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THE DIVISION METHOD FOR SUBSPECTRA OF
SELF-ADJOINT DIFFERENTIAL VECTOR-OPERATORS

MAKSIM SOKOLOV

Abstract. We discuss the division method for subspectra which appears to

be one of the key approaches in the study of spectral properties of self-adjoint

differential vector-operators, that is operators generated as a direct sum of
self-adjoint extensions on an Everitt-Markus-Zettl multi-interval system. In

the current work we show how the division method may be applied to ob-

tain the ordered spectral representation and Fourier-like decompositions for
self-adjoint differential vector-operators, after which we obtain the analytical

decompositions for the measurable (relative to a spectral parameter) general-

ized eigenfunctions of a self-adjoint differential vector-operator.

1. Introduction

Problem Overview. We begin with a physical example of a Schrödinger vector-
operator. Gesztesy and Kirsch [6] in particular considered a Schrödinger operator
generated by the Hamiltonian

H = − d2

dx2
+

(
s2 − 1

4
) 1
cos2 x

, s > 0 . (1.1)

Since the potential in Hamiltonian has a countable number of singularities on a
discreet set X in R, leading to spoiling of the local integrability, it is impossible
to apply the standard methods of the theory of ordinary differential operators. In
order to proceed and build a self-adjoint extension of a minimal operator generated
by (1.1) on R \X, one may take self-adjoint extensions Ti, generated by the same
Hamiltonian (1.1) in the coordinate spaces L2(−π

2 + iπ, π
2 + iπ), i ∈ Z, and then

consider the direct sum operator ⊕i∈ZTi in the space

⊕i∈ZL
2
(
− π

2
+ iπ,

π

2
+ iπ

)
.

This direct sum operator appears to be one of the possible self-adjoint extensions of
the minimal operator considered on R \X. Moreover in the case s > 1 the minimal
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on R \ X operator appears to be essentially self-adjoint and its only self-adjoint
extension is a direct sum operator.

This physical example gave birth to the theory of general differential direct sum
operators, or in the text below vector-operators. Beginning from 1992, the theory
of differential vector-operators has been investigated in connection with their non-
spectral properties in a Hilbert space ([1], [2, 3] and in complete locally convex
spaces [4, 5]. The interest in such a theory is explained by its numerous applications
in theoretical physics and pure mathematics. Thus, physical applications may be
found in a single or a multi-particle quantum mechanics, especially in problems
where a quantum system is split into a number of disconnected subsystems under
the influence of a potential. For applications in quantum mechanics see also the
respective references in [3].

As it was shown in the fundamental works [2] and [3], a differential vector-
operator is an object which resembles an ordinary differential operator by its general
properties, but in fact it has much more complicated structure.

Although the bigger part of studies concerned only non-spectral properties of
differential vector-operators, there has been some development of their spectral
theory recently. Some results describing position of spectra of Schrödinger vector-
operators were presented in 1985 in [6] and the most recent results for general
quasi-differential vector-operators belong to Sobhy El-Sayed Ibrahim [7, 8].

The internal spectral structure of abstract self-adjoint vector-operators was first
investigated in [9], for which see also [10, 11]. The structure of coordinate operators
as differential operators played the key role in [12] where the unitary transformation
making the ordered representation was described in terms of generalized eigenfunc-
tions of a differential vector-operator. These generalized eigenfunctions appear to
be only measurable relative to the spectral parameter, therefore it is an essential
problem to obtain their decomposition over some set of analytical kernels. This
problem is positively solved by Theorem 2.4 of the current work.

Mathematical background. Basic concepts of quasi-differential operators are
well described in [2, 3]. A good reference for operators with real coefficients is the
book of Naimark [13].

Let Ω be a finite or a countable set of indices. On Ω, we have a multi-interval
differential Everitt-Markus-Zettl system {Ii, τi}i∈Ω, where Ii are arbitrary intervals
of the real line and τi are formally self-adjoint differential expressions of a finite
order. This EMZ system generates a family of Hilbert spaces {L2(Ii) = L2

i }i∈Ω

and families of minimal {Tmin,i}i∈Ω and maximal {Tmax,i}i∈Ω differential opera-
tors. Consider a respective family {Ti}i∈Ω of self-adjoint extensions. Further, we
introduce a system Hilbert space L2 = ⊕i∈ΩL

2
i , consisting of the vectors f = ⊕i∈Ωfi

such that fi ∈ L2
i and

‖f‖2 =
∑
i∈Ω

‖fi‖2
i =

∑
i∈Ω

∫
Ii

|fi|2 dx <∞ .

In the space L2 consider the operator T : D(T ) ⊆ L2 → L2, defined on the domain

D(T ) =
{
f ⊆ L2 :

∑
i∈Ω

‖Tifi‖2
i <∞

}
by T f = ⊕i∈ΩTifi.
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The operator T is called a differential vector-operator generated by the self-
adjoint extensions Ti, or a self-adjoint differential vector-operator. If Ω is infinite,
the vector-operator T is called infinite. The operators Ti are called coordinate
operators.

The abstract preliminaries for this work may be found, for instance, in books
[14, 15].

Fix i ∈ Ω. For each Ti there exists a unique resolution of the identity Ei
λ and

a unitary operator Ui, making the isometrically isomorphic mapping of the Hilbert
space L2

i onto the space L2(Mi, µi), where the operator Ti is represented as a
multiplication operator. Below, we remind the structure of the mapping Ui.

We call φ ∈ L2
i a cyclic vector if for each z ∈ L2

i there exists a Borel function
f , such that z = f(Ti)φ. Generally, there is no a cyclic vector in L2

i but there
is a collection {φk} of them in L2

i , such that L2
i = ⊕kL

2
i (φ

k), where L2
i (φ

k) are
Ti-invariant subspaces in L2

i generated by the cyclic vectors φk. That is L2
i (φ

k) =
{f(Ti)φk}, for a varying Borel function f , such that φk ∈ D(f(Ti)).

A vector φ ∈ L2
i is called maximal relative to the operator Ti, if each mea-

sure (Ei(·)x, x)i, x ∈ L2
i , is absolutely continuous with respect to the measure

(Ei(·)φ, φ)i.
For each Hilbert space L2

i , there exist a unique (up to unitary equivalence)
decomposition L2

i = ⊕kL
2
i (ϕ

k
i ), where ϕ1

i is maximal in L2
i relative to Ti, and a

decreasing set of multiplicity sets ei
k, where ei

1 is the whole line, such that ⊕kL
2
i (ϕ

k
i )

is equivalent with ⊕kL
2(ei

k, µi), where the measure of the ordered representation
is defined as µi(·) = (Ei(·)ϕ1

i , ϕ
1
i )i. A spectral representation of Ti in ⊕kL

2(ei
k, µi)

is called the ordered representation and it is unique, up to a unitary equivalence.
Two operators are called equivalent, if they create the same ordered representation
of their spaces.

For i ∈ Ω, we introduce a sliced union of sets Mi (see also preliminaries) as a set
M , containing all Mi on different copies of ∪i∈ΩMi. The sets Mi do not intersect in
M , but they can superpose, i.e. two sets Mi and Mj superpose, if their projections
in the set ∪i∈ΩMi intersect.

For zi ∈ L2
i , i ∈ Ω, define ẑi = {0, . . . , 0, zi, 0, . . . , 0} ∈ L2, where zi is on the

i-th place.
For each i ∈ Ω, let δ(Ti) denote the subspectrum of the operator Ti, i.e. δ(Ti) =

σpp(Ti) ∪ σ∗cont(Ti), where σpp(Ti) is the set of eigenvalues which may be open and
σ∗cont(Ti) is the continuous spectrum with a removed set of spectral measure zero.
σ∗cont(Ti) may be also open. Note that δ(Ti) = σ(Ti). For instance, the subspectrum
of an operator having the complete system of eigenfunctions with eigenvalues being
the rational numbers of [0, 1] equals to Q ∩ [0, 1]; the subspectrum of an operator
having the continuous spectrum [0,1] is assumed to equal to (0,1) without loss of
generality. The notion of the subspetrum arises quite naturally. Indeed, let we are
given a self-adjoint operator A with a simple spectrum σ(A) = [a, b]. Choosing
any point ξ ∈ σ(A) we can obtain σ(A) = [a, ξ) ∪ [ξ, b]. If we are interested in
obtaining a formula A1 ⊕A2 = A, where σ(A1) = [a, ξ] and σ(A2) = [ξ, b], we have
to suppose that ξ 6∈ σpp(A). But if we pass to subspectra, we will not need to care
about inessential points appearing as limit points.

Consider a projecting mapping P : M → ∪i∈ΩMi such that P (δ(Ti)) = δ(Ti).
Let Ω = ∪K

k=1Ak, Ak ∩As = ∅ for k 6= s and

Ak = {s ∈ Ω : ∀s, l ∈ Ak, s 6= l , P (δ(Ts)) ∩ P (δ(Tl)) = Bsl ,
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where ‖Et(Bsl)ϕt‖2
t = 0 for any cyclic ϕt ∈ L2

t , t = s, l}. From all such divisions
of Ω we choose and fix the one, which contains the minimal number of Ak. In case
when all the coordinate spectra σ(Ti) are simple, we define the number Λ = min{K}
as the spectral index of the vector-operator T .

The following two lemmas were proved in [9].

Lemma 1.1. The identity resolution {Eλ} of the vector-operator T equals to the
direct sum of the coordinate identity resolutions {Ei

λ}, that is {Eλ} = ⊕i∈Ω{Ei
λ}

Lemma 1.2. Let each Ti have a cyclic vector ai in L2
i . Then the vector-operator

T has minimum Λ cyclic vectors {ak}Λ
k=1, having the form ak =

∑
i∈Ak

âi.

In the next section we will see what a spectral multiplicity of a vector-operator
is. Nevertheless, this notation is intuitively clear. Running ahead, let us present
here two examples, which will show the difference between the spectral index and
the spectral multiplicity of the vector-operator T .
Example 1. We have a three-interval EMZ system {Ii, τi, 1}3

i=1 (a kinetic energy,
a mirror kinetic energy, an impulse):

I1 = [0,+∞), τ1 = −
( d
dt

)2
,

D(T1) = {f ∈ D(Tmax,1) : f(0) + kf ′(0) = 0,−∞ < k 6 ∞};

I2 = [0,+∞), τ2 =
( d
dt

)2
,

D(T2) = {f ∈ D(Tmax,2) : f(0) + sf ′(0) = 0,−∞ < s 6 ∞};

I3 = [0, 1], τ3 =
1
i

d

dt
,

D(T3) = {f ∈ D(Tmax,3) : f(0) = eiαf(1), α ∈ [0, 2π]}.
(a) If k, s ∈ (−∞, 0] ∪ {+∞} then

δ(T1) = (0,+∞), δ(T2) = (−∞, 0), δ(T3) =
∞⋃

n=−∞
(2πn− α).

For this system we have: {1, 2, 3} = ∪2
k=1Ak and A1 = {1, 2}, A2 = {3}. Thus,

here the spectral index does not coincide with the spectral multiplicity (which is 1)
and equals 2.
(b) The case 0 < k, s < +∞ leads to

δ(T1) = {− 1
k2
} ∪ (0,+∞), δ(T2) = (−∞, 0) ∪ { 1

s2
}, δ(T3) =

∞⋃
n=−∞

(2πn− α).

If

α 6∈
[ ∞⋃

n=−∞
(2πn+

1
k2

)
]⋃ [ ∞⋃

n=−∞
(2πn− 1

s2
)
]
,

we have A1 = {1}, A2 = {2}, A3 = {3}. That is Λ = 3 but ⊕3
i=1Ti has a simple

spectrum.
Example 2. Let us have a vector-operator ⊕3

i=1Ti with

δ(T1) =
⋃

n∈Z,n>0

n, δ(T2) =
⋃

n∈Z,n60

n, δ(T3) =
⋃

n∈Z,n 6=0

n.

The spectral index is 3 but spectral multiplicity is 2.
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Definition 1.3. A vector-operator T = ⊕i∈ΩTi with the simple coordinate spectra
σ(Ti) is called distorted if its spectral index does not equal its spectral multiplicity.

Generally it is not possible to build a spectral representation for a distorted
vector-operator without applying the division method, but in some cases (Example
1) Theorem 1.2 may lead to the construction of a spectral representation even for
some distorted vector-operators. If we want to obtain an ordered spectral repre-
sentation for any self-adjoint vector-operator, only implementation of the division
method can achieve this.

2. The division method for subspectra (DMS)

Below we present the three theorems (2.1, 2.2 and 2.3) without their complete
proofs. Only the structural parts of the proofs essential for the demonstration of the
DMS are presented. The complete proof of Theorem 2.1 may be found in [11, 10]
and refer to [12] for the proofs of Theorems 2.2 and 2.3.

Theorem 2.1. If θi and {ei
n}

mi
n=1 are measures and multiplicity sets of ordered

representations for coordinate operators Ti, i ∈ Ω, then there exist processes Pr1
and Pr2, such that the measure

θ = Pr1({θi}i∈Ω)

is the measure of an ordered representation and the sets

sn = Pr2({ei
k}i∈Ω; k=1,mi

)

are the canonical multiplicity sets of the ordered representation of the operator T .
Thus, the unitary representation of the space L2 on the space ⊕nL

2(sn, θ) is the
ordered representation and it is unique up to unitary equivalence.

Proof. We divide the proof into units for convenience. Parts (A) and (B) represent
the DMS.
(A) Let ai be maximal vectors relative to the operators Ti in L2

i . We want to find a
maximal vector relative to the vector-operator T . We know, that the vector ⊕i∈Ωai

does not give a single measure, if a set P (δ(Ti))∩P (δ(Tj)) has a non-zero spectral
measure for i 6= j. Consider restrictions Ti|L2

i (ai) = T ′i . Since all the operators T ′i
have single cyclic vectors ai, we can divide Ω into Ak, k = 1,Λ and apply Lemma
1.2 for the operator ⊕i∈ΩT

′
i . Then we have derive Λ vectors ak = ⊕j∈Ak

aj , which
are maximal in the respective spaces L2(ak) = ⊕j∈Ak

L2
j (aj).

(B) Let now 1 < Λ <∞. Define T k = ⊕j∈Ak
T ′j . For any two operators T k and T s,

k 6= s, let us introduce the sets δk,s = P (δ(T k))∩P (δ(T s)) and δk = P (δ(T k))\δk,s.
There exist unitary representations

Uk : L2(ak) → L2(R, µak).

Consider measures µk and µk,s, defined as

µk,s(e) = µak(e ∩ δk,s)

and µk(e) = µak(e ∩ δk), for any measurable set e. For any operator T k (with
respect to T s), measures µk and µk,s are mutually singular and µk + µk,s = µak ;
therefore,

L2(R, µak) = L2(R, µk)⊕ L2(R, µk,s).
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This means that (according to our designations):

Uk−1
: L2(R, µak) −→ L2(ak

k)⊕ L2(ak
k,s)

and
ak = ak

k ⊕ ak
k,s, (2.1)

where ak
k and ak

k,s form the measures µk and µk,s respectively. Define also as
max{w,ψ} the vector, which is maximal of the two vectors in the brackets (Note
that this designation is valid only for vectors, considered on the same set. In
order not to complicate the investigation we assume here that any two vectors are
comparable in this sense. In order to achieve this, it is enough to decompose each
coordinate operator Ti into the direct sum T pp

i ⊕ T cont
i , where the operators have

respectively pure point and continuous spectra. Then after redesignation we obtain
the equivalent vector-operator to the initial vector-operator ⊕Ti).

Consider first two operators T 1 and T 2. It is clear, that the vector

a1⊕2 = a1
1 ⊕ a2

2 ⊕max
{
a1

1,2,a
2
2,1

}
is maximal in L2(a1)⊕L2(a2). Note that a1

1 and a2
2 and they both may equal zero.

The maximal vector in L2(a1)⊕ L2(a2)⊕ L2(a3) will have the form:

a1⊕2⊕3 = a1⊕2
1⊕2 ⊕ a3

3 ⊕max
{
a1⊕2

1⊕2,3,a
3
3,1⊕2

}
,

where a1⊕2
1⊕2 is the narrowed vector a1⊕2, corresponding to the set which is free from

the superposition with δ(T3), as shown in (2.1).
Continuing this process, we obtain a maximal vector in the main space L2:

a1⊕···⊕Λ = a1⊕···⊕Λ−1
1⊕···⊕Λ−1 ⊕ aΛ

Λ ⊕max
{
a1⊕···⊕Λ−1

1⊕···⊕Λ−1,Λ,a
Λ
Λ,1⊕···⊕Λ−1

}
. (2.2)

Let Λ = ∞. We obtain a1⊕···⊕Λ as a vector which satisfies the following equality:∥∥[⊕i∈ΩE
i(·)]a1⊕···⊕Λ

∥∥2
= lim

L→∞

∥∥[⊕L
j=1E

j(·)]a1⊕···⊕L
∥∥2
, (2.3)

since the limit on the right side exists.
(C) The next step is to build the measure of the ordered representation for the
vector-operator. From Lemma 1.1 and the reasonings above, it follows that such a
measure will be

θ(·) =
(
[⊕i∈ΩE

i(·)]a1⊕···⊕Λ,a1⊕···⊕Λ
)
.

(D) The canonical multiplicity sets sn of the vector-operator have the form:

sn =
[ ⋃

i

P (ei
n)

] ⋃ [ ⋃
P

mi>n

⋂
P

(
ei
mi
\ei

mi+1

) ]
. (2.4)

�

Example 3. Let us have a vector-operator T = ⊕5
i=1Ti, generated by five coordi-

nate operators with simple continuous spectra:

δ(T1) = (0, 2), δ(T2) = (1, 3), δ(T3) = (2, 4), δ(T4) = (3, 6), δ(T5) = (0, 4).

Divide Ω = {1, 2, 3, 4, 5} into Ak:

A1 = {1, 3}, A2 = {2, 4}, A3 = {5}.
The spectral index Λ is 3 and we pass to the three operators

T 1 = T1 ⊕ T3, T 2 = T2 ⊕ T4, T 3 = T5,
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with maximal elements respectively:

a1 = a1 ⊕ a3, a2 = a2 ⊕ a4, a3 = a5.

Consider first two sub-vector-operators T 1 and T 2. Find elements a1
1, a1

1,2, a2
2, a2

2,1.
Since the spectra are continuous, we may assume that

max{a1
1,2,a

2
2,1} = a1

1,2.

We derive a maximal vector a1⊕2 in the space ⊕4
i=1L

2
i :

a1⊕2 = a1
1 ⊕ a1

1,2 ⊕ a2
2 = a1 ⊕ a2

2.

Apply the DMS to the vectors a1⊕2 and a3. We obtain the vecotrs

a1⊕2
1⊕2, a1⊕2

1⊕2,3, a3
3,1⊕2 = a3, a3

3 = 0.

Eventually, we find the maximal element in ⊕5
i=1L

2
i = ⊕3

k=1L
2(ak):

a1⊕2⊕3 = a1⊕2
1⊕2⊕max{a1⊕2

1⊕2,3,a
3}⊕ 0 = a1⊕2

1⊕2⊕a1⊕2
1⊕2,3⊕ 0 = a1⊕2⊕ 0 = a1⊕a2

2⊕ 0.

It is easy to see that the multiplicity sets for the initial vector-operator are: s1 = R,
s2 = (0, 4), s3 = (1, 4).

Let us return to Examples 1 and 2. For the distorted vector-operator T1⊕T2⊕T3

from Example 1, a spectral measure will be constructed on the maximal vector
a1⊕2⊕3. The multiplicity sets si, i > 2 have measures zero. For the vector-operator
from Example 2 two spectral measures are constructed on a1⊕2⊕3 and

min{a1
1,2, a

2
2,1} ⊕min{a2

2,3, a
3
3,2} ⊕min{a3

3,1, a
1
1,3},

where the sense of the minimums is clear. The multiplicity set s2 will be

[P (δ(T1)) ∩ P (δ(T2))] ∪ [P (δ(T2)) ∩ P (δ(T3))] ∪ [P (δ(T3)) ∩ P (δ(T1))].

Now the term ’distorted vector-operator’ is clearly explained by the form of the
cyclic vectors for such an operator.

Let I =
∨

i∈Ω Ii denote the sliced union of intervals Ii. Similarly, Ik =
∨

j∈Ak
Ij .

If xi are variables on Ii, then ∨xi will designate a variable either on I or Ik de-
pending on the context. This notation shows, that a vector-function

z = {z1(x1), . . . , zn(xn), . . . }
on I or Ik may be written as z(∨xi). In particular, we may also write z(∨xi)
instead of z = ⊕i∈Ωzi.

Let us introduce the space ⊕i∈ΩL
∞(In

i ). Here, z(∨xi) ∈ ⊕i∈ΩL
∞(In

i ) means
that

sup
i∈Ω

{
ess sup

xi∈In
i

|zi(xi)|
}
<∞,

where for each i, families {In
i }∞n=1 represent compact subintervals of Ii, such that

∪∞n=1I
n
i = Ii. In [4, Lemma 2.1], it was shown that ⊕i∈ΩL

∞(In
i ) = (⊕i∈ΩL

1(In
i ))∗,

where the space of Lebesgue-integrable vector-functions ⊕i∈ΩL
1(In

i ) is defined anal-
ogously to L2.

We also need to introduce a symbolic integral
∫W

Ji
f(∨xi) d(∨xi) defined by:∫

W
Ji

f(∨xi) d(∨xi) = ⊕i

∫
Ji

fi(xi) dxi,

where f(∨xi) is understood to be measurable relative to d(∨xi), if fi(xi) are mea-
surable relative to Lebesgue measures dxi.
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Theorem 2.2. Let T be a self-adjoint vector-operator, generated by an EMZ sys-
tem {Ii, τi}i∈Ω. Let U be an ordered representation of the space L2 = ⊕i∈ΩL

2(Ii)
relative to T with the measure θ and the multiplicity sets sk, k = 1,m. Then there
exist kernels Θk(∨xi, λ), measurable relative to d(∨xi)×θ, such that Θk(∨xi, λ) = 0
for λ ∈ R \ sk and (⊕i∈Ωτi − λ)Θk(∨xi, λ) = 0 for each fixed λ. Moreover for any
bounded Borel set ∆,∫

∆

|Θk(∨xi, λ)|2 dθ(λ) ∈ ⊕i∈ΩL
∞(In

i ) ∀n ∈ N. (2.5)

(Uw)k(λ) = lim
n→∞

∫
In

w(∨xi) Θk(∨xi, λ) d(∨xi), w ∈ L2, (2.6)

where the limit exists in L2(sk, θ). The kernels {Θk(∨xi, λ)}n
k=1, n 6 m, are lin-

early independent as vector-functions of the first variable almost everywhere relative
to the measure θ on sn.

Proof. We again need the DMS to prove this theorem. Fix i. If θi and {ei
p}

mi
p=1

are respectively the measure and the multiplicity sets of an ordered representation
for Ti, then there exists the decomposition L2

i = ⊕mi
p=1L

2(ei
p, θi), which implies

Ti = ⊕mi
p=1T

p
i and L2(ei

p, θi) are T p
i -invariant. For vector-operator (⊕i∈Ω⊕mi

p=1T
p
i ) →

redesignate → ⊕sTs, s = {i, p} ∈ Ω1, we may write Ω1 = ∪Λ
k=1Ak.

Let us separate the proof into units for convenience.
(A) For each Tj , j ∈ Ak and k = 1,Λ, there exists a single cyclic vector aj ∈ L2

j

and [15, XII.3, Lemma 9 and XIII.5, Theorem 1(I)] a function Wj(xj , λ) defined
on Ij × ej (note, that for a fixed i ∈ Ω, Ij = Ii for all p = 1,mi) and measurable
relative to dxj × µaj

, such that Wj(xj , λ) = 0, λ ∈ R \ ej and for any bounded
∆ ⊂ ej :

∫
∆
|Wj(xj , λ)|2 dµaj

(λ) ∈ L∞(In
j ), n ∈ N. Also(

Ej(∆)Fj(Tj)aj

)
(xj) =

∫
∆

Wj(xj , λ)Fj(λ) dµaj
(λ), (2.7)

for any Fj ∈ L2(ej , µaj
). On Ik =

∨
j∈Ak

Ij , we construct the vector-function

W k(∨xj , λ) = {W1(x1, λ), . . . ,Wn(xn, λ), . . . },

which is obviously measurable relative to d(∨xj)×
∑
µaj . Separate arguments show

that this vector-function is a correctly constructed generalized eigenfunction and
thus satisfies the statement of the theorem within each Ak.

Note that since for all p = 1,mi there exists the equality (τi − λ)W p
i = 0 (see

[15, XIII.5, Theorem 1]), it is obvious that (⊕j∈Ak
τj − λ)W k = 0, where τj = τi

for a fixed i and all p = 1,mi. If P (δ(Ti)) ∩ P (δ(Tj)) has zero spectral measures
for all i, j ∈ Ω, then Ak : Ω1 = ∪Λ1

k=1Ak may be constructed such that Ak contains
of indices {i, k}, i ∈ Ω, k = 1,maxi{mi}.
(B) Consider the set of indices Ω2 = {j ∈ Ω1 : j = {i, 1}, i ∈ Ω}. Construct
Ak : Ω2 = ∪Λ2

k=1Ak. Apply the reasonings used in (A), considering everywhere Ω2

instead of Ω1. Hence, for each Ak and we find a vector-function W k
1 (∨xj , λ) which

is the solution of the equation (⊕j∈Ak
τj−λ)y = 0. Consider W k

1 and W s
1 for s 6= k.

For ak there exists the decomposition ak = ak
k ⊕ ak

k,s (see the proof of Theorem
2.1). This fact induces the decomposition for W k

1 : W k
1 = W k

1,k ⊕W k
1,k,s. It is clear

that being the restrictions of W k
1 , the vector-functions W k

1,k and W k
1,k,s are also

the solutions of the equation (⊕j∈Ak
τj − λ)y = 0. They, along with ak

k and ak
k,s



EJDE/CONF/13 THE DIVISION METHOD FOR SUBSPECTRA 109

define unitary transformations Uk
k and Uk

k,s, such that: Uk
k : L2(ak

k) → L2(R, µk)
and Uk

k,s : L2(ak
k,s) → L2(R, µk,s) (see the proof of Theorem 2.1). This implies,

that the decomposition W k = W k
1,k ⊕W k

1,k,s is correct.
Define as max{W k

1,k,s,W
s
1,s,k} the vector-function, which corresponds to the vec-

tor max{ak
k,s,a

s
s,k}, respectively min{W k

1,k,s,W
s
1,s,k} as the vector-function which

corresponds to that ak
k,s or as

s,k, which is not maximal of the two.
(C) Without loss of generality, suppose that k = 1 and s = 2. From the reasonings
presented in Part (A) of this proof, it follows that

Θ1⊕2
1 = W 1

1,1 ⊕W 2
1,2 ⊕max

{
W 1

1,1,2,W
2
1,2,1

}
is correctly constructed vector-function satisfying the statement of the theorem for
the case T = [⊕j∈A1Tj ] ⊕ [⊕q∈A2Tq]. Apply the above described process to Θ1⊕2

1

and W 3
1 to obtain the correctly constructed vector-function:

Θ1⊕2⊕3
1 = Θ1⊕2

1,1⊕2 ⊕W 3
1,3 ⊕max

{
Θ1⊕2

1,1⊕2,3,W
3
1,3,1⊕2

}
.

Continuing this process, we finally obtain:

Θ1(∨xi, λ) = Θ1⊕···⊕Λ2
1

= Θ1⊕···⊕Λ2−1
1,1⊕···⊕Λ2−1 ⊕WΛ2

1,Λ2
⊕max

{
Θ1⊕···⊕Λ2−1

1,1⊕···⊕Λ2−1,Λ2
,WΛ2

1,Λ2,1⊕···⊕Λ2−1

}
,

where in the case of Λ2 = ∞, Θ1⊕···⊕Λ2
1 is the function which satisfies (analogously

to (2.3)):∥∥[⊕i∈ΩE
i(∆)]

∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ)

∥∥2 = lim
L→∞

∥∥[⊕L
j=1E

j(∆)]
∫

∆

Θ1⊕···⊕L
1 dθL(λ)

∥∥2
,

(2.8)
for any bounded Borel set ∆, where

θL(·) =
(
[⊕L

j=1E
j(·)]a1⊕···⊕L,a1⊕···⊕L

)
is the measure of the ordered representation of the space ⊕L

j=1L
2
j . The limit on the

right side exists and in fact it appears that∫
∆

Θ1⊕···⊕L
1 dθL(λ) →

∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ),

as L→∞.
(D) Define Ω3 = {j ∈ Ω1 : j = {i, 2}, i ∈ Ω}. Construct Ak : Ω3 = ∪Λ3

k=1Ak. Apply
processes (B) and (C) of this proof, substituting everywhere Ω3 instead of Ω2. We
obtain a vector-function Θ1⊕···⊕Λ3

2 , which is defined on the set ∪iP (ei
2). But, as

we know (see (2.4)), the set s2 also includes the sets where there are non-empty
superpositions of δ(Ti). Therefore, designating

Θ1
2 = Θ1⊕···⊕Λ3

2 , Θ2
2 = min{W 1

1,1,2,W
2
1,2,1}, . . . ,

ΘΛ2+1
2 = min

{
Θ1⊕···⊕Λ2−1

1,1⊕···⊕Λ2−1,Λ2
,WΛ2

1,Λ2,1⊕···⊕Λ2−1

}
,

we may again use the process (C) to build the vector-function Θ2(∨xi, λ) defined
on s2 and Θ2(∨xi, λ) = 0 for λ ∈ R \ s2. Using processes (B), (C), (D) and formula
(2.4), we finally obtain Θm(∨xi, λ).
(E) The linear independence is proved by separate arguments. �
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Theorem 2.3 (Eigenfunction expansions). For any w ∈ L2, there exists a decom-
position

w =
m∑

k=1

lim
n→∞

∫ +n

−n

(Uw)k(λ)Θk(∨xi, λ) dθ(λ),

Since the kernels from Theorem 2.2 are only measurable relative to λ, the fol-
lowing theorem is important:

Theorem 2.4. Each kernel Θk(∨xi, λ), k = 1,m, may be decomposed as

Θk(∨xi, λ) =
Mk∑
s=1

γsk(λ)σsk(∨xi, λ), (2.9)

where the Mk are finite for each k and σsk(∨xi, λ) depend analytically on λ.

Proof. We separate the proof in parts which will correspond to the analogous parts
of the proof of Theorem 2.2.
(A*) Each kernel Wj(xj , λ) from the part (A) of the proof of Theorem 2.2 may be
decomposed:

Wj(·, λ) =
nj∑

s=1

αjs(λ)σjs(·, λ),

where αjs are supposed to equal zero on R \ ej , see [15, p. 1351]. Supplementing
the defining systems with zeros where necessary, we obtain:

W k(∨xj , λ) = ⊕j∈Ak
Wj(xj , λ)

= ⊕j∈Ak

nj∑
s=1

αjs(λ)σjs(xj , λ)

=
Nk∑
q=1

⊕j∈Ak
αjq(λ)σjq(xj , λ)

=
Nk∑
q=1

αk
q (λ)σk

q (∨xj , λ),

where

Nk = max
j∈Ak

nj , αk
q (λ) =

∑
j∈Ak

αjq(λ), σk
q (∨xj , λ) = ⊕j∈Ak

σjq(xj , λ).

Since ej and ek do not intersect almost everywhere for j, k ∈ Ω2, j 6= k, the series∑
j∈Ak

αjq(λ) converges almost everywhere on ∪j∈Ω2P (ej).
(B*) and (C*) Now pass to the part (B). There we obtained the decompositions

W k
1 = W k

1,k ⊕W k
1,k,s and W s

1 = W s
1,s ⊕W s

1,s,k. Let us totally order the set {T j}Λ2
j=1

saying that T k � T s if max{W k
1,k,s,W

s
1,s,k} = W k

1,k,s. At that, T k ' T s if and only
if T k � T s and T s � T k. According to this, we build ⊕Λ2

j=1T
j , where T j � T j+1,

j = 1,Λ2 − 1 if Λ2 > 2. The obtained vector-operator is obviously equivalent to
the initial vector-operator (comprising unordered operators). Note that

W k
1 (∨xi, λ) =

Nk∑
q=1

αk
1q(λ)σk

1q(∨xj , λ)
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and analogously

W s
1 (∨xi, λ) =

Ns∑
p=1

αs
1p(λ)σs

1p(∨xj , λ).

All the above leads to the following equality:

Θ1⊕2
1 = W 1

1,1 ⊕W 2
1,2 ⊕max

{
W 1

1,1,2,W
2
1,2,1

}
= W 1

1 ⊕W 2
1,2

=
( N1∑

q=1

α1
1q(λ)σ1

1q(∨xj , λ)
)
⊕

( N2∑
p=1

α2
1p(λ)χδ2(λ)σ2

1p(∨xj , λ)
)

=
N1⊕2∑
s=1

α1⊕2
1s (λ)σ1⊕2

1s (∨xj , λ) ,

where N1⊕2 = max{N1, N2}; α1⊕2
1s (λ) = α1

1s(λ) + α2
1s(λ)χδ2(λ),

σ1⊕2
1s (∨xj , λ) = σ1

1s(∨xj , λ)⊕
(
σ2

1s(∨xj , λ)χδ2(λ)
)
,

s = 1, N1⊕2.
Continuing this process until the finite Λ2, we obtain:

Θ1(∨xi, λ) = Θ1⊕···⊕Λ2
1 =

N1⊕···⊕Λ2∑
s=1

α1⊕···⊕Λ2
1s (λ)σ1⊕···⊕Λ2

1s (∨xj , λ), (2.10)

where N1⊕···⊕Λ2 = max{N1, N2, . . . NΛ2} and for s = 1, N1⊕···⊕Λ2 :

α1⊕···⊕Λ2
1s (λ) = α1

1s(λ) +
Λ2∑
i=2

αi
1s(λ)χδi(λ);

σ1⊕···⊕Λ2
1s (∨xj , λ) = σ1

1s(∨xj , λ)⊕
(
⊕Λ2

i=2σ
i
1s(∨xj , λ)χδi(λ)

)
.

(2.11)

In the case of infinite Λ2, N1⊕···⊕Λ2 is clearly finite. The series in the right side
of (2.11) pointwise converges, since it consists of items defined on non-intersecting
sets. σ1⊕···⊕Λ2

1s (∨xj , λ) is defined by induction.
(D*) Borrowing the designations from (D) and using processes described in (A*)
and (C*), we shall come to the decomposition of Θ1⊕···⊕Λ3

2 :

Θ1⊕···⊕Λ3
2 =

N1⊕···⊕Λ3∑
s=1

α1⊕···⊕Λ3
2s (λ)σ1⊕···⊕Λ3

2s (∨xj , λ).

To obtain Θ2(∨xi, λ), as in (D), we repeat part (C*) for

Θ1
2 = Θ1⊕···⊕Λ3

2 , Θ2
2 = W 2

1,2,1, . . . , ΘΛ2+1
2 = WΛ2

1,Λ2,1⊕···⊕Λ2−1.

Finally, the same way we obtain decompositions for all Θk(∨xi, λ), k = 1,m, which
will have the form (2.9). �
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