2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 9-20.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE RESULT FOR VARIATIONAL DEGENERATED PARABOLIC PROBLEMS VIA PSEUDO-MONOTONICITY

LAHSEN AHAROUCH, ELHOUSSINE AZROUL, MOHAMED RHOUDAF

$$
\begin{aligned}
& \text { AbSTRACT. In this paper, we study the existence of weak solutions for the } \\
& \text { initial-boundary value problems of the nonlinear degenerated parabolic equa- } \\
& \text { tion } \\
& \qquad \frac{\partial u}{\partial t}-\operatorname{div} a(x, t, u, \nabla u)+a_{0}(x, t, u, \nabla u)=f \text {, } \\
& \text { where } A u=-\operatorname{div} a(x, t, u, \nabla u) \text { is a classical divergence operator of Leray-lions } \\
& \text { acting from } L^{p}\left(0, T, W_{0}^{1, p}(\Omega, w)\right) \text { to its dual. The source term } f \text { is assumed to } \\
& \text { belong to } L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)\right) .
\end{aligned}
$$

1. Introduction

Let Ω be a bounded open subset of \mathbb{R}^{N} and let Q be the cylinder $\Omega \times(0, T)$ with some given $T>0$. Consider the parabolic initial-boundary value problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+A(u)=f \quad \text { in } Q \\
u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \tag{1.1}\\
u(x, 0)=u_{0}(x) \quad \text { in } \Omega
\end{gather*}
$$

where $A u=-\operatorname{div} a(x, t, u, \nabla u)$ is a classical divergence operator of Leray-lions form with respect to the Sobolev space $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ for some $1<p<\infty$. The right-hand side f is supposed lying in $L^{p^{\prime}}\left(0, T, W_{0}^{-1, p^{\prime}}(\Omega)\right)$.

We consider, first, the case where A satisfies the classical Leray-lions conditions, in particular the classical coercivity

$$
\begin{equation*}
a(x, t, s, \xi) \xi \geq \alpha|\xi|^{p} \tag{1.2}
\end{equation*}
$$

Then A is a bounded pseudo-monotone and coercive operator from the space $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$ into its dual $L^{p^{\prime}}\left(0, T, W_{0}^{-1, p^{\prime}}(\Omega)\right)$. In this setting, problems of the form (1.1) were solved by Lions [16] and Breszis-Browder [7] in the case $p \geq 2$ and by Landes [12] and Landes-Mustonen [13] when $1<p<2$ (see also [5], [6], [8]

[^0]for related topics). When the classical coercivity $\sqrt{1.2}$ is replaced by the more general condition
\[

$$
\begin{equation*}
a(x, t, s, \xi) \xi \geq c \sum_{i=1}^{N} w_{i}(x)\left|\xi_{i}\right|^{p} \tag{1.3}
\end{equation*}
$$

\]

where now $w(x)=\left\{w_{i}(x), 1 \leq i \leq N\right\}$ is a family of weight functions on Ω, the problem (1.1) can not be solved in the classical Sobolev settings $L^{p}\left(0, T, W_{0}^{1, p}(\Omega)\right)$. However, to do this, we must to change this classical setting by the general one $L^{p}\left(0, T, W_{0}^{1, p}(\Omega, w)\right)$ related to the so-called weighted Sobolev space $W_{0}^{1, p}(\Omega, w)$. In this direction, we list in particular the work [17] where the authors have studied the existence of weak solution of the variational parabolic boundary-value problems

$$
\begin{gather*}
\frac{\partial u}{\partial t}+A(u)+A_{0}(x, t, u, \nabla u)=f \quad \text { in } Q \\
u(x, t)=u_{0}(x) \quad \text { on } \partial \Omega \times(0, T) \tag{1.4}\\
u(x, t)=0 \quad \text { in } \Omega
\end{gather*}
$$

but under more restrictions on the weight family w (compare with Remark 2.1).
Note that, little information is known for the degenerate parabolic. Similar problems for degenerate nonlinear elliptic equations have been studied in [9] and [2]. Our aim of this paper is to study the same variational degenerate parabolic problems (1.1) in some general case of weight. For that some important lemmas is firstly proved and the approach of pseudo-monotonicity is used. A simple model of our problem is as follows

$$
\begin{gathered}
\frac{\partial u}{\partial t}-\operatorname{div}\left(|x|^{s}|D u|^{p-2} D u\right)+\sigma(x)|u|^{p-2} u=f \quad \text { in } Q \\
u(x, t)=u_{0}(x) \quad \text { on } \partial \Omega \times(0, T) \\
u(x, t)=0 \quad \text { in } \Omega
\end{gathered}
$$

The present paper is organized as follows: We start with the introduction of a basic assumptions and main result in section 2, which is proved in section 3. Finally, we give an example in section 4 .

2. Assumptions and Main results

Hypotheses. Let Ω be a bounded open set of \mathbb{R}^{N}, p be a real number such that $2<p<\infty$ and $w=\left\{w_{i}(x): 1 \leq i \leq N\right\}$ be a vector of weight functions, i.e., every component $w_{i}(x)$ is a measurable function which is strictly positive a.e. in Ω. Further, we suppose in all our considerations that,

$$
\begin{gather*}
w_{i} \in L_{\mathrm{loc}}^{1}(\Omega), \tag{2.1}\\
w_{i}^{\frac{-1}{p-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.2}
\end{gather*}
$$

for any $0 \leq i \leq N$. We denote by $W^{1, p}(\Omega, w)$ the space of all real-valued functions $u \in L^{p}\left(\Omega, w_{0}\right)$ such that the derivatives in the sense of distributions fulfill

$$
\frac{\partial u}{\partial x_{i}} \in L^{p}\left(\Omega, w_{i}\right) \quad \text { for } i=1, \ldots, N
$$

This is a Banach space under the norm

$$
\begin{equation*}
\|u\|_{1, p, w}=\left[\int_{\Omega}|u(x)|^{p} w_{0} d x+\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u(x)}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right]^{1 / p} \tag{2.3}
\end{equation*}
$$

The condition 2.1 implies that $C_{0}^{\infty}(\Omega)$ is a subset of $W^{1, p}(\Omega, w)$ and consequently, we can introduce the subspace $W_{0}^{1, p}(\Omega, w)$ of $W^{1, p}(\Omega, w)$ as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm 2.3). Moreover, the condition 2.2 implies that $W^{1, p}(\Omega, w)$ as well as $W_{0}^{1, p}(\Omega, w)$ are reflexive Banach spaces. We recall that the dual space of weighted Sobolev spaces $W_{0}^{1, p}(\Omega, w)$ is equivalent to $W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, where $w^{*}=\left\{w_{i}^{*}=w_{i}^{1-p^{\prime}}, i=0, \ldots, N\right\}$ and where p^{\prime} is the conjugate of p i.e. $p^{\prime}=\frac{p}{p-1}$. For more details, we refer the reader to [10].

Now we state the some assumptions.
(H1) For $2 \leq p<\infty$, the expression

$$
\begin{equation*}
\left\||u \||=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}\right. \tag{2.4}
\end{equation*}
$$

is a norm on $W_{0}^{1, p}(\Omega, w)$ and it's equivalent to 2.3). There exists a weight function σ on Ω such that

$$
\begin{equation*}
\sigma \in L^{1}(\Omega) \quad \text { and } \quad \sigma^{\frac{-1}{p-1}} \in L_{\mathrm{loc}}^{1}(\Omega) \tag{2.5}
\end{equation*}
$$

The Hardy inequality

$$
\begin{equation*}
\left(\int_{\Omega}|u(x)|^{p} \sigma d x\right)^{1 / p} \leq c\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p} \tag{2.6}
\end{equation*}
$$

holds for every $u \in W_{0}^{1, p}(\Omega, w)$ with a constant $c>0$ independent of u. Moreover, the imbedding

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, w) \hookrightarrow L^{p}(\Omega, \sigma) \tag{2.7}
\end{equation*}
$$

expressed by the inequality 2.6 is compact.
Note that $\left(W_{0}^{1, p}(\Omega, w),\||\cdot \||)\right.$ is a uniformly convex (and thus reflexive) Banach space.

Remark 2.1. Assume that $w_{0}(x) \equiv 1$ and there exists $\left.\nu \in\right] \frac{N}{P},+\infty\left[\cap\left[\frac{1}{P-1},+\infty[\right.\right.$ such that

$$
\begin{equation*}
w_{i}^{-\nu} \in L^{1}(\Omega) \quad \text { for all } i=1, \ldots, N \tag{2.8}
\end{equation*}
$$

Note that the assumptions (2.1) and (2.8) imply that,

$$
\begin{equation*}
\left\||u \||=\left(\sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} w_{i}(x) d x\right)^{1 / p}\right. \tag{2.9}
\end{equation*}
$$

is a norm defined on $W_{0}^{1, p}(\Omega, w)$ and it's equivalent to 2.3 and that, the imbedding

$$
\begin{equation*}
W_{0}^{1, p}(\Omega, w) \hookrightarrow L^{p}(\Omega) \tag{2.10}
\end{equation*}
$$

is compact [10, pp 46]. Thus the hypothesis $\left(H_{1}\right)$ is satisfied for $\sigma \equiv 1$.
(H2) For $i=1, \ldots, N$,

$$
\begin{gather*}
\left|a_{0}(x, t, s, \xi)\right| \leq \beta \sigma^{1 / p}(x) \quad\left[c_{0}(x, t)+\sigma^{\frac{1}{p^{\prime}}}|s|^{p-1}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}(x)\left|\xi_{j}\right|^{p-1}\right] \tag{2.11}\\
\left|a_{i}(x, t, s, \xi)\right| \leq \beta w_{i}^{1 / p}(x) \quad\left[c_{1}(x, t)+\sigma^{\frac{1}{p^{\prime}}}|s|^{p-1}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}(x)\left|\xi_{j}\right|^{p-1}\right] \tag{2.12}\\
\sum_{i=1}^{N}\left[a_{i}(x, t, s, \xi)-a_{i}(x, t, s, \eta)\right]\left(\xi_{i}-\eta_{i}\right)>0 \quad \forall \xi \neq \eta \in \mathbb{R}^{N} \tag{2.13}\\
a_{0}(x, t, s, \xi) \cdot s+\sum_{i=1}^{N} a_{i}(x, t, s, \xi) \cdot \xi_{i} \geq \alpha \sum_{i=1}^{N} w_{i}\left|\xi_{i}\right|^{p} \tag{2.14}
\end{gather*}
$$

where $c_{0}(x, t)$ and $c_{1}(x, t)$ are some positive functions in $L^{p^{\prime}}(Q)$, and α and β are some strictly positive constants.

Some lemmas. In this subsection we establish some imbedding and compactness results in weighted Sobolev Spaces which allow in particular to extend in the settings of weighted Sobolev spaces.
Let $V=W_{0}^{1, p}(\Omega, w), H=L^{2}(\Omega, \sigma)$ and let $V^{*}=W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)$, with $(2 \leq p<\infty)$. Let $X=L^{p}(0, T, V)$. The dual space of X is $X^{*}=L^{p^{\prime}}\left(0, T, V^{*}\right)$ where $\frac{1}{p^{\prime}}+\frac{1}{p}=1$ and denoting the space $W_{p}^{1}(0, T, V, H)=\left\{v \in X: v^{\prime} \in X^{*}\right\}$ endowed with the norm

$$
\begin{equation*}
\|u\|_{w_{p}^{1}}=\|u\|_{X}+\left\|u^{\prime}\right\|_{X^{*}} \tag{2.15}
\end{equation*}
$$

is a Banach space. Here u^{\prime} stands for the generalized derivative of u; i.e.,

$$
\int_{0}^{T} u^{\prime}(t) \varphi(t) d t=-\int_{0}^{T} u(t) \varphi^{\prime}(t) d t \quad \text { for all } \varphi \in C_{0}^{\infty}(0, T)
$$

Lemma 2.2. The Banach space H is an Hilbert space and its dual H^{\prime} can be identified with him self; i.e., $H^{\prime} \simeq H$

Lemma 2.3. The evolution triple $V \subseteq H \subseteq V^{*}$ is verified.
Lemma 2.4. Let $g \in L^{r}(Q, \gamma)$ and let $g_{n} \in L^{r}(Q, \gamma)$, with $\left\|g_{n}\right\|_{L^{r}(Q, \gamma)} \leq c, 1<$ $r<\infty$. If $g_{n}(x) \rightarrow g(x)$ a.e in Q, then $g_{n} \rightharpoonup g$ in $L^{r}(Q, \gamma)$, where \rightharpoonup denotes weak convergence and γ is a weight function on Q.

Lemma 2.5. Assume that (H1) and (H2) are satisfied and let (u_{n}) be a sequence in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega, w)\right)$ such that $u_{n} \rightharpoonup u$ weakly in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega, w)\right)$ and

$$
\begin{equation*}
\int_{Q}\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u\right)\right]\left[\nabla u_{n}-\nabla u\right] d t d x \rightarrow 0 \tag{2.16}
\end{equation*}
$$

Then $u_{n} \rightarrow u$ in $L^{p}\left(0, T, W_{0}^{1, p}(\Omega, w)\right)$.
Now we recall the well-known general Sobolev imbedding theorems for evolution equations.

Lemma 2.6 ([18]). Let $V \subseteq H \subseteq V^{*}$ be an evolution triple. Then the imbedding

$$
\left.W_{p}^{1}(0, T, V, H) \subseteq C([0, T]), H\right)
$$

is continuous.

Lemma 2.7 ([18). Let Z_{1}, Y, Z_{2} be real reflexive Banach spaces. Assume that the imbeddings $Z_{1} \subseteq Y \subseteq Z_{2}$ are continuous, and the imbedding $Z_{1} \subseteq Y$ is compact, $0<T<\infty, 1<p, q<\infty$. Then $W=\left\{u \in L^{p}\left(0, T, Z_{1}\right): u^{\prime} \in L^{q}\left(0, T, Z_{2}\right)\right\}$ equipped with the norm

$$
\|u\|_{w}=\|u\|_{L^{p}\left(0, T, Z_{1}\right)}+\left\|u^{\prime}\right\|_{L^{q}\left(0, T, Z_{2}\right)}
$$

is a Banach space and the imbedding $W \subseteq L^{p}(0, T, Y)$ is compact.

Existence results.

Definition 2.8. A monotone map $T: D(T) \rightarrow X^{*}$ is called maximal monotone if its graph

$$
G(T)=\left\{(u, T(u)) \in X \times X^{*} \text { for all } u \in D(T)\right\}
$$

is not a proper subset of any monotone set in $X \times X^{*}$.
Let us consider the operator $\frac{\partial}{\partial t}$ which induces a linear map L from the subset $D(L)=\left\{v \in X: v^{\prime} \in X^{*}, v(0)=0\right\}$ of X into X^{*} by

$$
\begin{equation*}
\langle L u, v\rangle_{X}=\int_{0}^{T}\left\langle u^{\prime}(t), v(t)\right\rangle_{V} d t \quad u \in D(L), v \in X \tag{2.17}
\end{equation*}
$$

Lemma 2.9 ([18]). L is a closed linear maximal monotone map.
In our study we deal with mappings of the form $F=L+S$ where L is a given linear densely defined maximal monotone map from $D(L) \subset X$ to X^{*} and S is a bounded demicontinuous map of monotone type from X to X^{*}.
Definition 2.10. A mapping S is pseudomonotone with respect to $D(L)$, if for any sequence $\left\{u_{n}\right\}$ in $D(L)$ with $u_{n} \rightharpoonup u, L u_{n} \rightharpoonup L u$ and $\lim _{n \rightarrow \infty} \sup \left\langle S\left(u_{n}\right), u_{n}-u\right\rangle \leq$ 0 , we have $\lim _{n \rightarrow \infty}\left\langle S\left(u_{n}\right), u_{n}-u\right\rangle=0$ and $S\left(u_{n}\right) \rightharpoonup S(u)$ as $n \rightarrow \infty$.

Consider the non linear parabolic problem

$$
\begin{gathered}
\frac{\partial u}{\partial t}+A(u)+A_{0}(x, t, u, \nabla u)=f \quad \text { in } Q \\
u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \\
u(x, 0)=u_{0} \quad \text { in } \Omega
\end{gathered}
$$

Definition 2.11. A function u is said to be a weak solution of the initial-boundary value problem (1.4) if $u \in C([0, T], H) \cap L^{p}(0, T, V), \frac{\partial u}{\partial t} \in L^{p^{\prime}}\left(0, T, V^{*}\right)$ and u satisfies the equation

$$
\frac{\partial u}{\partial t}+A u+A_{0} u=f \quad 0<t<T, u(0)=u_{0}
$$

where the operator $A+A_{0}: X \rightarrow X^{*}$ is defined by

$$
\left\langle\left(A+A_{0}\right)(u), v\right\rangle=\int_{Q} a(x, t, u, \nabla u) \nabla v d x d t+\int_{Q} a_{0}(x, t, u, \nabla u) v d x d t
$$

Proposition 2.12. The operator $A+A_{0}: X \rightarrow X^{*}$ is :
(a) bounded and demicontinuous;
(b) pseudomonotone with respect to $D(L)$
(c) strongly coercive, i.e.,

$$
\frac{\left\langle\left(A+A_{0}\right)(u), u\right\rangle_{X}}{\|u\|_{X}} \rightarrow+\infty, \quad \text { as }\|u\|_{X} \rightarrow+\infty
$$

We first consider the Zero-initial value problem,

$$
\begin{gather*}
\frac{\partial u}{\partial t}+A(u)+A_{0}(x, t, u, \nabla u)=f \quad \text { in } Q \\
u(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \tag{2.18}\\
u(x, 0)=0 \quad \text { in } \Omega
\end{gather*}
$$

Theorem 2.13. Assume that the conditions (H1)-(H2) hold, then problem 2.18) admits a weak solution for any $f \in X^{*}$.

Theorem 2.14. Assume that the conditions (H1)-(H2) hold and $u_{0} \in W_{0}^{1, p}(\Omega, w)$, then the initial-boundary value problem (1.4) admits a weak solution for any $f \in$ X^{*}.

3. Proofs of Main results

Proof of lemma 2.2. Let the map $F: H \times H \rightarrow \mathbb{R}$ be defined by

$$
F(f, g)=\int_{\Omega} f g \sigma d x
$$

Note that F is a symmetric bilinear form, which is also continuous and defined positively, since

$$
\int_{\Omega} f g \sigma d x=\int_{\Omega} f \sigma^{1 / 2} g \sigma^{1 / 2} d x \leq\left(\int_{\Omega}|f|^{2} \sigma d x\right)^{1 / 2}\left(\int_{\Omega}|g|^{2} \sigma d x\right)^{1 / 2}
$$

Then the Banach space H is an Hilbert space. Finally by a standard argument, we can identify H with its dual H^{\prime}; i.e., $H^{\prime} \simeq H$.

Proof of lemma 2.3. By the imbedding (2.7) and the fact that $2 \leq p<\infty$, and $\sigma \in L^{1}(\Omega)$, we can write

$$
W_{0}^{1, p}(\Omega, w) \hookrightarrow \hookrightarrow L^{p}(\Omega, \sigma) \hookrightarrow H \simeq H^{\prime} \hookrightarrow W^{-1, p^{\prime}}\left(\Omega, w^{*}\right)
$$

Proof of lemma 2.4. Since $g_{n} \gamma^{1 / r}$ is bounded in $L^{r}(Q)$ and $g_{n}(x) \gamma^{1 / r}(x) \rightarrow g \gamma^{1 / r}$, a.e. in Q, then by [15, lemma 3.2], we have

$$
g_{n} \gamma^{1 / r} \rightharpoonup g \gamma^{1 / r} \quad \text { in } L^{r}(Q)
$$

Moreover, for all $\varphi \in L^{r^{\prime}}\left(Q, \gamma^{1-r^{\prime}}\right)$, we have $\varphi \gamma^{\frac{-1}{r}} \in L^{r^{\prime}}(Q)$. Then

$$
\int_{Q} g_{n} \varphi d x \rightarrow \int_{Q} g \varphi d x, \quad \text { i.e. } g_{n} \rightharpoonup g \quad \text { in } L^{r}(Q, \gamma) .
$$

Proof of lemma 2.5. Let $D_{n}=\left[a\left(x, t, u_{n}, \nabla u_{n}\right)-a\left(x, t, u_{n}, \nabla u\right)\right]\left[\nabla u_{n}-\nabla u\right]$. Then by (2.13), D_{n} is a positive function and by (2.16), $D_{n} \rightarrow 0$ in $L^{1}(Q)$. Extracting a subsequence, still denoted by u_{n}, and using (2.7) we can write

$$
u_{n} \rightarrow u \quad \text { a.e. in } Q, \quad D_{n} \rightarrow 0 \quad \text { a.e. in } Q .
$$

Then, there exists a subset B of Q, of zero measure such that for $(t, x) \in Q \backslash$ $B,\left|u_{n}(x, t)\right|<\infty,|\nabla u(x, t)|<\infty,\left|c_{1}(x, t)\right|<\infty, w_{i}(x)>0$ and $u_{n}(x, t) \rightarrow$ $u(x, t), D_{n}(x, t) \rightarrow 0$. We set $\epsilon_{n}=\nabla u_{n}(x, t)$ and $\epsilon=\nabla u(x, t)$. Then

$$
\begin{aligned}
D_{n}(x, t)= & {\left[a\left(x, t, u_{n}, \epsilon_{n}\right)-a\left(x, t, u_{n}, \epsilon\right)\right]\left(\epsilon_{n}-\epsilon\right) } \\
\geq & \alpha \sum_{i=1}^{N} w_{i}\left|\epsilon_{n}^{i}\right|^{p}+\alpha \sum_{i=1}^{N} w_{i}\left|\epsilon^{i}\right|^{p} \\
& -\sum_{i=1}^{N} \beta w_{i}^{1 / p}\left[c_{1}(x, t)+\sigma^{\frac{1}{p^{\prime}}}\left|u_{n}\right|^{p-1}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}\left|\epsilon_{n}^{j}\right|^{p-1}\right]\left|\epsilon^{i}\right| \\
& -\sum_{i=1}^{N} \beta w_{i}^{1 / p}\left[c_{1}(x, t)+\sigma^{\frac{1}{p^{\prime}}}\left|u_{n}\right|^{p-1}+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}\left|\epsilon^{j}\right|^{p-1}\right]\left|\epsilon_{n}^{i}\right|
\end{aligned}
$$

i.e,

$$
\begin{equation*}
D_{n}(x, t) \geq \alpha \sum_{i=1}^{N} w_{i}\left|\epsilon_{n}^{i}\right|^{p}-c_{x, t}\left[1+\sum_{j=1}^{N} w_{j}^{\frac{1}{p^{\prime}}}\left|\epsilon_{n}^{j}\right|^{p-1}+\sum_{i=1}^{N} w_{i}^{1 / p}\left|\epsilon_{n}^{i}\right|\right] \tag{3.1}
\end{equation*}
$$

where $c_{x, t}$ is a constant which depends on x, but does not depend on n. Since $u_{n}(x, t) \rightarrow u(x, t)$, we have $\left|u_{n}(x, t)\right| \leq M_{x, t}$, where $M_{x, t}$ is some positive constant. Then by a standard argument $\left|\epsilon_{n}\right|$ is bounded uniformly with respect to n. Indeed, (3.1) becomes

$$
D_{n}(x, t) \geq \sum_{i=1}^{N}\left|\epsilon_{n}^{i}\right|^{p}\left(\alpha w_{i}-\frac{c_{x, t}}{N\left|\epsilon_{n}^{i}\right|^{p}}-\frac{c_{x, t} w_{i}^{\frac{1}{p^{\prime}}}}{\left|\epsilon_{n}^{i}\right|}-\frac{c_{x, t} w_{i}^{1 / p}}{\left|\epsilon_{n}^{i}\right|^{p-1}}\right)
$$

If $\left|\epsilon_{n}\right| \rightarrow \infty$ (for a subsequence) there exists at least one i_{0} such that $\left|\epsilon_{n}^{i_{0}}\right| \rightarrow \infty$, which implies that $D_{n}(x, t) \rightarrow \infty$ which gives a contradiction.

Let now ϵ^{*} be a cluster point of ϵ_{n}. We have $\left|\epsilon^{*}\right|<\infty$ and by the continuity of a with respect to the two last variables we obtain

$$
\left(a\left(x, t, u(x, t), \epsilon^{*}\right)-a(x, t, u(x, t), \epsilon)\right)\left(\epsilon^{*}-\epsilon\right)=0 .
$$

In view of 2.13) we have $\epsilon^{*}=\epsilon$. The uniqueness of the cluster point implies

$$
\nabla u_{n}(x, t) \rightarrow \nabla u(x, t) \quad \text { a.e. in } Q .
$$

Since the sequence $a\left(x, t, u_{n}, \nabla u_{n}\right)$ is bounded in the space $\prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right)$ and $a\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow a(x, t, u, \nabla u)$ a.e. in Q, Lemma 2.4 implies

$$
a\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup a(x, t, u, \nabla u) \quad \text { in } \prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{*}\right) \quad \text { and a.e. in } Q .
$$

We set $\bar{y}_{n}=a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n}$ and $\bar{y}=a(x, t, u, \nabla u) \nabla u$. As in 4, lemma lemma 5] we can write $\bar{y}_{n} \rightarrow \bar{y}$ in $L^{1}(Q)$. By (2.14), we have

$$
\alpha \sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right| \leq a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n}
$$

Let

$$
\begin{gathered}
z_{n}=\sum_{i=1}^{N} w_{i}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p}, \quad z=\sum_{i=1}^{N} w_{i}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} \\
y_{n}=\frac{\bar{y}_{n}}{\alpha}, \quad y=\frac{\bar{y}}{\alpha}
\end{gathered}
$$

Then, by Fatou's lemma we obtain

$$
\int_{Q} 2 y d x d t \leq \lim _{n \rightarrow \infty} \inf \int_{Q} y+y_{n}-\left|z_{n}-z\right| d x d t
$$

i.e., $0 \leq \lim _{n \rightarrow \infty} \sup \int_{Q}\left|z_{n}-z\right| d x d t$, hence

$$
0 \leq \lim _{n \rightarrow \infty} \inf \int_{Q}\left|z_{n}-z\right| d x d t \leq \lim _{n \rightarrow \infty} \sup \int_{Q}\left|z_{n}-z\right| d x d t \leq 0
$$

This implies

$$
\nabla u_{n} \rightarrow \nabla u \quad \text { in } \prod_{i=1}^{N} L^{p}\left(Q, w_{i}\right)
$$

which with (2.4) completes the present proof.
Proof of proposition 2.12, (a) We set $B=A+A_{0}$. Using 2.11, 2.12 and Hölder's inequality we can show that B is bounded. For showing that B is demicontinuous, let $v_{\epsilon} \rightarrow v$ in X as $\epsilon \rightarrow 0$, and prove that,

$$
\left\langle B\left(v_{\epsilon}\right), \varphi\right\rangle \rightarrow\langle B(v), \varphi\rangle \quad \text { for all } \varphi \in X
$$

Since, $a_{i}\left(x, t, v_{\epsilon}, \nabla v_{\epsilon}\right) \rightarrow a_{i}(x, t, v, \nabla v)$ as $\epsilon \rightarrow 0$, for a.e. $x \in \Omega$, by the growth conditions 2.12, 2.11 and lemma 2.4 we get

$$
a_{i}\left(x, t, v_{\epsilon}, \nabla v_{\epsilon}\right) \rightharpoonup a_{i}(x, t, v, \nabla v) \quad \text { in } L^{p^{\prime}}\left(Q, w_{i}^{1-p^{\prime}}\right) \quad \text { as } \epsilon \rightarrow 0
$$

for $(i=1, \ldots, N)$ and

$$
a_{0}\left(x, t, v_{\epsilon}, \nabla v_{\epsilon}\right) \rightharpoonup a_{0}(x, t, v, \nabla v) \quad \text { in } L^{p^{\prime}}\left(Q, \sigma^{1-p^{\prime}}\right) \quad \text { as } \epsilon \rightarrow 0
$$

Finally for all $\varphi \in X$,

$$
\left\langle B\left(v_{\epsilon}\right), \varphi\right\rangle \rightarrow\langle B(v), \varphi\rangle \quad \text { as } \epsilon \rightarrow 0
$$

(since $\varphi \in L^{p}(Q, \sigma)$ for all $\left.\varphi \in X\right)$.
(b) Suppose that $\left\{u_{j}\right\}$ is a sequence in $D(L)$ with
(i) $u_{j} \rightharpoonup u$ weakly in X
(ii) $L u_{j} \rightarrow L u$ weakly in X^{*},
(iii) $\lim \sup \left\langle A+A_{0}\left(u_{j}\right), u_{j}-u\right\rangle_{X} \leq 0$.

By the definition of the operator L in 2.17, we obtain that $\left\{u_{j}\right\}$ is a bounded sequence in $W_{p}^{1}(0, T, V, H)$. By virtue of lemma 2.7 . we get,

$$
u_{j} \rightarrow u \quad \text { strongly in } L^{p}(Q, \sigma)
$$

On the other hand,

$$
\left\langle A_{0} u_{j}, u_{j}-u\right\rangle=\int_{Q} a_{0}\left(x, t, u_{j}, \nabla u_{j}\right)\left(u_{j}-u\right) d x d t
$$

Thus the Hölder's inequality and (i) imply

$$
\begin{aligned}
\left\langle A_{0} u_{j}, u_{j}-u\right\rangle & \leq\left(\int_{Q}\left|a_{0}\right|^{p^{\prime}} \sigma^{1-p^{\prime}} d x d t\right)^{1 / p^{\prime}}\left\|u_{j}-u\right\|_{L^{p}(Q, \sigma)} \\
& \leq\left\|a_{0}\right\|_{L^{p^{\prime}}(Q, \sigma *)}\left\|u_{j}-u\right\|_{L^{p}(Q, \sigma)}
\end{aligned}
$$

i.e, $\left\langle A_{0} u_{j}, u_{j}-u\right\rangle \rightarrow 0$ as $j \rightarrow \infty$. Combining the last convergence with (iii), we obtain

$$
\lim _{j \rightarrow \infty} \sup \left\langle A u_{j}, u_{j}-u\right\rangle \leq 0
$$

And by the pseudo-monotonicity of A (see [9, Proposition 1]), we have

$$
A u_{j} \rightharpoonup A u \quad \text { in } X^{*} \quad \text { and } \quad \lim _{j \rightarrow \infty}\left\langle A u_{j}, u_{j}-u\right\rangle=0
$$

Then

$$
\lim _{j \rightarrow \infty}\left\langle A u_{j}+A_{0}\left(u_{j}\right), u_{j}-u\right\rangle=0
$$

On the other hand, $\lim _{j \rightarrow \infty}\left\langle A u_{j}, u_{j}-u\right\rangle=0$, which implies

$$
\begin{aligned}
0= & \lim _{j \rightarrow \infty} \int_{Q} a\left(x, t, u_{j}, \nabla u_{j}\right) \nabla\left(u_{j}-u\right) d x d t \\
= & \lim _{j \rightarrow \infty} \int_{Q}\left[a\left(x, t, u_{j}, \nabla u_{j}\right)-a\left(x, t, u_{j}, \nabla u\right)\right]\left[\nabla u_{j}-\nabla u\right] d x d t \\
& +\lim _{j \rightarrow \infty} \int_{Q} a\left(x, t, u_{j}, \nabla u\right)\left(\nabla u_{j}-\nabla u\right) d x d t .
\end{aligned}
$$

The last integral in the right hand tends to zero, since by the continuity of the Nemytskii operator, $a\left(x, t, u_{j}, \nabla u\right) \rightarrow a(x, t, u, \nabla u)$ in $\prod_{i=1}^{N} L^{p^{\prime}}\left(Q, w_{i}^{1-p^{\prime}}\right)$ as $j \rightarrow$ $+\infty$. So that

$$
\lim _{j \rightarrow \infty} \int_{Q}\left[a\left(x, t, u_{j}, \nabla u_{j}\right)-a\left(x, t, u_{j}, \nabla u\right)\right]\left[\nabla u_{j}-\nabla u\right] d x d t=0
$$

By lemma 2.5 we have

$$
\nabla u_{j} \rightarrow \nabla u \quad \text { a.e. in } Q
$$

Hence $a_{0}\left(x, t, u_{j}, \nabla u_{j}\right) \rightarrow a_{0}(x, t, u, \nabla u)$ a.e. in Q as $j \rightarrow \infty$ and since

$$
a_{0}\left(x, t, u_{j}, \nabla u_{j}\right) \in L^{p^{\prime}}\left(Q, \sigma^{1-p^{\prime}}\right)
$$

by Lemma 2.4, we obtain

$$
a_{0}\left(x, t, u_{j}, \nabla u_{j}\right) \rightharpoonup a_{0}(x, t, u, \nabla u) \quad \text { in } L^{p^{\prime}}\left(Q, \sigma^{1-p^{\prime}}\right) .
$$

Finally,

$$
B\left(u_{j}\right) \rightharpoonup B(u) \quad \text { in } X^{*} .
$$

(c) The strongly coercivity follows from 2.14

Proof of Theorem 2.13. By proposition 2.12 the operator $A+A_{0}: X \rightarrow X^{*}$ is pseudomonotone with respect to $D(L)$, and the operator $A+A_{0}$ satisfies the strong coercivity condition which implies that both of the conditions (i) and (ii) in 3, theorem 4] hold. So all the conditions in [3, theorem 4] are met. Therefore, there exists a solution $u \in D(L)$ of the evolution equation

$$
\frac{\partial u}{\partial t}+A u+A_{0} u=f
$$

for any $f \in X^{*}$. In order to prove that u is also a weak solution of the problem (2.18), we have to show that $u \in C([0, T], H)$. By the definition of $D(L)$ and lemma 2.6, we obtain

$$
D(L) \subseteq W_{p}^{1}(0, T, V, H) \subseteq C([0, T], H)
$$

Which implies that $u \in C([0, T], H)$.
Proof of Theorem 2.14. Now we turn to problem (1.4). Assume that (H1)-(H2) hold and $u_{0} \in W_{0}^{1, p}(\Omega, w)$. Let

$$
\bar{a}_{i}(x, t, u, \nabla u)=a_{i}\left(x, t, u+u_{0}, \nabla u+\nabla u_{0}\right)
$$

for all $\mathrm{i}=0, \ldots, \mathrm{~N}$. Then it is easy to see that \bar{a}_{i} also satisfies the conditions (H1)(H2). But β, α and the function $c_{0}(x, t)$ and $c_{1}(x, t)$ in (H1)-(H2) may depend on the function u_{0}. Analogously, $\bar{A}+\bar{A}_{0}: X \rightarrow X^{*}$ is defined by

$$
\left\langle\left(\bar{A}+\bar{A}_{0}\right)(u), v\right\rangle=\int_{Q} \bar{a}(x, t, u, \nabla u) \nabla v d x d t+\int_{Q} \bar{a}_{0}(x, t, u, \nabla u) v d x d t
$$

for $u, v \in L^{p}(0, T, V)$, where $\bar{A}=-\operatorname{div} \bar{a}(x, t, u, \nabla u)$. Then, by Theorem 2.13 we have Theorem 2.14

4. An example

Let Ω be a bounded domain of $\mathbb{R}^{N}(N \geq 1)$, satisfying the cone condition. Let us consider the Carathéodory functions

$$
\begin{gathered}
a_{i}(x, t, s, \epsilon)=w_{i}\left|\epsilon_{i}\right|^{p-1} \operatorname{sgn}\left(\epsilon_{i}\right) \quad \text { for } i=1, \ldots, N, \\
a_{0}(x, t, s, \epsilon)=\rho \sigma(x) s|s|^{p-2}, \quad \rho>0
\end{gathered}
$$

where σ and $w_{i}(x)(i=, 1, \ldots, N)$ are given weight functions, strictly positive almost everywhere in Ω. We shall assume that the weight functions satisfy, $w_{i}(x)=w(x)$, $x \in \Omega$, for all $i=1, \ldots, N$. Then, we can consider the Hardy inequality (2.6) in the form

$$
\left(\int_{Q}|u(x, t)|^{p} \sigma(x) d x\right)^{1 / p} \leq c\left(\int_{Q}|\nabla u(x, t)|^{p} w d x\right)^{1 / p}
$$

It is easy to show that the functions $a_{i}(x, t, s, \epsilon)$ are Carathéodory functions satisfying the growth condition 2.12 and the coercivity (2.13). On the other hand, the monotonicity condition is satisfied, in fact,

$$
\begin{aligned}
& \sum_{i=1}^{N}\left(a_{i}(x, t, s, \epsilon)-a_{i}(x, t, s, \hat{\epsilon})\right)\left(\epsilon_{i}-\hat{\epsilon}_{i}\right) \\
& =w(x) \sum_{i=1}^{N}\left(\left|\epsilon_{i}\right|^{p-1} \operatorname{sgn} \epsilon_{i}-\left|\hat{\epsilon_{i}}\right|^{p-1} \operatorname{sgn} \hat{\epsilon_{i}}\right)\left(\epsilon_{i}-\hat{\epsilon_{i}}\right)>0
\end{aligned}
$$

for almost all $(x, t) \in Q$ and for all $\epsilon, \hat{\epsilon} \in \mathbb{R}^{N}$ with $\epsilon \neq \hat{\epsilon}$, since $w>0$ a.e. in Ω. In particular, let us use the special weight functions w and σ expressed in terms of the distance to the boundary $\partial \Omega$. Denote $d(x)=\operatorname{dist}(x, \partial \Omega)$ and set

$$
w(x)=d^{\lambda}(x), \quad \sigma(x)=d^{\mu}(x)
$$

In this case, the Hardy inequality reads

$$
\left(\int_{Q}|u(x, t)|^{p} d^{\mu}(x) d x\right)^{1 / p} \leq\left(c \int_{Q}|\nabla u(x, t)|^{p} d^{\lambda}(x) d x\right)^{1 / p}
$$

For $\lambda<p-1, \frac{\mu-\lambda}{p}+1>0$; See for example [9]
Corollary 4.1. The parabolic initial-boundary value problem

$$
\begin{aligned}
& \int_{Q} \frac{\partial u(x, t)}{\partial t} \varphi d x d t+\int_{Q} d^{\lambda}(x) \sum_{i=1}^{N}\left|\frac{\partial u(x, t)}{\partial x_{i}}\right|^{p-1} \operatorname{sgn}\left(\frac{\partial u}{\partial x_{i}}\right) \frac{\partial \varphi(x, t)}{\partial x_{i}} d x d t \\
& +\int_{Q} \rho d^{\mu}(x) u(x, t)|u(x, t)|^{p-2} \varphi(x, t) \\
& =\int_{Q} f \varphi d x d t \quad \forall \varphi \in D(Q)
\end{aligned}
$$

admits at least one solution u in $L^{p}\left(0, T, W_{0}^{1, p}\left(\Omega, d^{\lambda}\right)\right.$), for any function f in $L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(\Omega, d^{\lambda^{\prime}}\right)\right)$ where $\lambda^{\prime}=\lambda\left(1-p^{\prime}\right)$ and $u_{0} \in W_{0}^{1, p}\left(\Omega, d^{\lambda}\right)$.

References

[1] R. Adams, Sobolev spaces, AC, Press, New York, (1975)
[2] Y. Akdim, E. Azroul and A. Benkirane, Existence Results for Quasilinear Degenerated Equations Via Strong Convergence of Truncations, Revista Matematica Complutense 17, , N.2, (2004) pp 359-379.
[3] J. Berkovits, V. Mustonen, Topological degree for perturbation of linear maximal monotone mappings and applications to a class of parabolic problems, Rend. Mat. Roma, Ser, VII, 12 (1992), pp. 597-621.
[4] L. Boccardo, F. Murat and J. P. Puel Existence of bunded solutions for nonlinear elliptic unilateral probems, Ann. Matt. Pura Appl. (4) 152 (1988), pp. 183-196. (English, with French and Italian summaries.
[5] L. Boccardo, F. Murat, Strongly nonlinear Cauchy problems with gradient dependt lower order nonlinearity, Pitman Research Notes in Mathematics, 208 (1988), pp. 347-364.
[6] L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear analysis, T.M.A., 19 (1992), no. 6, pp. 581-597.
[7] H. Brezis, and F.E. Browder, Strongly nonlinear parabolic initial-boundary value problems, Proc. Nat. Acad. Sci. U. S. A. 76 (1976). pp. 38-40.
[8] A. Dallaglio A. Orsina, Non linear parabolic equations with natural growth condition and L^{1} data. Nolinear Anal., T.M.A., 27 no. 1 (1996). pp. 59-73.
[9] P. Drabek, A. Kufner and L. Mustonen, Pseudo-monotonicity and degenerated or singular elliptic operators, Bull. Austral. Math. Soc. Vol. 58 (1998), 213-221.
[10] P. Drabek, A. Kufner and F. Nicolosi, Non linear elliptic equations, singular and degenerated cases, University of West Bohemia, (1996).
[11] A. Kufner, Weighted Sobolev Spaces, John Wiley and Sons, (1985).
[12] R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh sect. A. 89 (1981), 217-137.
[13] R. Landes, V. Mustonen, A strongly nonlinear parabolic initial-boundary value problems, Ark. f. Math. 25. (1987).
[14] R. Landes, V. Mustonen, On parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré11(2)(1994)135-158.
[15] J. Leray, J. L. Lions, Quelques resultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1995), 97107.
[16] J. L. Lions, quelques methodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers-Villars, 1969.
[17] Zh. Liu, nonlinear degenerate parabolic equations, Acta Math Hungar,77 (1-2), 1997, 147-157.
[18] E. Zeidler, nonlinear functional analysis and its applications, II A and II B, SpringerVerlag (New York-Heidlberg, 1990).

Lahsen Aharouch
Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, B.P 1796 Atlas Fès, Maroc

E-mail address: l_aharouch@yahoo.fr
Elhoussine Azroul
Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, B.P 1796 Atlas Fès, Maroc

E-mail address: azroul_elhoussine@yahoo.fr
Mohamed Rhoudaf
Département de Mathématiques et Informatique, Faculté des Sciences Dhar-Mahraz, B.P 1796 Atlas Fès, Maroc

E-mail address: rhoudaf mohamed@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35J60.
 Key words and phrases. Weighted Sobolev spaces; boundary value problems; truncations; parabolic problems.
 (C) 2006 Texas State University - San Marcos.

 Published September 20, 2006.

