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A SOLUTION METHOD OF THE SIGNORINI PROBLEM

AHMED ADDOU, ABDELUAAB LIDOUH, BELKASSEM SEDDOUG

Abstract. In this note, we are interested in the variational formulation of
an unilateral contact problem, the so-called Signorini problem. We show that

the normal derivative of the solution, can be computed according to the data

of the problem. What permits the determination of the solution by solving a
Neumann problem.

1. Introduction

In this work, we are interested in the Signorini problem that consists in finding
u such that

−∆u+ u = f in Ω,

u ≥ 0,
∂u

∂n
≥ 0, u

∂u

∂n
= 0 on Γ,

(1.1)

where Ω is a bounded open subset of R2, which boundary Γ is regular enough, and
f ∈ L2(Ω). Another unknown of the problem is the coincidence set on the border
of Ω.

It is known that the variational principle applied to (1.1) produces the variational
inequality that consists in finding u such that

a(u, v − u) ≥
∫

Ω

f.(v − u) ∀v ∈ K, (1.2)

where a is the scalar product of H1(Ω) and K = {v ∈ H1(Ω) : v ≥ 0 on Γ}.
As in [3], we introduce the function ψ, a solution of the Dirichlet problem,

−∆ψ + ψ = f in Ω
ψ = 0 on Γ,

(1.3)

and we show that the solution of (1.2) is the solution of the variational inequality

a(u, v − u) ≥
∫

Ω

f.(v − u) ∀v ∈ Kψ, (1.4)

where Kψ = {v ∈ H1(Ω) : v ≥ ψ in Ω}.
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To solve problem (1.4), we propose a method that consists in determining first
∂u
∂n , with the help of the data of the problem, then solving a Neumann problem to
determine u.

2. Formulation of the problem

Let Ω be a bounded open subset of R2, with boundary Γ is regular enough. The
Sobolev space H1(Ω) is equipped with its scalar product

a(u, v) =
∫

Ω

∇u.∇vdx+
∫

Ω

u.vdx ∀u, v ∈ H1(Ω).

We denote by K the closed convex cone of H1(Ω) defined as

K = {v ∈ H1(Ω) : v ≥ 0 on Γ}.

Then we consider the variational inequality problem: Find u ∈ K such that

a(u, v − u) ≥
∫

Ω

f.(v − u), ∀v ∈ K, (2.1)

where f ∈ L2(Ω).
In the sequel, we use of the following notations:

v+ = max(v, 0), v− = min(v, 0)

such that v = v+ + v− for all v in L2(Ω) or in L2(Γ).
We will note indifferently a function v of H1(Ω) and its restriction to Γ.

Proposition 2.1. Problem (2.1) is equivalent to the problem: Find u ∈ Kψ such
that

a(u, v − u) ≥
∫

Ω

f.(v − u), ∀v ∈ Kψ, (2.2)

where ψ is given by (1.3) and Kψ = {v ∈ H1(Ω) : v ≥ ψ in Ω}.

Proof. It suffices to show that the solution u of (2.1) is in Kψ, i.e: u ≥ ψ.
Let u be the solution of (2.1). With v = u − (u − ψ)− ∈ K in (2.1), and while

taking account of (1.3), one has

a((u− ψ)−, (u− ψ)−) ≤ 0.

So (u− ψ)− = 0, which implies u ≥ ψ in Ω. �

Using Green’s formula, (2.1) can be written as: Find u ∈ Kψ such that

a(u− ψ, v − u) + 〈∂ψ
∂n

, v − u〉 ≥ 0, ∀v ∈ Kψ, (2.3)

where 〈., .〉 designates the scalar product of L2(Γ), and ∂ψ
∂n the normal derivative of

ψ.
To have ∂ψ

∂n at the same time as ψ, we propose the resolution of (1.3) by enforcing
the boundary condition with Lagrange multipliers (see [4]), then the variational
formulation of (1.3) reads: Find (ψ, λ) ∈ H1(Ω)×H−

1
2 (Γ) such that

a(ψ, v)−
∫

Γ

λv =
∫

Ω

fv, ∀v ∈ H1(Ω),∫
Γ

µψ = 0, ∀µ ∈ H− 1
2 (Γ),

(2.4)
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whose solution is the saddle point of the Lagrangian J (v, µ) = 1
2a(v, v)−

∫
Ω
fv −∫

Γ
µv.
It is known (see [4]) that problem (2.4) has a unique solution (ψ, λ), verifying

−∆ψ + ψ = f in Ω,

λ =
∂ψ

∂n
on Γ,

ψ = 0 on Γ.

(2.5)

Note that f being in L2(Ω), implies ψ in H2(Ω) which implies ∂ψ
∂n in H1/2(Γ).

3. Transformation of the problem

Hereafter we deal with the problem (2.3), and we consider the function ϕ :
L2(Γ) → R defined as

ν 7→ 〈
(∂ψ
∂n

)+
, ν+〉.

Note that ϕ is convex and continuous on L2(Γ).

Proposition 3.1. A function u is a solution of (2.3) if and only if w = u − ψ is
the solution of the problem: Find w ∈ H1(Ω) such that

a(w, v − w) + ϕ(v)− ϕ(w) + 〈
(∂ψ
∂n

)−
, v − w〉 ≥ 0, ∀v ∈ H1(Ω). (3.1)

Proof. Since the two problems (2.3) and (3.1) have an unique solution, it suffices
to show that the solution w of (3.1) is non negative in Ω. Let w be the solution of
(3.1), with v = w+ in (3.1), we have

a(w,−w−) + 〈(∂ψ
∂n

)−,−w−〉 ≥ 0

then a(w−, w−) ≤ 〈
(
∂ψ
∂n

)−
,−w−〉 ≤ 0, so w− = 0. �

We remark that problem (3.1) differs from (2.3) by the fact that it is without
constraints.

Proposition 3.2. A function w is solution of problem (3.1) if and only if (w, µ)
is solution of the problem: Find (w, µ) ∈ H1(Ω)× L2(Γ) such that

a(w, v) + 〈µ, v〉+ 〈(∂ψ
∂n

)−, v〉 = 0 ∀v ∈ H1(Ω),

µ ∈ ∂ϕ(w),
(3.2)

where ∂ϕ(w) = {λ ∈ L2(Γ) : ∀ν ∈ L2(Γ), 〈λ, ν − w〉 ≤ ϕ(ν)− ϕ(w)} designates the
subdifferential of ϕ at w.

Proof. Let w be the solution of (3.1). On the one hand, for all v in H1
0 (Ω), we have

a(w, v) = 0, hence the mapping

v 7→ a(w, v) + 〈(∂ψ
∂n

)−, v〉

is well defined on Γ.
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On the other hand, for all v in H1(Ω), one has

a(w, v) + 〈
(∂ψ
∂n

)−
, v〉 ≥ ϕ(w)− ϕ(v + w)

≥ 〈
(∂ψ
∂n

)+
, w+ − (v + w)+〉

≥ −〈
(∂ψ
∂n

)+
, v+〉

≥ −
∥∥(∂ψ
∂n

)+∥∥
L2(Γ)

‖v|Γ‖L2(Γ).

Using the same argument, and with −v one has

a(w,−v) + 〈(∂ψ
∂n

)−,−v〉 ≥ −
∥∥(∂ψ
∂n

)+∥∥
L2(Γ)

‖v|Γ‖L2(Γ).

Hence for all v in H1(Ω), we have

|a(w, v) + 〈(∂ψ
∂n

)−, v〉| ≤ ‖(∂ψ
∂n

)+‖L2(Γ)‖v|Γ‖L2(Γ).

Therefore, the linear form v 7→ a(w, v) + 〈(∂ψ∂n )−, v〉 is continuous on H1/2(Γ) for
the norm of L2(Γ). Then because of the density of H1/2(Γ) in L2(Γ), there exists
µ in L2(Γ) verifying the equality of (3.2).

Inversely, it is easy to see that if (w, µ) is solution of (3.2) then w is solution of
(3.1). �

To characterize ∂ϕ(w), we consider the closed convex set of L2(Γ):

C = {λ ∈ L2(Γ) : ∀ν ∈ L2(Γ) : 〈λ, ν〉 ≤ ϕ(ν)}.

It is easy to show that C = {λ ∈ L2(Γ) : 0 ≤ λ ≤ (∂ψ∂n )+ a.e in Γ}.

Lemma 3.3. for all µ in L2(Γ) and w in H1(Ω), one has µ ∈ ∂ϕ(w) if and only if

µ ∈ C and 〈λ− µ,w〉 ≤ 0, ∀λ ∈ C.

In particular (∂ψ∂n )+.χ[w|Γ>0] ∈ ∂ϕ(w).

Proof. Let µ ∈ ∂ϕ(w), i.e,

∀v ∈ H1(Ω), 〈µ, v − w〉 ≤ ϕ(v)− ϕ(w). (3.3)

With v = 2w and v = 0 in (3.3), and while ϕ is positively homogeneous, one has

〈µ,w〉 = ϕ(w).

Therefore, while taking back (3.3), one deducts that µ ∈ C. Inversely, let µ ∈ C
and 〈λ− µ,w〉 ≤ 0, for all λ ∈ C. For λ in ∂ϕ(w) ⊂ C, we have

〈λ,w〉 = ϕ(w) and 〈λ− µ,w〉 = 0.

So that for all v ∈ H1(Ω), 〈µ, v − w〉 = 〈µ, v〉 − ϕ(w) ≤ ϕ(v)− ϕ(w). �

Taking into account lemma 3.3, the problem (3.2) can be written as: Find
(w, µ) ∈ H1(Ω)× C such that

a(w, v) + 〈µ, v〉+ 〈(∂ψ
∂n

)−, v〉 = 0 ∀v ∈ H1(Ω),

〈λ− µ,w〉 ≤ 0, ∀λ ∈ C.
(3.4)
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Remark 3.4. The bilinear form a is symmetric, then the problem (3.4) is equivalent
to the saddle point problem [2]: Find (w, µ) ∈ H1(Ω)× C such that

L(w, λ) ≤ L(w, µ) ≤ L(v, µ) = 0 ∀(v, λ) ∈ H1(Ω)× C,

where the Lagrangian L is defined on H1(Ω)× L2(Γ) by

L(v, λ) =
1
2
a(v, v) + 〈λ, v〉+ 〈(∂ψ

∂n
)−, v〉

The study of the mixed formulation (3.4), is in preparation by the authors.
However, it is clear that the determination, a priori, of µ, permits to solve the
problem (3.4) as being the Neumann problem

−∆w + w = 0 in Ω,
∂w

∂n
= −µ− (

∂ψ

∂n
)− on Γ.

Which defines u as a solution of the problem

−∆u+ u = f in Ω,
∂u

∂n
= (

∂ψ

∂n
)+ − µ on Γ,

What we propose in this work is to uncouple the problem (3.4), by showing that
µ can be computed according to the data of the initial problem. We consider, then,
the linear mapping A : H−

1
2 (Γ) → H1(Ω) defined by g 7→ v, where v is a solution

to

−∆v + v = 0 in Ω,
∂v

∂n
= g on Γ,

which is continuous, more precisely, one has the following result [4, theorem 2.7].

Lemma 3.5. There exist two positive constants c1 and c2, such that

c1‖Ag‖H1(Ω) ≤ ‖g‖
H− 1

2 (Γ)
≤ c2‖Ag‖H1(Ω),

for all g in H−1/2(Γ).

Using the set M = A(C) = {v ∈ H1(Ω) : −∆v + v = 0 in Ω and ∂v
∂n ∈ C} which

is closed, bounded and convex in H1(Ω), problem (3.4), can be written as: Find
(w, z) ∈ H1(Ω)×M such that

a(w + z + t, v) = 0 ∀v ∈ H1(Ω),

a(s− z, w) ≤ 0, ∀s ∈M,

where t = A
(
(∂ψ∂n )−

)
and z = Aµ. What defines z as being the projection of −t on

M ; i.e,

t = A
(
(
∂ψ

∂n
)−

)
, z = projM (−t) and w = −z − t.

4. A projection algorithm

For the determination of z = projM (−t), and therefore µ, according to the data,
we propose a projection algorithm inspired of the one of Degueil [1].
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Description of the algorithm. For an initial guess µ0 ∈ C (for example µ0 = 0),
we compute z0 such that z0 = Aµ0 then we construct the sequences (µn) and (zn),
as follows:

(1) Given zn and µn such that zn = Aµn and µn ∈ C, we compute vn = Agn
where

gn = (
∂ψ

∂n
)+.χ[(−t−zn)|Γ>0].

By lemma 3.3, we see that gn ∈ ∂ϕ(−t− zn) ⊂ C, and then:

a(v − vn, zn + t) ≥ 0, ∀v ∈M. (4.1)

(2) We compute zn+1 = proj[zn,vn](−t) (the projection of −t on the segment
[zn, vn]), i.e,

zn+1 = λnvn + (1− λn)zn,

µn+1 = λngn + (1− λn)µn

λn = min
(
1,
a(zn − vn, zn + t)
‖vn − zn‖2

H1(Ω)

=
〈µn − gn, zn + t〉
〈µn − gn, vn − zn〉

) (4.2)

if vn = zn then zn+1 = zn, the algorithm stops.

Convergence result. As in [1], we have the following convergence result.

Theorem 4.1. With the hypothesis and notation above, one has

lim
n→+∞

‖zn − z‖H1(Ω) = lim
n→+∞

‖µn − µ‖
H− 1

2 (Γ)
= 0.

Proof. Let us, first, show that limn→+∞ ‖zn − z‖H1(Ω) = 0. For all n, one has:

‖zn + t‖2
H1(Ω) = ‖zn − zn+1‖2

H1(Ω) + ‖zn+1 + t‖2
H1(Ω) + 2a(zn − zn+1, zn+1 + t)

≥ ‖zn − zn+1‖2
H1(Ω) + ‖zn+1 + t‖2

H1(Ω)

Then ‖zn − zn+1‖2
H1(Ω) ≤ ‖zn + t‖2

H1(Ω) − ‖zn+1 + t‖2
H1(Ω), what implies that

lim
n→+∞

‖zn − zn+1‖H1(Ω) = 0. (4.3)

On the other hand, z = projM (−t), then

a(v − z, z + t) ≥ 0, ∀v ∈M. (4.4)

With v = zn+1 in (4.4) and while taking account of ((4.1) and (4.2)), one has

‖zn+1 − z‖2
H1(Ω)

= a(zn+1 − z, zn+1 − zn) + a(zn+1 − z, zn + t)− a(zn+1 − z, z + t)

≤ a(zn+1 − z, zn+1 − zn) + a(zn+1 − z, zn + t)

≤ a(zn+1 − z, zn+1 − zn) + a(zn+1 − z, zn + t) + a(z − vn, zn + t)

≤ a(zn+1 − z, zn+1 − zn) + a(zn+1 − vn, zn + t)

≤ a(zn+1 − z, zn+1 − zn) + (1− λn)a(zn − vn, zn + t)

≤ a(zn+1 − z, zn+1 − zn) + (1− λn)λn‖zn − vn‖2
H1(Ω)

≤ a(zn+1 − z, zn+1 − zn) + (1− λn)‖zn+1 − zn‖H1(Ω)‖zn − vn‖H1(Ω)

≤ ‖zn+1 − zn‖H1(Ω)

{
‖zn+1 − z‖H1(Ω) + ‖zn − vn‖H1(Ω)

}
.

We conclude using (4.3) and the fact thatM is bounded. To show that limn→+∞ ‖µn−
µ‖

H− 1
2 (Γ)

= 0, it suffices to use Lemma 3.5. �
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