure P =
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(p(u)), u ∈ {−1, 1}m, as follows. The trajectory xi,P (0), xi,P (1), . . . , xi,P (K), is
defined by

xi,P (k) = x∗(k), k ≤ i,

xi,P (i + 1) =
∑

u

p(u)(A(u)x∗(k) + b(u)),

xi,P (k + 1) = A(u∗(k))xi,P (k) + b(u∗(k)), k > i.

The relaxation problem consists on giving conditions such that

Φ(x∗(K)) = min
u(k)∈{−1,1}m

Φ(x(K))∀k=0,1,...K min
P∈P̂

Φ(xi,P (K))∀i .

3. Main Result

Let us observe that if P = Pv, this is

pv(u) =

{
1, u = v,

0, u 6= v,

then xi,P (k) = xi,u(k). The corresponding dual trajectory, in this case, is defined
as:

ϕi,P (k) = A(u∗(k))T ϕi,P (k + 1), ϕi,P (K) = RΦ(x∗(K);xi,P (K))

Lemma 3.1. If 0 ≤
∑

cix(i), with
∑

x(i) = 1, for all x(i) ≥ 0, then 0 ≤ ci.

Proof. Let x0(i) =

{
1, i = i0,

0, i 6= i0,
. Then 0 ≤

∑
cix0(i) = ci0 . �

Lemma 3.2. If xi,P (k) is the trajectory of the i-th relaxed problem for P = (p(u))
and xi,u(k) is the solution of the problem perturbed in the step i by u, then

xi,P (k) =
∑

p(u)xi,u(k), k = i + 1, . . . ,K (3.1)

Proof. By definition xi,u(i + 1) = A(u)x∗(i) + b(u) and

xi,P (i + 1) =
∑

p(u)(A(u)x∗(i) + b(u)) =
∑

p(u)xi,u(i + 1) .

Then (3.1) is true for i + 1. Using mathematical induction assume that (3.1) is
valid for k. Then for k + 1, we have

xi,P (k + 1) = A(u∗(k))xP (k) + b(u∗(k)) =
= A(u∗(k))(

∑
u p(u)xi,v(k)) + b(u∗(k)) =

=
∑

u p(u)(A(u∗(k))xi,v(k) + b(u∗(k))) =
∑

u p(u)xi,v(k + 1).�

which completes the proof. �

Theorem 3.3. Assume that Φ is concave over a convex domain D ⊂ Rn; i.e., for
every λ, µ ≥ 0, with λ + µ = 1, and x, y ∈ D,

λΦ(x) + µΦ(y) ≤ Φ(λx + µy) .

Then the relaxed problem and the original problem have the same minimum. That
is, u∗(0), u∗(1), . . . , u∗(K−1), is the optimal control, then, for each i fixed, the i-th
relaxed problem minP∈P̂ Φ(xi,P (K)) has the minimum in Pu∗(i), defined by

pu∗(i)(u) =

{
1 u = u∗(i),
0 u 6= u∗(i).
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Proof. First we will prove the equalities

Φ(xi,P (K))− Φ(x∗(K))

=
∑

u

p(u)〈ϕi,P (i + 1), (A(u)x∗(i) + b(u))− (A(u∗(i))x∗(i) + b(u∗(i)))〉

Φ(xi,P (K))− Φ(x∗(K))

= RΦ(x∗(K);xi,P (K))(xi,P (K)− x∗(K))

= 〈ϕi,P (K), xi,P (K)− x∗(K)〉
= 〈ϕi,P (K), A(u∗(K − 1))xi,P (K − 1) + b(u∗(K − 1))

−A(u∗(K − 1))x∗(K − 1)− b(u∗(K − 1))〉
= 〈A(u∗(K − 1))T ϕi,P (K), xi,P (K − 1)− x∗(K − 1)〉
= 〈ϕi,P (K − 1), xi,P (K − 1)− x∗(K − 1)〉 = . . .

= 〈ϕi,P (i + 1), xi,P (i + 1)− x∗(i + 1)〉

= 〈ϕi,P (i + 1),
∑

u

p(u)(A(u)x∗(i) + b(u))− (A(u∗(i))x∗(i) + b(u∗(i)))〉

=
∑

u

p(u)〈ϕi,P (i + 1), (A(u)x∗(i) + b(u))− (A(u∗(i))x∗(i) + b(u∗(i)))〉

(3.2)

Now suppose that i-th relaxed problem has optimum Pu∗(i). Then

0 ≤ Φ(xi,P (K))− Φ(x∗(K)) .

By the formula demonstrated previously,

0 ≤
∑

u

p(u)〈ϕi,P (i + 1), (A(u)x∗(i) + b(u))− (A(u∗(i))x∗(i) + b(u∗(i)))〉

for every P , as well as for P = Pv and ϕPv,i(i + 1) = ϕi,v(i + 1). By Lemma 3.1,

〈ϕi,v(i + 1), A(u∗(i))x∗(i) + b(u∗(i))〉 ≤ 〈ϕi,v(i + 1), A(u(i))x∗(i) + b(u(i))〉 (3.3)

This being the minimum principle, without necessity of concavity or convexity of
Φ.

Now, let us suppose that the minimum principle is fulfilled. For a measure of
probability P = (p(u)), multiply the inequality (3.3) by p(u) and add for everything
v ∈ {−1, 1}m. Then

0 ≤
∑

v

p(v)〈ϕi,v(i + 1), (A(u)x∗(i) + b(u))− (A(u∗(i))x∗(i) + b(u∗(i)))〉

=
∑

v

p(v)〈ϕi,v(i + 1), xi,v(i + 1)− x∗(i + 1)〉 = . . .

=
∑

v

p(v)〈ϕi,v(K), xi,v(K)− x∗(K)〉 =
∑

v

p(v)(Φ(xi,v(K))− Φ(x∗(K)))

≤ Φ(
∑

v

p(v)xi,v(K))−
∑

v

p(v)Φ(x∗(K)) = Φ(xi,P (K))− Φ(x∗(K)),

for what the minimum of the relaxed problem is reached in Pu∗(i). Hence the
equivalence between the original problem and the relaxed problem is proven. �
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4. Examples

Example 4.1. Consider the following system, linear in x(k),

x(k + 1) = A(u(k))x(k) + b(u(k)), x(0) = ξ (4.1)

with the linear cost function

Φ(x(K)) = 〈ϕ, x(K)〉 .

The linear application 〈ϕ, x(K)〉 is concave (can also be convex) there fare the
original problem and the relaxed problem have the same minimum by the previously
theorem. The dual equations are also the same, since the initial condition ϕ(K) = ϕ
is independent of the perturbation or of the relaxation. Hence in this case the
minimum principle came be expressed in the classic form

〈ϕ(i + 1), A(u∗(i))x∗(i) + b(u∗(i))〉 = min
u
〈ϕ(i + 1), A(u)x∗(i) + b(u)〉

or using the Hamiltonian form

H(x∗(i), u∗(i), ϕ(i + 1)) ≤ H(x∗(i), u, ϕ(i + 1)). (4.2)

Note that the Hamiltonian is defined as H(x, u, ϕ) = 〈ϕ, A(u)x + b(u)〉.

Example 4.2. Consider the same linear system with

x(k + 1) = A(u(k))x(k) + b(u(k)), x(0) = ξ

with positive semi definite quadratic cost function

Φ(x(K)) = 〈Qx(K), x(K)〉

and the same considerations for the perturbed system and for the relaxed system.
Then

Φ(xi,P (K))− Φ(x∗(K))

=
∑

u

p(u)〈ϕi,P (i + 1), A(u)x∗(i) + b(u)−A(u∗(i))x∗(i) + b(u∗(i))〉

Suppose that v is such that

pi,v(u) =

{
1, u = v,

0, u 6= v .

If 0 ≤ Φ(xi,v(K))−Φ(x∗(K)), (minimum), Φ is smooth in x∗(K) and it is convex,
then the tangent hyperplane that separates the convex body {x : Φ(x) ≤ Φ(x∗(K))}
at x∗(K) containing the points xi.v(K), also separates the convex hull of the points
{x∗(K), xi,v(K), v ∈ {−1, 1}m}; thats is the points xi,P (K) =

∑
u p(u)xi,v(K).

Hence why, Φ(xi,P (K)) ≥ Φ(x∗(K)). Thus

0 ≤ Φ(xi,P (K))− Φ(x∗(K)) = Φ(
∑

v

p(v)xi,v(K))− Φ(x∗(K))

and the two problems are equivalent. The previous idea is illustrated in Figure 1.
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Figure 1. A geometric interpretatoion of 〈Qx, x〉 ≤ 〈Qx∗(K), x∗(K)〉

Conclusions. Most of the discrete optimization problems, do not escape from
the use of combinatorial optimization, hence these problem, are sensitive to the
computational complexity. Thus, in this work we recapture the idea of the use
of the method relaxation over finite domains. This leads to the transformation of
the discrete problems in a classic formulation, which provides a way to solve the
optimization problem. Here, a family peculiar of discrete processes are considered,
linear in the state, equipped with concave or convex cost functions. We obtain
equivalence between the relaxed optimum and the optimum of the original problem,
in the form of minimum principle. For linear cost function, the obtained condition
is a classical minimum principle.
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