2003 Colloquium on Differential Equations and Applications, Maracaibo, Venezuela. Electronic Journal of Differential Equations, Conference 13, 2005, pp. 75-88. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXACT CONTROLLABILITY OF A NON-LINEAR GENERALIZED DAMPED WAVE EQUATION: APPLICATION TO THE SINE-GORDON EQUATION

HUGO LEIVA

Abstract

In this paper, we give a sufficient conditions for the exact controllability of the non-linear generalized damped wave equation $$
\ddot{w}+\eta \dot{w}+\gamma A^{\beta} w=u(t)+f(t, w, u(t))
$$ on a Hilbert space. The distributed control $u \in L^{2}$ and the operator A is positive definite self-adjoint unbounded with compact resolvent. The nonlinear term f is a continuous function on t and globally Lipschitz in the other variables. We prove that the linear system and the non-linear system are both exactly controllable; that is to say, the controllability of the linear system is preserved under the non-linear perturbation f. As an application of this result one can prove the exact controllability of the Sine-Gordon equation.

1. Introduction

In this paper, we give sufficient conditions for the exact controllability of the following non-linear generalized damped wave equation on a Hilbert space X,

$$
\begin{equation*}
\ddot{w}+\eta \dot{w}+\gamma A^{\beta} w=u(t)+f(t, w, u(t)), \quad t \geq 0 \tag{1.1}
\end{equation*}
$$

where $\gamma>0, \eta>0, \beta \geq 0$, the distributed control u is in $L^{2}\left(0, t_{1} ; X\right)$, and $A: D(A) \subset X \rightarrow X$ is a positive definite self-adjoint unbounded linear operator in X with compact resolvent. This implies the following spectral decomposition of the operator A :

$$
A x=\sum_{n=1}^{\infty} \lambda_{n} \sum_{k=1}^{\gamma_{n}}\left\langle x, \phi_{n, k}\right\rangle \phi_{n, k}=\sum_{n=1}^{\infty} \lambda_{n} E_{n} x, \quad x \in D(A)
$$

The non-linear term $f:\left[0, t_{1}\right] \times X \times X \rightarrow X$ is a continuous function on t and globally Lipschitz in the other variables. i.e., there exists a constant $l>0$ such that for all $x_{1}, x_{2}, u_{1}, u_{2} \in X$ we have

$$
\begin{equation*}
\left\|f\left(t, x_{2}, u_{2}\right)-f\left(t, x_{1}, u_{1}\right)\right\| \leq l\left\{\left\|x_{2}-x_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}, \quad t \in\left[0, t_{1}\right] \tag{1.2}
\end{equation*}
$$

[^0]We consider the operator

$$
\mathcal{A}=\left[\begin{array}{cc}
0 & I_{X} \tag{1.3}\\
-\gamma A^{\beta} & -\eta I
\end{array}\right]
$$

which corresponds to the equation $\ddot{w}+\eta \dot{w}+\gamma A^{\beta} w=0$ written as a first order system in the space $D\left(A^{\beta / 2}\right) \times X$. Then we prove the following statements:
(I) \mathcal{A} generates a strongly continuous group $\{T(t)\}_{t \in \mathbb{R}}$ on $D\left(A^{\beta / 2}\right) \times X$ such that $\|T(t)\| \leq M(\eta, \gamma) e^{-\frac{\eta}{2} t}, \quad t \geq 0$.
(II) The linear system 1.4$)(f=0)$ is exactly controllable on $\left[0, t_{1}\right]$.
(III) The non-linear system 1.1 is also exactly controllable on $\left[0, t_{1}\right]$.

Moreover, each of the following statements are equivalent to the exact controllability of the linear system

$$
\begin{equation*}
\ddot{w}+\eta \dot{w}+\gamma A^{\beta} w=u(t) \quad t \geq 0 \tag{1.4}
\end{equation*}
$$

(a) Each of the following finite dimensional systems is controllable on $\left[0, t_{1}\right]$,

$$
\begin{equation*}
y^{\prime}=A_{j} P_{j} y+P_{j} B u, \quad y \in \mathcal{R}\left(P_{j}\right) ; \quad j=1,2, \ldots, \infty \tag{1.5}
\end{equation*}
$$

(b) $B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0$, for all $t \in\left[0, t_{1}\right]$, implies $y=0$
(c) Rank $\left[\begin{array}{lllll}P_{j} B & A_{j} P_{j} B & A_{j}^{2} P_{j} B & \cdots & A_{j}^{2 \gamma_{j}-1} P_{j} B\end{array}\right]=2 \gamma_{j}$
(d) The operator $W_{j}\left(t_{1}\right): \mathcal{R}\left(P_{j}\right) \rightarrow \mathcal{R}\left(P_{j}\right)$ given by

$$
\begin{equation*}
W_{j}\left(t_{1}\right)=\int_{0}^{t_{1}} e^{-A_{j} s} B B^{*} e^{-A_{j}^{*} s} d s \tag{1.6}
\end{equation*}
$$

is invertible, where λ_{j} are the eigenvalues of $A,\left\{P_{j}\right\}$ are the projections on the corresponding eigenspace,

$$
B=\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad A_{j}=\left[\begin{array}{cc}
0 & 1 \\
-\gamma \lambda_{j}^{\beta} & -\eta
\end{array}\right] P_{j}, \quad j \geq 1
$$

The operator, $W_{j}\left(t_{1}\right)$, allows us to compute explicitly the control $u \in L^{2}\left(0, t_{1} ; X\right)$ steering an initial state z_{0} to a final state z_{1} in time $t_{1}>0$ for the linear system (1.4). This control is given by the formula

$$
\begin{equation*}
u(t)=B^{*} T^{*}(-t) \sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j}\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) \tag{1.7}
\end{equation*}
$$

We use this formula to construct a sequence of controls u_{n} that converges to a control u that steers an initial state z_{0} to a final state z_{1} for the non-linear system (1.1). That is to say, we proved the exact controllability of this system.

As an application of this result we can prove the exact controllability of The Sine-Gordon Equation

$$
\begin{gather*}
w_{t t}+c w_{t}-d w_{x x}+k \sin w=p(t, x), \quad 0<x<1, t \in \mathbb{R} \\
w(t, 0)=w(t, 1)=0, \quad t \in \mathbb{R} \tag{1.8}
\end{gather*}
$$

where $d>0, c>0, k>0$ and $p: \mathbb{R} \times[0,1] \rightarrow \mathbb{R}$ is continuous and bounded function acting as an external force.

The existence of an attractor for the Sine-Gordon equation is proved in [9] where we can find a study of this equation, and the existence of bounded solutions for this model (1.8) and others similar one has been carried out recently in [5] [6] and 3]. To our knowledge, the exact controllability of this model under non-linear action of the control has not been studied before. So, in this paper we give a sufficient
conditions for the exact controllability of the system (1.1) that can be applied to the following controlled Sine-Gordon equation

$$
\begin{gather*}
w_{t t}+c w_{t}-d w_{x x}+k \sin w=p(t, x)+u(t, x)+g(t, w, u(t, x)), \quad 0<x<1 \\
w(t, 0)=w(t, 1)=0, \quad t \in \mathbb{R} \tag{1.9}
\end{gather*}
$$

where $g:\left[0, t_{1}\right] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function on t and globally Lipschitz in the other variables. i.e., there exists a constant $m>0$ such that for all $x_{1}, x_{2}, u_{1}, u_{2} \in \mathbb{R}$ we have

$$
\begin{equation*}
\left\|g\left(t, x_{2}, u_{2}\right)-g\left(t, x_{1}, u_{1}\right)\right\| \leq m\left\{\left\|x_{2}-x_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}, \quad t \in\left[0, t_{1}\right] \tag{1.10}
\end{equation*}
$$

This system can be written in the form of system (1.1) if we choose $X=L^{2}[0,1]$, $A \phi=-\phi_{x x}$, with domain $D(A)=H^{2} \cap H_{0}^{1}$ and $f(t, w, u)=-k \sin w+p(t, \cdot)+$ $g(t, w, u)$. Moreover, the exact controllability of 1.9 does not depend on the bounded function $p(t, \cdot)$.

Also, in [4] the authors study the exact null controllability of the second order linear equation

$$
\begin{equation*}
\ddot{w}+\rho A^{r} \dot{w}+A w=u(t), \quad \rho>0, \frac{1}{2} \leq r \leq 1, t \geq 0 \tag{1.11}
\end{equation*}
$$

where the distributed control $u \in L^{2}\left(0, t_{1} ; X\right)$ and $A: D(A) \subset X \rightarrow X$ is a positive definite self-adjoint unbounded linear operator in X with compact resolvent. They prove that if $\frac{1}{2} \leq r<1$, then the system $\sqrt{1.11}$ is exactly null controllable on $\left[0, t_{1}\right]$. However, if $\alpha=1$, the system $(1.11$ is not exactly null controllable. In [2, Example 3.27] it is shown that exact null controllability of an infinite dimensional system does not imply exact controllability of the system.

2. Notation and Preliminaries

The fact that $A: D(A) \subset X \rightarrow X$ is a positive definite self-adjoint unbounded linear operator in X with compact resolvent implies the following:
(a) The spectrum of A consists of only eigenvalues

$$
0<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow \infty
$$

Each λ_{j} has finite multiplicity, γ_{n}, equal to the dimension of the corresponding eigenspace.
(b) There exists a complete orthonormal set $\left\{\phi_{n, k}\right\}$ of eigenvectors of A.
(c) For all $x \in D(A)$ we have

$$
\begin{equation*}
A x=\sum_{n=1}^{\infty} \lambda_{n} \sum_{k=1}^{\gamma_{n}}\left\langle x, \phi_{n, k}\right\rangle \phi_{n, k}=\sum_{n=1}^{\infty} \lambda_{n} E_{n} x \tag{2.1}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ is the inner product in X and

$$
\begin{equation*}
E_{n} x=\sum_{k=1}^{\gamma_{n}}\left\langle x, \phi_{n, k}\right\rangle \phi_{n, k} . \tag{2.2}
\end{equation*}
$$

So, $\left\{E_{n}\right\}$ is a family of complete orthogonal projections in X and $x=$ $\sum_{n=1}^{\infty} E_{n} x, x \in X$.
(d) $-A$ generates an analytic semigroup $\left\{e^{-A t}\right\}$ given by

$$
\begin{equation*}
e^{-A t} x=\sum_{n=1}^{\infty} e^{-\lambda_{n} t} E_{n} x \tag{2.3}
\end{equation*}
$$

(e) The fractional powered spaces X^{r} are given by

$$
X^{r}=D\left(A^{r}\right)=\left\{x \in X: \sum_{n=1}^{\infty}\left(\lambda_{n}\right)^{2 r}\left\|E_{n} x\right\|^{2}<\infty\right\}, \quad r \geq 0
$$

with the norm

$$
\|x\|_{r}=\left\|A^{r} x\right\|=\left\{\sum_{n=1}^{\infty} \lambda_{n}^{2 r}\left\|E_{n} x\right\|^{2}\right\}^{1 / 2}, \quad x \in X^{r}
$$

and

$$
\begin{equation*}
A^{r} x=\sum_{n=1}^{\infty} \lambda_{n}^{r} E_{n} x \tag{2.4}
\end{equation*}
$$

Also, for $r \geq 0$ we define $Z_{r}=X^{r} \times X$, which is a Hilbert Space endow with the norm

$$
\left\|\left[\begin{array}{c}
w \\
v
\end{array}\right]\right\|_{Z_{r}}^{2}=\|w\|_{r}^{2}+\|v\|^{2} .
$$

Using the change of variables $w^{\prime}=v$, the second order equation 1.1 can be written as a first order system of ordinary differential equations in the Hilbert space $Z_{\beta / 2}=D\left(A^{\beta / 2}\right) \times X=X^{\beta / 2} \times X$ as

$$
\begin{equation*}
z^{\prime}=\mathcal{A} z+B u+F(t, z, u(t)) \quad z \in Z_{\beta / 2}, t \geq 0 \tag{2.5}
\end{equation*}
$$

where

$$
z=\left[\begin{array}{c}
w \tag{2.6}\\
v
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{cc}
0 & I_{X} \\
-\gamma A^{\beta} & -\eta I_{X}
\end{array}\right] .
$$

is an unbounded linear operator with domain $D(\mathcal{A})=D\left(A^{\beta}\right) \times X$ and

$$
F(t, z, u)=\left[\begin{array}{c}
0 \tag{2.7}\\
f(t, w, u)
\end{array}\right]
$$

is a function $F:\left[0, t_{1}\right] \times Z_{\beta / 2} \times X \rightarrow Z$. Since $X^{\beta / 2}$ is continuously included in X we obtain for all $z_{1}, z_{2} \in Z_{\beta / 2}$ and $u_{1}, u_{2} \in X$ that

$$
\begin{equation*}
\left\|F\left(t, z_{2}, u_{2}\right)-F\left(t, z_{1}, u_{1}\right)\right\|_{Z_{\beta / 2}} \leq L\left\{\left\|z_{2}-z_{1}\right\|+\left\|u_{2}-u_{1}\right\|\right\}, \quad t \in\left[0, t_{1}\right] \tag{2.8}
\end{equation*}
$$

In this paper, without lose of generality we shall assume the following condition

$$
\eta^{2}<4 \gamma \lambda_{1}^{\beta}
$$

3. The Uncontrolled Linear Equation

In this section we shall study the well-posedness of the abstract linear Cauchy initial-value problem

$$
\begin{align*}
& z^{\prime}=\mathcal{A} z, \quad(t \in \mathbb{R}) \\
& z(0)=z_{0} \in D(\mathcal{A}) \tag{3.1}
\end{align*}
$$

which is equivalent to prove that the operator \mathcal{A} generates a strongly continuous group. To this end, we shall use the following Lema from [7].

Lemma 3.1. Let Z be a separable Hilbert space and $\left\{A_{n}\right\}_{n \geq 1},\left\{P_{n}\right\}_{n \geq 1}$ two families of bounded linear operators in Z with $\left\{P_{n}\right\}_{n \geq 1}$ being a complete family of orthogonal projections such that

$$
\begin{equation*}
A_{n} P_{n}=P_{n} A_{n}, \quad n=1,2,3, \ldots \tag{3.2}
\end{equation*}
$$

Define the family of linear operators

$$
\begin{equation*}
T(t) z=\sum_{n=1}^{\infty} e^{A_{n} t} P_{n} z, \quad t \geq 0 \tag{3.3}
\end{equation*}
$$

Then
(a) $T(t)$ is a linear bounded operator if

$$
\begin{equation*}
\left\|e^{A_{n} t}\right\| \leq g(t), \quad n=1,2,3, \ldots \tag{3.4}
\end{equation*}
$$

for some continuous real-valued function $g(t)$.
(b) Under the condition (3.4) $\{T(t)\}_{t \geq 0}$ is a C_{0}-semigroup in the Hilbert space Z whose infinitesimal generator $\overline{\mathcal{A}}$ is given by

$$
\begin{equation*}
\mathcal{A} z=\sum_{n=1}^{\infty} A_{n} P_{n} z, \quad z \in D(\mathcal{A}) \tag{3.5}
\end{equation*}
$$

with $D(\mathcal{A})=\left\{z \in Z: \sum_{n=1}^{\infty}\left\|A_{n} P_{n} z\right\|^{2}<\infty\right\}$
(c) the spectrum $\sigma(\mathcal{A})$ of \mathcal{A} is given by

$$
\begin{equation*}
\sigma(\mathcal{A})=\overline{\bigcup_{n=1}^{\infty} \sigma\left(\bar{A}_{n}\right)} \tag{3.6}
\end{equation*}
$$

where $\bar{A}_{n}=A_{n} P_{n}$.
Theorem 3.2. The operator \mathcal{A} given by (2.6), is the infinitesimal generator of a strongly continuous group $\{T(t)\}_{t \mathbb{R}}$ given by

$$
\begin{equation*}
T(t) z=\sum_{n=1}^{\infty} e^{A_{n} t} P_{n} z, \quad z \in Z_{\beta / 2}, t \geq 0 \tag{3.7}
\end{equation*}
$$

where $\left\{P_{n}\right\}_{n \geq 0}$ is a complete family of orthogonal projections in the Hilbert space $Z_{\beta / 2}: P_{n}=\operatorname{diag}\left[E_{n}, E_{n}\right], n \geq 1$, and

$$
A_{n}=B_{n} P_{n}, \quad B_{n}=\left[\begin{array}{cc}
0 & 1 \tag{3.8}\\
-\gamma \lambda_{n}^{\beta} & -\eta
\end{array}\right], n \geq 1
$$

This group decays exponentially to zero. In fact, we have the estimate $\|T(t)\| \leq$ $M(\eta, \gamma) e^{-\frac{\eta}{2} t}, t \geq 0$, where

$$
\frac{M(\eta, \gamma)}{2 \sqrt{2}}=\sup _{n \geq 1}\left\{2\left|\frac{\eta \pm \sqrt{4 \gamma \lambda_{n}^{\beta}-\eta^{2}}}{\sqrt{\eta^{2}-4 \gamma \lambda_{n}^{\beta}}}\right|,\left|(2+\gamma) \sqrt{\frac{\lambda_{n}^{\beta}}{4 \gamma \lambda_{n}^{\beta}-\eta^{2}}}\right|\right\}
$$

Proof. Computing $\mathcal{A} z$ yields,

$$
\begin{aligned}
\mathcal{A} z & =\left[\begin{array}{cc}
0 & I \\
-\gamma A^{\beta} & -\eta
\end{array}\right]\left[\begin{array}{l}
w \\
v
\end{array}\right] \\
& =\left[\begin{array}{c}
v \\
-\gamma A^{\beta} w-\eta v
\end{array}\right] \\
& =\left[\begin{array}{c}
\sum_{n=1}^{\infty} E_{n} v \\
-\gamma \sum_{n=1}^{\infty} \lambda_{n}^{\beta} E_{n} w-\eta \sum_{n=1}^{\infty} E_{n} v
\end{array}\right] \\
& =\sum_{n=1}^{\infty}\left[\begin{array}{c}
E_{n} v \\
-\gamma \lambda_{n}^{\beta} E_{n} w-\eta E_{n} v
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty}\left[\begin{array}{cc}
0 & 1 \\
-\gamma \lambda_{n}^{\beta} & -\eta
\end{array}\right]\left[\begin{array}{cc}
E_{n} & 0 \\
0 & E_{n}
\end{array}\right]\left[\begin{array}{l}
w \\
v
\end{array}\right] \\
& =\sum_{n=1}^{\infty} A_{n} P_{n} z
\end{aligned}
$$

It is clear that $A_{n} P_{n}=P_{n} A_{n}$. Now, we need to check condition (3.4) from Lemma 3.1. To this end, compute the spectrum of the matrix B_{n}. The characteristic equation of B_{n} is given by

$$
\lambda^{2}+\eta \lambda+\gamma \lambda_{n}^{\beta}=0
$$

and the eigenvalues $\sigma_{1}(n), \sigma_{2}(n)$ of the matrix B_{n} are given by

$$
\sigma_{1}(n)=-c+i l_{n}, \quad \sigma_{2}(n)=-c-i l_{n}
$$

where,

$$
c=\frac{\eta}{2} \quad \text { and } \quad l_{n}=\frac{1}{2} \sqrt{4 \gamma \lambda_{n}^{\beta}-\eta^{2}} .
$$

Therefore,

$$
\begin{aligned}
e^{B_{n} t} & =e^{-c t}\left\{\cos l_{n} t I+\frac{1}{l_{n}}\left(B_{n}+c I\right)\right\} \\
& =e^{-c t}\left[\begin{array}{cc}
\cos l_{n} t+\frac{\eta}{2 l_{n}} \sin l_{n} t & \frac{\sin l_{n} t}{l_{n}} \\
-\gamma S(n) \lambda_{n}^{\beta / 2} \sin l_{n} t & \cos l_{n} t-\frac{\eta}{2 l_{n}} \sin l_{n} t
\end{array}\right]
\end{aligned}
$$

From the above formulas, we obtain

$$
e^{B_{n} t}=e^{-c t}\left[\begin{array}{cc}
a(n) & \frac{b(n)}{l_{n}} \\
-\gamma S(n) \lambda_{n}^{\beta / 2} c(n) & d(n)
\end{array}\right]
$$

where

$$
\begin{gathered}
a(n)=\cos l_{n} t+\frac{\eta}{2 l_{n}} \sin l_{n} t, \quad b(n)=\sin l_{n} t \\
c(n)=\sin l_{n} t, \quad d(n)=\cos l_{n} t-\frac{\eta}{2 l_{n}} \sin l_{n} t, \quad S(n)=\sqrt{\frac{\lambda_{n}^{\beta}}{4 \gamma \lambda_{n}^{\beta}-\eta^{2}}} .
\end{gathered}
$$

Now, consider $z=\left(z_{1}, z_{2}\right)^{T} \in Z_{\beta / 2}$ such that $\|z\|_{Z_{\beta / 2}}=1$. Then

$$
\left\|z_{1}\right\|_{\beta / 2}^{2}=\sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left\|E_{j} z_{1}\right\|^{2} \leq 1 \quad \text { and } \quad\left\|z_{2}\right\|_{X}^{2}=\sum_{j=1}^{\infty}\left\|E_{j} z_{2}\right\|^{2} \leq 1
$$

Therefore, $\lambda_{j}^{\beta / 2}\left\|E_{j} z_{1}\right\| \leq 1,\left\|E_{j} z_{2}\right\| \leq 1, j=1,2, \ldots$ and so,

$$
\begin{aligned}
\left\|e^{A_{n} t} z\right\|_{Z_{\beta / 2}}^{2}= & e^{-2 c t}\left\|\left[\begin{array}{c}
a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2} \\
-\gamma S(n) c(n) \lambda_{n}^{\frac{\beta}{2}} E_{n} z_{1}+d(n) E_{n} z_{2}
\end{array}\right]\right\|_{Z_{\beta / 2}}^{2} \\
= & e^{-2 c t}\left\|a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2}\right\|_{\frac{\beta}{2}}^{2}+e^{-2 c t} \| \\
& -\gamma S(n) c(n) \lambda_{n}^{\frac{\beta}{2}} E_{n} z_{1}+d(n) E_{n} z_{2} \|_{X}^{2} \\
= & e^{-2 c t} \sum_{j=1}^{\infty} \lambda_{j}^{\beta}\left\|E_{j}\left(a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2}\right)\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +e^{-2 c t} \sum_{j=1}^{\infty}\left\|E_{j}\left(-\gamma S(n) c(n) \lambda_{n}^{\frac{\beta}{2}} E_{n} z_{1}+d(n) E_{n} z_{2}\right)\right\|^{2} \\
= & e^{-2 c t} \lambda_{n}^{\beta}\left\|a(n) E_{n} z_{1}+\frac{b(n)}{l_{n}} E_{n} z_{2}\right\|^{2}+e^{-2 c t} \| \\
& -\gamma S(n) c(n) \lambda_{n}^{\frac{\beta}{2}} E_{n} z_{1}+d(n) E_{n} z_{2} \|^{2} \\
\leq & e^{-2 c t}\left(|a(n)|+\left|\frac{\lambda^{\frac{\beta}{2}}}{\lambda_{n}^{\alpha}} b(n)\right|\right)^{2}+e^{-2 c t}(|\gamma S(n) c(n)|+|d(n)|)^{2},
\end{aligned}
$$

where

$$
\left|\frac{\lambda_{n}^{\frac{\beta}{2}}}{l_{n}} b(n)\right|=\left|\sqrt{\frac{\lambda_{n}^{\beta}}{\eta^{2}-4 \gamma \lambda_{n}^{\beta}}}\right|
$$

If we set,

$$
\frac{M(\eta, \gamma)}{2 \sqrt{2}}=\sup _{n \geq 1}\left\{2\left|\frac{\eta \pm \sqrt{4 \gamma \lambda_{n}^{\beta}-\eta^{2}}}{\sqrt{\eta^{2}-4 \gamma \lambda_{n}^{\beta}}}\right|,\left|(2+\gamma) \sqrt{\frac{\lambda_{n}^{\beta}}{4 \gamma \lambda_{n}^{\beta}-\eta^{2}}}\right|\right\}
$$

we have,

$$
\left\|e^{A_{n} t}\right\| \leq M(\eta, \gamma) e^{-c t}, \quad t \geq 0, n=1,2, \ldots
$$

Hence, applying Lemma 3.1 we obtain that \mathcal{A} generates a strongly continuous group given by (3.7). Next, we will prove this group decays exponentially to zero. In fact,

$$
\begin{aligned}
\|T(t) z\|^{2} & \leq \sum_{n=1}^{\infty}\left\|e^{A_{n} t} P_{n} z\right\|^{2} \\
& \leq \sum_{n=1}^{\infty}\left\|e^{A_{n} t}\right\|^{2}\left\|P_{n} z\right\|^{2} \\
& \leq M^{2}(\eta, \gamma) e^{-2 c t} \sum_{n=1}^{\infty}\left\|P_{n} z\right\|^{2} \\
& =M^{2}(\eta, \gamma) e^{-2 c t}\|z\|^{2} .
\end{aligned}
$$

Therefore, $\|T(t)\| \leq M(\eta, \gamma) e^{-c t}, t \geq 0$.

4. Exact Controllability of the Linear System

Now, we shall give the definition of controllability in terms of the linear systems

$$
\begin{equation*}
z^{\prime}=\mathcal{A} z+B u \quad z \in Z_{\beta / 2}, t \geq 0 \tag{4.1}
\end{equation*}
$$

where

$$
z=\left[\begin{array}{l}
w \tag{4.2}\\
v
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{cc}
0 & I_{X} \\
-\gamma A^{\beta} & -\eta I_{X}
\end{array}\right] .
$$

For all $z_{0} \in Z_{\beta / 2}$ equation 4.1 has a unique mild solution given by

$$
\begin{equation*}
z(t)=T(t) z_{0}+\int_{0}^{t} T(t-s) B u(s) d s, \quad 0 \leq t \leq t_{1} \tag{4.3}
\end{equation*}
$$

The following definition of exact controllability can be found in [2].

Definition 4.1. We say that system (4.1) is exactly controllable on $\left[0, t_{1}\right], t_{1}>0$, if for all $z_{0}, z_{1} \in Z_{\beta / 2}$ there exists a control $u \in L^{2}\left(0, t_{1} ; X\right)$ such that the solution $z(t)$ of 4.3 corresponding to u, satisfies $z\left(t_{1}\right)=z_{1}$.

Consider the bounded linear operator

$$
\begin{equation*}
G: L^{2}\left(0, t_{1} ; U\right) \rightarrow Z_{\beta / 2}, \quad G u=\int_{0}^{t_{1}} T(-s) B(s) u(s) d s \tag{4.4}
\end{equation*}
$$

Then the following proposition is a characterization of the exact controllability of system 4.1.

Proposition 4.2. The system (4.1) is exactly controllable on $\left[0, t_{1}\right]$ if and only if, the operator G is surjective, that is to say

$$
G L^{2}\left(0, t_{1} ; X\right)=\text { Range }(G)=Z_{\beta / 2}
$$

Now, consider the family of finite dimensional systems

$$
\begin{equation*}
y^{\prime}=A_{j} P_{j} y+P_{j} B u, \quad y \in \mathcal{R}\left(P_{j}\right) ; j=1,2, \ldots, \infty \tag{4.5}
\end{equation*}
$$

Then the following proposition can be shown as in [8, Lemma 1].
Proposition 4.3. The following statements are equivalent:
(a) System 4.5 is controllable on $\left[0, t_{1}\right]$
(b) $B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0$, for all $t \in\left[0, t_{1}\right]$, implies $y=0$
(c) Rank $\left[\begin{array}{lllll}P_{j} B & A_{j} P_{j} B & A_{j}^{2} P_{j} B & \cdots & A_{j}^{2 \gamma_{j}-1} P_{j} B\end{array}\right]=2 \gamma_{j}$
(d) The operator $W_{j}\left(t_{1}\right): \mathcal{R}\left(P_{j}\right) \rightarrow \mathcal{R}\left(P_{j}\right)$ given by

$$
\begin{equation*}
W_{j}\left(t_{1}\right)=\int_{0}^{t_{1}} e^{-A_{j} s} B B^{*} e^{-A_{j}^{*} s} d s \tag{4.6}
\end{equation*}
$$

is invertible.
Now, we are ready to formulate the main result on exact controllability of the linear system 4.1.

Theorem 4.4. The system (4.1) is exactly controllable on $\left[0, t_{1}\right]$. Moreover, the control $u \in L^{2}\left(0, t_{1} ; X\right)$ that steers an initial state z_{0} to a final state z_{1} at time $t_{1}>0$ is given by the formula

$$
\begin{equation*}
u(t)=B^{*} T^{*}(-t) \sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j}\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) \tag{4.7}
\end{equation*}
$$

Proof. Since $\{T(t)\}_{t \geq 0}$ is a group, the operator G in (5) can be replaced by

$$
\begin{equation*}
G: L^{2}\left(0, t_{1} ; X\right) \rightarrow Z_{\beta / 2}, \quad G u=\int_{0}^{t_{1}} T(-s) B(s) u(s) d s \tag{4.8}
\end{equation*}
$$

Then system 4.1) is exactly controllable on $\left[0, t_{1}\right]$ if and only if, the operator G is surjective, that is to say

$$
G L^{2}\left(0, t_{1} ; X\right)=\operatorname{Range}(G)=Z_{\beta / 2} .
$$

First, we shall prove that each of the following finite dimensional systems is controllable on $\left[0, t_{1}\right]$

$$
\begin{equation*}
y^{\prime}=A_{j} P_{j} y+P_{j} B u, \quad y \in \mathcal{R}\left(P_{j}\right) ; j=1,2, \ldots, \infty \tag{4.9}
\end{equation*}
$$

In fact, we can check the condition for controllability of this systems,

$$
B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0, \quad \forall t \in\left[0, t_{1}\right], \quad \Rightarrow y=0
$$

In this case the operators $A_{j}=B_{j} P_{j}$ and \mathcal{A} are given by

$$
B_{j}=\left[\begin{array}{cc}
0 & 1 \\
-\gamma \lambda_{j}^{\beta} & -\eta
\end{array}\right], \quad \mathcal{A}=\left[\begin{array}{cc}
0 & I_{X} \\
-\gamma A^{\beta} & -\eta I
\end{array}\right]
$$

and the eigenvalues $\sigma_{1}(j), \sigma_{2}(j)$ of the matrix B_{j} are given by $\sigma_{1}(j)=-c+i l_{j}$ and $\sigma_{2}(j)=-c-i l_{j}$, where

$$
c=\frac{\eta}{2} \quad \text { and } \quad l_{j}=\frac{1}{2} \sqrt{4 \gamma \lambda_{j}^{\beta}-\eta^{2}}
$$

Therefore, $A_{j}^{*}=B_{j}^{*} P_{j}$ with $B_{j}^{*}=\left[\begin{array}{cc}0 & -1 \\ \gamma \lambda_{j}^{\beta} & -\eta\end{array}\right]$ and

$$
\begin{aligned}
e^{B_{j} t} & =e^{-c t}\left\{\cos l_{j} t I+\frac{1}{l_{j}}\left(B_{j}+c I\right)\right\} \\
& =e^{-c t}\left[\begin{array}{cc}
\cos l_{j} t+\frac{\eta}{2 l_{j}} \sin l_{j} t & \frac{\sin l_{j} t}{l_{j}} \\
-\gamma S(j) \lambda_{j}^{\beta / 2} \sin l_{j} t & \cos l_{j} t-\frac{\eta}{2 l_{j}} \sin l_{j} t
\end{array}\right], \\
e^{B_{j}^{*} t} & =e^{-c t}\left\{\cos l_{j} t I+\frac{1}{l_{j}}\left(B_{j}^{*}+c I\right)\right\} \\
& =e^{-c t}\left[\begin{array}{cc}
\cos l_{j} t+\frac{\eta}{2 l_{j}} \sin l_{j} t & -\frac{\sin l_{j} t}{l_{j}} \\
\gamma S(j) \lambda_{j}^{\beta / 2} \sin l_{j} t & \cos l_{j} t-\frac{\eta}{2 l_{j}} \sin l_{j} t
\end{array}\right], \\
B & =\left[\begin{array}{c}
0 \\
I_{X}
\end{array}\right], \quad B^{*}=\left[0, I_{X}\right] \quad \text { and } \quad B B^{*}=\left[\begin{array}{cc}
0 & 0 \\
0 & I_{X}
\end{array}\right]
\end{aligned}
$$

Now, let $y=\left(y_{1}, y_{2}\right)^{T}$ be in $\mathcal{R}\left(P_{j}\right)$ such that $B^{*} P_{j}^{*} e^{A_{j}^{*} t} y=0$ for all $t \in\left[0, t_{1}\right]$. Then

$$
e^{-c t}\left[\gamma S(j) \lambda_{j}^{\beta / 2} \sin l_{j} t y_{1}+\left(\cos l_{j} t-\frac{\eta}{2 l_{j}} \sin l_{j} t\right) y_{2}\right]=0, \quad \forall t \in\left[0, t_{1}\right]
$$

which implies $y=0$. From Proposition 4.3 the operator $W_{j}\left(t_{1}\right): \mathcal{R}\left(P_{j}\right) \rightarrow \mathcal{R}\left(P_{j}\right)$ given by

$$
W_{j}\left(t_{1}\right)=\int_{0}^{t_{1}} e^{-A_{j} s} B B^{*} e^{-A_{j}^{*} s} d s=P_{j} \int_{0}^{t_{1}} e^{-B_{j} s} B B^{*} e^{-B_{j}^{*} s} d s P_{j}=P_{j} \bar{W}_{j}\left(t_{1}\right) P_{j}
$$

is invertible. Since

$$
\begin{gathered}
\left\|e^{-A_{j} t}\right\| \leq M(\eta, \gamma) e^{c t}, \quad\left\|e^{-A_{j}^{*} t}\right\| \leq M(\eta, \gamma) e^{c t} \\
\left\|e^{-A_{j} t} B B^{*} e^{-A_{j}^{*} t}\right\| \leq M^{2}(\eta, \gamma)\left\|B B^{*}\right\| e^{2 c t}
\end{gathered}
$$

we have

$$
\left\|W_{j}\left(t_{1}\right)\right\| \leq M^{2}(\eta, \gamma)\left\|B B^{*}\right\| e^{2 c t_{1}} \leq L(\eta, \gamma), \quad j=1,2, \ldots
$$

Now, we shall prove that the family of linear operators,

$$
W_{j}^{-1}\left(t_{1}\right)=\bar{W}_{j}^{-1}\left(t_{1}\right) P_{j}: Z_{\beta / 2} \rightarrow Z_{\beta / 2}
$$

is bounded and $\left\|W_{j}^{-1}\left(t_{1}\right)\right\|$ is uniformly bounded. To this end, we shall compute explicitly the matrix $\bar{W}_{j}^{-1}\left(t_{1}\right)$. From the above formulas we obtain that

$$
e^{B_{j} t}=e^{-c t}\left[\begin{array}{cc}
a(j) & b(j) \\
-a(j) & c(j)
\end{array}\right], \quad e^{B_{j}^{*} t}=e^{-c t}\left[\begin{array}{cc}
a(j) & -b(j) \\
d(j) & c(j)
\end{array}\right],
$$

where

$$
\begin{gathered}
a(j)=\cos l_{j} t+\frac{\eta}{2 l_{j}} \sin l_{j} t, \quad b(j)=\frac{\sin l_{j} t}{l_{j}}, \\
c(j)=\gamma S(j) \lambda_{j}^{\beta / 2} \sin l_{j} t, \quad d(j)=\cos l_{j} t-\frac{\eta}{2 l_{j}} \sin l_{j} t, \quad S(j)=\sqrt{\frac{\lambda_{j}^{\beta}}{4 \gamma \lambda_{j}^{\beta}-\eta^{2}}} .
\end{gathered}
$$

Then

$$
e^{-B_{j} s} B B^{*} e^{-B_{j}^{*} s}=\left[\begin{array}{cc}
b(j) c(j) \lambda_{j}^{\beta / 2} I & -b(j) d(j) I \\
-d(j) c(j) \lambda_{j}^{\beta / 2} I & d^{2}(j) I
\end{array}\right] .
$$

Therefore,

$$
\bar{W}_{j}\left(t_{1}\right)=\left[\begin{array}{cc}
\frac{\gamma S(j) \lambda_{j}^{\beta / 2}}{l_{j}} k_{11}(j) & \frac{1}{l_{j}} k_{12}(j) \\
-\gamma S(j) \lambda_{j}^{\beta / 2} k_{21}(j) & k_{22}(j)
\end{array}\right],
$$

where

$$
\begin{gathered}
k_{11}(j)=\int_{0}^{t_{1}} e^{2 c s} \sin ^{2} l_{j} s d s \\
k_{12}(j)=-\int_{0}^{t_{1}} e^{2 c s}\left[\sin l_{j} s \cos l_{j} s-\frac{\eta \sin ^{2} l_{j} s}{2 l_{j}}\right] d s \\
k_{21}(j)=\int_{0}^{t_{1}} e^{2 c s}\left[\sin l_{j} s \cos l_{j} s-\frac{\eta \sin ^{2} l_{j} s}{2 l_{j}}\right] d s \\
k_{22}(j)=\int_{0}^{t_{1}} e^{2 c s}\left[\cos l_{j} s-\frac{\eta \sin l_{j} s}{2 l_{j}}\right]^{2} d s
\end{gathered}
$$

The determinant $\Delta(j)$ of the matrix $\bar{W}_{j}\left(t_{1}\right)$ is

$$
\begin{aligned}
\Delta(j)= & \frac{\gamma S(j) \lambda_{j}^{\beta / 2}}{l_{j}}\left[k_{11}(j) k_{22}(j)-k_{12}(j) k_{21}(j)\right] \\
= & \frac{\gamma S(j) \lambda_{j}^{\beta / 2}}{l_{j}}\left\{\left(\int_{0}^{t_{1}} e^{2 c s} \sin ^{2} l_{j} s d s\right)\left(\int_{0}^{t_{1}} e^{2 c s}\left[\cos l_{j} s-\frac{\eta \sin l_{j} s}{2 l_{j}}\right]^{2} d s\right)\right. \\
& \left.-\left(\int_{0}^{t_{1}} e^{2 c s}\left[\sin l_{j} s \cos l_{j} s-\frac{\eta \sin ^{2} l_{j} s}{2 l_{j}}\right] d s\right)^{2}\right\} .
\end{aligned}
$$

Passing to the limit as j approaches ∞, we obtain

$$
\lim _{j \rightarrow \infty} \Delta(j)=\frac{\left(e^{2 c t_{1}}-1\right)\left(1-2 e^{c t_{1}}+e^{2 c t_{1}}\right)}{2^{4} c^{3}}
$$

Therefore, there exist constants $R_{1}, R_{2}>0$ such that $0<R_{1}<|\Delta(j)|<R_{2}$, $j=1,2,3, \ldots$. Hence,

$$
\bar{W}^{-1}(j)=\frac{1}{\Delta(j)}\left[\begin{array}{cc}
k_{22}(j) & -\frac{1}{l_{j}} k_{12}(j) \\
\gamma S(j) \lambda_{j}^{\beta / 2} k_{21}(j) & \frac{\gamma S(j) \lambda_{j}^{\beta / 2}}{l_{j}} k_{11}(j)
\end{array}\right]=\left[\begin{array}{cc}
b_{11}(j) & b_{12}(j) \\
b_{21}(j) \lambda_{j}^{\beta / 2} & b_{22}(j)
\end{array}\right],
$$

where $b_{n, m}(j)$ are bounded for $n=1,2 ; m=1,2 ; j=1,2, \ldots$ Using the same computation as in Theorem 3.2 we can prove the existence of a constant $L_{2}(\eta, \gamma)$ such that

$$
\left\|W_{j}^{-1}\left(t_{1}\right)\right\|_{Z_{\beta / 2}} \leq L_{2}(\eta, \gamma), \quad j=1,2, \ldots
$$

Now, we define the linear bounded operators $W\left(t_{1}\right): Z_{\beta / 2} \rightarrow Z_{\beta / 2}, W^{-1}\left(t_{1}\right)$: $Z_{\beta / 2} \rightarrow Z_{\beta / 2}$, by

$$
W\left(t_{1}\right) z=\sum_{j=1}^{\infty} W_{j}\left(t_{1}\right) P_{j} z, \quad W^{-1}\left(t_{1}\right) z=\sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j} z
$$

Using these definitions we see that $W\left(t_{1}\right) W^{-1}\left(t_{1}\right) z=z$ and

$$
W\left(t_{1}\right) z=\int_{0}^{t_{1}} T(-s) B B^{*} T^{*}(-s) z d s
$$

Finally, we show that given $z \in Z_{\beta / 2}$ there exists a control $u \in L^{2}\left(0, t_{1} ; X\right)$ such that $G u=z$. In fact, let u be the control

$$
u(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right) z, \quad t \in\left[0, t_{1}\right]
$$

Then

$$
\begin{aligned}
G u & =\int_{0}^{t_{1}} T(-s) B u(s) d s \\
& =\int_{0}^{t_{1}} T(-s) B B^{*} T^{*}(-s) W^{-1}\left(t_{1}\right) z d s \\
& =\left(\int_{0}^{t_{1}} T(-s) B B^{*} T^{*}(-s) d s\right) W^{-1}\left(t_{1}\right) z \\
& =W\left(t_{1}\right) W^{-1}\left(t_{1}\right) z=z
\end{aligned}
$$

Then the control steering an initial state z_{0} to a final state z_{1} in time $t_{1}>0$ is given by

$$
\begin{aligned}
u(t) & =B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) \\
& =B^{*} T^{*}(-t) \sum_{j=1}^{\infty} W_{j}^{-1}\left(t_{1}\right) P_{j}\left(T\left(-t_{1}\right) z_{1}-z_{0}\right) .
\end{aligned}
$$

5. Exact Controllability of the Non-Linear System

Now, we give the definition of controllability in terms of the non-linear systems

$$
\begin{gather*}
z^{\prime}=\mathcal{A} z+B u+F(t, z, u(t)) \quad z \in Z_{\beta / 2}, t>0 \\
z(0)=z_{0} \tag{5.1}
\end{gather*}
$$

For all $z_{0} \in Z_{\beta / 2}$, equation (5.1) has a unique mild solution

$$
\begin{equation*}
z(t)=T(t) z_{0}+\int_{0}^{t} T(t) T(-s)[B u(s)+F(s, z(s), u(s))] d s \tag{5.2}
\end{equation*}
$$

Definition 5.1. We say that system 5.1) is exactly controllable on $\left[0, t_{1}\right], t_{1}>0$, if for all $z_{0}, z_{1} \in Z_{\beta / 2}$ there exists a control $u \in L^{2}\left(0, t_{1} ; X\right)$ such that the solution $z(t)$ of 5.2 corresponding to u, verifies: $z\left(t_{1}\right)=z_{1}$.

Consider the non-linear operator $G_{F}: L^{2}\left(0, t_{1} ; U\right) \rightarrow Z_{\beta / 2}$, given by

$$
\begin{equation*}
G_{F} u=\int_{0}^{t_{1}} T(-s) B(s) u(s) d s+\int_{0}^{t_{1}} T(-s) F(s, z(s), u(s)) d s \tag{5.3}
\end{equation*}
$$

where $z(t)=z\left(t ; z_{0}, u\right)$ is the corresponding solution of 5.2 . Then the following proposition is a characterization of the exact controllability of the non-linear system (5.1).

Proposition 5.2. The system (5.1) is exactly controllable on $\left[0, t_{1}\right]$ if and only if, the operator G_{F} is surjective, that is to say

$$
G_{F} L^{2}\left(0, t_{1} ; X\right)=\operatorname{Range}\left(G_{F}\right)=Z_{\beta / 2}
$$

Lemma 5.3. Let $u_{1}, u_{2} \in L^{2}\left(0, t_{1} ; X\right), z_{0} \in Z_{\beta / 2}$ and $z_{1}\left(t ; z_{0}, u_{1}\right), z_{2}\left(t ; z_{0}, u_{2}\right)$ the corresponding solutions of (5.2). Then

$$
\begin{equation*}
\left\|z_{1}(t)-z_{2}(t)\right\|_{Z_{\beta / 2}} \leq M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{1}-u_{2}\right\|_{L^{2}\left(0, t_{1} ; X\right)} \tag{5.4}
\end{equation*}
$$

where $0 \leq t \leq t_{1}$ and

$$
\begin{equation*}
M=\sup _{0 \leq s \leq t \leq t_{1}}\{\|T(t)\|\|T(-s)\|\} \tag{5.5}
\end{equation*}
$$

Proof. Let z_{1}, z_{2} be solutions of (5.2) corresponding to u_{1}, u_{2} respectively. Then

$$
\begin{aligned}
\left\|z_{1}(t)-z_{2}(t)\right\| \leq & \int_{0}^{t}\|T(t)\|\|T(-s)\|\|B\|\left\|u_{1}(s)-u_{2}(s)\right\| \\
& +\int_{0}^{t}\|T(t)\|\|T(-s)\|\left\|F\left(s, z_{1}(s), u_{1}(s)\right)-F\left(s, z_{2}(s), u_{2}(s)\right)\right\| d s \\
\leq & M[\|B\|+L] \int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|+M L \int_{0}^{t}\left\|z_{1}(s)-z_{2}(s)\right\| d s \\
\leq & M[\|B\|+L] \sqrt{t_{1}}\left\|u_{1}-u_{2}\right\|+M L \int_{0}^{t_{1}}\left\|z_{1}(s)-z_{2}(s)\right\| d s
\end{aligned}
$$

Using Gronwall's inequality, we obtain

$$
\left\|z_{1}(t)-z_{2}(t)\right\|_{Z_{\beta / 2}} \leq M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{1}-u_{2}\right\|_{L^{2}\left(0, t_{1} ; X\right)}
$$

for $0 \leq t \leq t_{1}$.
Now, we are ready to formulate and prove the main Theorem of this section.
Theorem 5.4. If in addition of condition 2.8,

$$
\begin{equation*}
\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| K\left(t_{1}\right) t_{1}<1 \tag{5.6}
\end{equation*}
$$

where $K\left(t_{1}\right)=M[\|B\|+L] e^{M L t_{1}} t_{1}+1$, then the non-linear system (5.1) is exactly controllable on $\left[0, t_{1}\right]$.
Proof. Given the initial state z_{0} and the final state z_{1}, and $u_{1} \in L^{2}\left(0, t_{1} ; X\right)$, there exists $u_{2} \in L^{2}\left(0, t_{1} ; X\right)$ such that

$$
0=z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{1}(s), u_{1}(s)\right) d s-\int_{0}^{t_{1}} T(-s) B u_{2}(s) d s
$$

where $z_{1}(t)=z\left(t ; z_{0}, u_{1}\right)$ is the corresponding solution of (5.2). Moreover, u_{2} can be chosen as

$$
u_{2}(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{1}(s), u_{1}(s)\right) d s\right)
$$

For such u_{2} there exists $u_{3} \in L^{2}\left(0, t_{1} ; X\right)$ such that

$$
0=z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{2}(s), u_{2}(s)\right) d s-\int_{0}^{t_{1}} T(-s) B u_{3}(s) d s
$$

where $z_{2}(t)=z\left(t ; z_{0}, u_{2}\right)$ is the corresponding solution of 5.2$)$, and u_{3} can be taken as follows:

$$
u_{3}(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{2}(s), u_{2}(s)\right) d s\right)
$$

Following this process we obtain two sequences

$$
\left\{u_{n}\right\} \subset L^{2}\left(0, t_{1} ; X\right), \quad\left\{z_{n}\right\} \subset L^{2}\left(0, t_{1} ; Z_{\beta / 2}\right), \quad\left(z_{n}(t)=z\left(t ; z_{0}, u_{n}\right)\right) n=1,2, \ldots
$$

such that

$$
\begin{align*}
& u_{n+1}(t)=B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{n}(s), u_{n}(s)\right) d s\right) \tag{5.7}\\
& 0=z_{1}-\int_{0}^{t_{1}} T(-s) F\left(s, z_{n}(s), u_{n}(s)\right) d s-\int_{0}^{t_{1}} T(-s) B u_{n+1}(s) d s \tag{5.8}
\end{align*}
$$

Now, we shall prove that $\left\{z_{n}\right\}$ is a Cauchy sequence in $L^{2}\left(0, t_{1} ; Z_{\beta / 2}\right)$. In fact, from formula (5.7) we obtain that

$$
\begin{aligned}
& u_{n+1}(t)-u_{n}(t) \\
& =B^{*} T^{*}(-t) W^{-1}\left(t_{1}\right)\left(\int_{0}^{t_{1}} T(-s)\left(F\left(s, z_{n-1}(s), u_{n-1}(s)\right)-F\left(s, z_{n}(s), u_{n}(s)\right)\right) d s\right) .
\end{aligned}
$$

Hence, using lemma 5.3 we obtain

$$
\begin{aligned}
& \left\|u_{n+1}(t)-u_{n}(t)\right\| \\
& \leq\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| \int_{0}^{t_{1}}\left(\left\|z_{n}(s)-z_{n-1}(s)\right\|+\left\|u_{n}(s)-u_{n-1}(s)\right\|\right) d s \\
& \leq\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| \int_{0}^{t_{1}} M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{n}(s)-u_{n-1}(s)\right\| d s \\
& \quad+\|B\| M L\left\|W^{-1}\left(t_{1}\right) \int_{0}^{t_{1}}\right\| u_{n}(s)-u_{n-1}(s) \| d s
\end{aligned}
$$

Using Hóder's inequality, we obtain

$$
\begin{equation*}
\left\|u_{n+1}-u_{n}\right\|_{L^{2}\left(0, t_{1} ; X\right)} \leq\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| K\left(t_{1}\right) t_{1}\left\|u_{n+1}-u_{n}\right\|_{L^{2}\left(0, t_{1} ; X\right)} \tag{5.9}
\end{equation*}
$$

Since $\|B\| M L\left\|W^{-1}\left(t_{1}\right)\right\| K\left(t_{1}\right) t_{1}<1$, it follows that $\left\{u_{n}\right\}$ is a Cauchy sequence in $L^{2}\left(0, t_{1} ; X\right)$. Therefore, there exists $u \in L^{2}\left(0, t_{1} ; X\right)$ such that $\lim _{n \rightarrow \infty} u_{n}=u$ in $L^{2}\left(0, t_{1} ; X\right)$.

Let $z(t)=z\left(t ; z_{0}, u\right)$ the corresponding solution of 5.2$)$. Then we shall prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{t_{1}} T(-s) F\left(s, z_{n}(s), u_{n}(s)\right) d s=\int_{0}^{t_{1}} T(-s) F(s, z(s), u(s)) d s
$$

In fact, using lemma 5.3 we obtain that

$$
\begin{aligned}
& \left\|\int_{0}^{t_{1}} T(-s)\left[F\left(s, z_{n}(s), u_{n}(s)\right)-F(s, z(s), u(s))\right] d s\right\| \\
& \leq \int_{0}^{t_{1}} M L\left[\left\|z_{n}(s)-z(s)\right\|+\left\|u_{n}(s)-u(s)\right\|\right] d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{t_{1}} M L\left[M[\|B\|+L] e^{M L t_{1}} \sqrt{t_{1}}\left\|u_{n}-u\right\|_{L^{2}\left(0, t_{1} ; X\right)}+\left\|u_{n}(s)-u(s)\right\|\right] d s \\
& \leq M L K\left(t_{1}\right) \sqrt{t_{1}}\left\|u_{n}-u\right\|_{L^{2}\left(0, t_{1} ; X\right)}
\end{aligned}
$$

From here we obtain the result. Finally, passing to the limit in (5.8) as n approaches ∞, we obtain

$$
0=z_{1}-\int_{0}^{t_{1}} T(-s) F(s, z(s), u(s)) d s-\int_{0}^{t_{1}} T(-s) B u(s) d s
$$

i.e., $G_{F} u=z_{1}$.

References

[1] S. Chen, R. Triggiani; "Proof of Extensions of two Conjectures on Structural Damping for Elastic Systems" Pacific Journal of Mathematics Vol. 136, N0. 1, 1989
[2] R. F. Curtain , A. J. Pritchard; "Infinite Dimensional Linear Systems", Lecture Notes in Control and Information Sciences, Vol. 8. Springer Verlag, Berlin (1978).
[3] L. Garcia, H. L; "Center Manifold and Exponentially Bounded Solutions of a Forced Newtonian System with Dissipation"E. Journal Differential Equations. conf. 05, 2000, pp. 69-77.
[4] I. Lasiecka and R. Triggiani; "Exact Null Controllability of Structurally Damped and Thermoelastic Models". Atti della Accademia dei Lincei, Serie IX, vol IX, pp 43-69, 1998.
[5] H. Leiva; "Existence of Bounded Solutions of a Second Order System with Dissipation" J. Math. Analysis and Appl. 237, 288-302(1999).
[6] H. Leiva; "Existence of Bounded Solutions of a Second Order Evolution Equation and Applications", Journal Math. Physics. Vol. 41, N0 11, 2000.
[7] H. Leiva; "A Lemma on C_{0}-Semigroups and Applications", Quaestiones Mathematicae 26(2003) 1-19.
[8] H. Leiva, H. Zambrano; "Rank condition for the controllability of a linear time-varying system", International Journal of Control, Vol. 72, 920-931(1999)
[9] R. Temam; "Infinite-Dimensional Dynamical Systems in Mechanics and Physics", In Applied Math. Sciences, Springer-Verlag, Berlin, 1988, Vol. 68.

Department of Mathematics, Universidad de los Andes, Merida 5101, Venezuela
E-mail address: hleiva@ula.ve

[^0]: 2000 Mathematics Subject Classification. 34G10, 35B40.
 Key words and phrases. Non-linear generalized wave equations; strongly continuous groups; exact controllability; Sine-Gordon equation.
 (C) 2005 Texas State University - San Marcos.

 Published May 30, 2005.

