2005-Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, 2006, pp. 83–94. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON A PROBLEM OF LOWER LIMIT IN THE STUDY OF NONRESONANCE WITH LERAY-LIONS OPERATOR

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

ABSTRACT. We prove the solvability of the Dirichlet problem

$$\begin{aligned} Au &= f(u) + h \quad \text{in } \Omega \\ u &= 0 \quad \text{on } \partial \Omega \end{aligned}$$

for a given h, under a condition involving only the asymptotic behaviour of the potential F of f, where A is a Leray-Lions operator.

1. INTRODUCTION AND STATEMENT OF RESULTS

This paper concerns the existence of solutions to the problem

$$Au = f(u) + h \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega$$
(1.1)

where Ω is a bounded domain of \mathbb{R}^N , $N \ge 1$, A is an operator of the form $A(u) = -\sum_{i=1}^N \frac{\partial}{\partial x_i} A_i(\nabla u)$, f is a continuous function from \mathbb{R} to \mathbb{R} and h is a given function on Ω . Also we consider the problem

$$-\Delta_p u = f(u) + h \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial\Omega$$
(1.2)

where Δ_p denotes the *p*-Laplacian $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u), 1 .$

A classical result, essentially due to Hammerstein [9] asserts that if f satisfies a suitable polynomial growth restriction connected with the Sobolev imbeddings and if

$$\limsup_{x \to \pm \infty} \frac{2F(s)}{|s|^2} < \lambda_1, \tag{1.3}$$

then problem (1.2) with p = 2 is solvable for any h. Here F denotes the primitive $F(s) = \int_0^s f(t)dt$ and λ_1 is the first eigenvalue of $-\Delta$ on $H_0^1(\Omega)$. Several improvements of this result have been considered in the recent years.

²⁰⁰⁰ Mathematics Subject Classification. 35J60, 35P30.

Key words and phrases. Leray-Lions operator; Nonresonance; fist eigenvalue.

^{©2006} Texas State University - San Marcos.

Published September 20, 2006.

In 1989, the case N = 1 and p = 2 was considered in [7]. It was shown there that (1.2) with p = 2 is solvable for any $h \in L^{\infty}(\Omega)$ if

$$\liminf_{x \to \pm \infty} \frac{2F(s)}{|s|^2} < \lambda_1. \tag{1.4}$$

When $N \ge 1$ and p = 2, showed later in [8] that (1.2) is solvable for any $h \in L^{\infty}(\Omega)$ if

$$\liminf_{s \to \pm \infty} \frac{2F(s)}{|s|^2} < \left(\frac{\pi}{2R(\Omega)}\right)^2,\tag{1.5}$$

where $R(\Omega)$ denotes the radius of the smallest open ball $B(\Omega)$ containing Ω . This result was extended to the p-Laplacian case in [5] where solvability of (1.2) was derived under the condition

$$\liminf_{s \to \pm \infty} \frac{pF(s)}{|s|^p} < (p-1) \left\{ \frac{1}{R(\Omega)} \int_0^1 \frac{dt}{(1-t^p)^{1/p}} \right\}^p.$$
(1.6)

Note that this condition reduces to (1.5) when p = 2.

The question now naturally arises whether $(p-1)\left\{\frac{1}{R(\Omega)}\int_0^1 \frac{dt}{(1-t^p)^{1/p}}\right\}^p$ can be replaced by λ_1 in (1.6), where λ_1 denotes the first eigenvalue of $-\Delta_p$ on $W_0^{1,p}(\Omega)$ (cf[1]).

Observe that for N > 1 and p = 2, $(\frac{\pi}{2R(\Omega)})^2 < \lambda_1$, and a similar strict inequality holds when 1 . In [2], it was showed that the constants in (1.5) and (1.6)can be improved a little bit.

Denote by $l(\Omega)$ the length of the smallest edge of an arbitrary parallelepiped containing Ω . If

$$\liminf_{s \to \pm \infty} \frac{pF(s)}{|s|^p} < C_p(l) \tag{1.7}$$

where $C_p(l) = (p-1) \left\{ \frac{2}{l(\Omega)} \int_0^1 \frac{dt}{(1-t^p)^{1/p}} \right\}^p$ then for any $h \in L^{\infty}(\Omega)$ the problem (1.2) has a solution $u \in W_0^{1,p}(\Omega) \cap C^1(\Omega)$. Observe that for N = 1, $C_p = \lambda_1$ the first eigenvalue of $-\Delta$ on $\Omega =]0, l(\Omega)[$.

In particular, $C_2 = \left(\frac{\pi}{l}\right)^2$, and it recovers the result of [7]. It is clear that (1.7) is a weaker hypothesis than (1.6). The difference between (1.7) and (1.6) is particularly important when Ω is a rectangle or a triangle. However $C_p(l) < \lambda_1$ when N > 1, and the question raised above remains open.

In this paper we investigate the question of replacing Δ_p by the operator of the form

$$A(u) = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} A_i(\nabla u).$$

We assume the following hypotheses:

- (A0) For all $i \in \{1, 2, ..., N\}$, $A_i : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ is continuous.
- (A1) there exists $(c,k) \in ([0,+\infty[)^2 \text{ such that } |A_i(\xi)| \leq c|\xi|^{p-1} + K$ for all $\{\xi \in \mathbb{R}^{\mathbb{N}}, \text{ and all } i \in \{1, 2, \dots, N\}.$ $(A2) \quad (a) \sum_{i=1}^{N} (A_i(\xi) - A_i(\xi'))(\xi_i - \xi'_i) > 0 \text{ for all } \xi \neq \xi' \in \mathbb{R}^N;$ $(b) \text{ for all } i \in \{1, 2, \dots, N\}, \text{ the function defined by}$
- - $r_i(s) = A_i(0, \dots, 0, s, 0, \dots, 0)$ for $s \in \mathbb{R}$ is odd;
 - (c) for each $i \in \{1, 2, ..., N\}$, there exists $a_i \in]0, +\infty[$ such that $\lim_{s \to +\infty} r_i(s) / s^{p-1} = a_i;$
 - (d) for each $i \in \{1, 2, ..., N\}, r_i \in C^1(\mathbb{R}^*)$ and $\lim_{s \to 0} sr'_i(s) = 0$;

(e) for all $i \in \{1, 2, \dots, N\}$, $A_i(\xi) = 0$ for all $\xi \in \mathbb{R}^N$ such that $\xi_i = 0$.

Remark 1.1. (1) The hypothesis (A2)(d) is in particular satisfied if we suppose that for $i \in \{1, ..., N\}$, $r_i \in C^1(\mathbb{R}^*)$ and there exists q_i , $1 < q_i < \infty$, there exists $\eta_i > 0$, there exists $(a, b) \in \mathbb{R}^2$, such that for all $|s| < \eta_i$, $|r'_i(s)| \le a|s|^{q_i-2} + b$. (2) The assumption (A2)(d) is an hypothesis of homogenization at infinity for the operator A.

Definition 1.2. For $i \in \{1, 2, ..., N\}$, we define

$$l_i(s) = \frac{1}{p-1}[sr_i(s) - \int_0^s r_i(t)dt] \quad \forall s \in \mathbb{R}.$$

Proposition 1.3. Assume (A0), (A1) and (A2). Then: (1) The operator $A : W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ is defined, strictly monotone and

$$\langle Au, v \rangle = \sum_{i=1}^{N} \int_{\Omega} A_i(\nabla u) \frac{\partial v}{\partial x_i} dx \quad \forall u, v \in W_0^{1,p}(\Omega).$$

(2) For each $i \in \{1, 2, ..., N\}$, the function $r_i : \mathbb{R} \to \mathbb{R}$ is continuous, strictly increasing and $r_i(0) = 0$.

- (3) For each $i \in \{1, 2, ..., N\}$, the function l_i satisfies
 - (i) l_i is even, continuous and $l_i(0) = 0$;
 - (ii) $\lim_{s \to +\infty} \frac{l_i(s)}{s^p} = \frac{a_i}{p}$ (iii) $l_i \in C^1(\mathbb{R}) \text{ and } l'_i(s) = \begin{cases} \frac{sr'_i(s)}{p-1} & \text{if } s \neq 0\\ 0 & \text{if } s = 0. \end{cases}$
 - (iv) l_i is strictly increasing in \mathbb{R}^+ .

Proof. (1) By (A0), (A1), it is clear that the operator A is defined from $W_0^{1,p}(\Omega)$ to $W^{-1,p'}(\Omega)$, we have

$$\langle Au,v\rangle = \sum_{i=1}^N \int_\Omega A_i(\nabla u) \frac{\partial v}{\partial x_i} dx \quad \forall u,v \in W^{1,p}_0(\Omega)$$

and by (A1)(a), we verify easily that A is strictly monotone.

(2) Let $i \in \{1, ..., N\}$. By (A0) and (A2)-(b), r_i is continuous and $r_i(0) = 0$, in the end r_i is strictly increasing. Indeed, let $(s, s') \in \mathbb{R}^2$ such that $s \neq s'$, we have

$$(r_i(s) - r_i(s'))(s - s') = \sum_{i=1}^N (A_i(\xi) - A_i(\xi'))(\xi_i - \xi_i') > 0$$

where $\xi = (0, ..., s, ... 0)$ and $\xi' = (0, ..., s', ... 0)$

(3)(i) By the foregoing, the function l_i is even, continuous and $l_i(0) = 0$ for every $i \in \{1, ..., N\}$

(3)(ii) We show first that

$$\lim_{s \to +\infty} \frac{1}{s^p} \int_0^s r_i(t) dt = \frac{a_i}{p}.$$
(1.8)

Let $\varepsilon > 0$, by (A2)(c), there exists $\eta_{\varepsilon} = \eta$ such that $|r_i(s) - a_i s^{p-1}| \le \varepsilon s^{p-1}$ for all $s \ge \eta$.

Integrating from η to s, we obtain

$$\left|\int_0^s r_i(t)dt - \int_0^\eta r_i(t)dt - \frac{a_i}{p}[s^p - \eta^p]\right| \le \frac{\varepsilon}{p}[s^p - \eta^p].$$

Dividing by s^p and letting $n \to +\infty$, we obtain

$$\lim_{s \to +\infty} \left| \frac{1}{s^p} \int_0^s r_i(t) dt - \frac{a_i}{p} \right| = 0$$

i.e (1.8) holds. Writing

$$\frac{l_i(s)}{s^p} = \frac{1}{p-1} \left\{ \frac{r_i(s)}{s^{p-1}} - \frac{1}{s^p} \int_0^s r_i(t) dt \right\}.$$

By (1.8) and (A2)(c), we have $\lim_{s \to +\infty} \frac{l_i(s)}{s^p} = \frac{a_i}{p}$ (3)(iii) Since $r_i \in C^1(\mathbb{R}^*)$, we have $l_i \in C^1(\mathbb{R}^*)$ and $l'_i(s) = \frac{1}{p-1}sr'_i(s)$ for every $s \neq 0$. On the other hand, for $s \neq 0$, since r_i is increasing and odd, we have

$$|\frac{l_i(s)}{s}| = \frac{1}{p-1} |r_i(s) - \frac{1}{s}| \int_0^s r_i(t) dt \le \frac{2}{p-1} r_i(|s|).$$

It results that $l'_i(0)$ exists and $l'_i(0) = 0$. By (A2)-(d) we obtain $\lim_{s\to 0} l'_i(s) =$ $\lim_{s\to 0} sr'_i(s)$. This proves that $l_i \in C^1(\mathbb{R})$.

(3)(iv) is a consequence of (3)(iii)

Example 1.4. We give at first some examples for operators A satisfying the hypothesis (A0), (A1) and (A2). (1) Let

$$Au = -\Delta_p u = -\sum_{i=1}^N \frac{\partial}{\partial x_i} (|\nabla u|^{p-2} \frac{\partial u}{\partial x_i})$$

Then we have $A_i(\xi) = |\xi|^{p-2} \xi_i$ for every $\xi = (\xi_i) \in \mathbb{R}^N$. $r(s) = r_i(s) = |s|^{p-2}s$ for every $s \in \mathbb{R}$ and every $i \in \{1, \dots, N\}$. $l(s) = l_i(s) = \frac{1}{p} |s|^p$ for every $s \in \mathbb{R}$ and every $i \in \{1, \dots, N\}$. (2) Let

$$Au = -\Delta_p u - \Delta_q u = -\sum_{i=1}^N \frac{\partial}{\partial x_i} (|\nabla u|^{p-2} \frac{\partial u}{\partial x_i} + |\nabla u|^{q-2} \frac{\partial u}{\partial x_i})$$

where $1 < q < p < +\infty$. Then we have $A_i(\xi) = |\xi|^{p-2}\xi_i + |\xi|^{q-2}\xi_i$ for every $\xi = (\xi_i) \in \mathbb{R}^N$. $r(s) = r_i(s) = |s|^{p-2}s + |s|^{q-2}s \text{ for every } s \in \mathbb{R} \text{ and every } i \in \{1, \dots, N\}.$ $l(s) = l_i(s) = \frac{1}{p}|s|^p + \frac{q-1}{q(p-1)}|s|^q \text{ for every } s \in \mathbb{R} \text{ and every } i \in \{1, \dots, N\}.$ (3) Let

$$Au = -\Delta_{p,\varepsilon} u = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left[\varepsilon + |\nabla u|^2 \right)^{\frac{p-2}{2}} \frac{\partial u}{\partial x_i} \right],$$

where $\varepsilon > 0$. Then we have $A_i(\xi) = (\varepsilon + |\xi|^2)^{\frac{p-2}{2}} \xi_i$ for every $\xi = (\xi_i) \in \mathbb{R}^N$. $r(s) = r_i(s) = (\varepsilon + |s|^2)^{\frac{p-2}{2}} s \text{ for every } s \in \mathbb{R} \text{ and every } i \in \{1, \dots, N\}.$ $l(s) = l_i(s) = (\varepsilon + |s|^2)^{\frac{p-2}{2}} \left(\frac{s^2}{p} - \frac{\varepsilon}{p(p-1)}\right) + \frac{1}{p(p-1)} \varepsilon^{\frac{p}{2}} \text{ for every } s \in \mathbb{R} \text{ and }$ $i \in \{1, \ldots, N\}.$

2. Proof of Main Theorem

We consider the Dirichlet problem (1.1) where Ω is a bounded domain of \mathbb{R}^N , $N \geq 1$, f is a continuous function from \mathbb{R} to \mathbb{R} and $h \in L^{\infty}(\Omega)$.

Denote by [AB] the smallest edge of an arbitrary parallelepiped containing Ω . Making an orthogonal change of variables, we can always suppose that AB is parallel to one of the axis of \mathbb{R}^N . So $\Omega \subset P = \prod_{j=1}^N [a_j, b_j]$ with, for some i, $|AB| = b_i - a_i = \min_{1 \le j \le N} \{b_j - a_j\}$, a quantity which we denote by b - a.

Denote by $l = l_i$, $r = r_i$, F the primitive $F(s) = \int_0^s f(t) dt$ and

$$C_p = (p-1) \left\{ \frac{2}{b-a} \int_0^1 \frac{dt}{(1-t^p)^{\frac{1}{p}}} \right\}^p.$$

Theorem 2.1. Assume

$$\liminf_{s \to \pm \infty} \frac{F(s)}{l(s)} < C_p. \tag{2.1}$$

Then for any $h \in L^{\infty}(\Omega)$, the problem (1.1) has a solution $u \in W_0^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ in the weak sense; i.e

$$\sum_{i=1}^{N} \int_{\Omega} A_i(\nabla u) \frac{\partial \varphi}{\partial x_i} dx = \int_{\Omega} f(u)\varphi + \int_{\Omega} h\varphi \quad \forall \varphi \in W_0^{1,p}(\Omega).$$

Definition 2.2. An upper solution for (1.1) is defined as a function $\beta : \overline{\Omega} \to \mathbb{R}$ such that

- $\beta \in C^1(\overline{\Omega})$
- $A(\beta) \in C(\overline{\Omega})$
- $A(\beta)(x) \ge f(\beta(x)) + h(x)$ a e x in Ω .

A lower solution α is defined by reversing the inequalities above.

Lemma 2.3. Assume that (1.1) admits an upper solution β and a lower solution α with $\alpha(x) \leq \beta(x)$ in Ω . Then (1.1) admits a solution $u \in W_0^{1,p}(\Omega) \cap C^1(\Omega)$, with $\alpha(x) \leq u(x) \leq \beta(x)$ in Ω .

Proof. Let

$$\widetilde{f}(x,s) = \begin{cases} f(\beta(x)) & \text{if } s \ge \beta(x), \\ f(s) & \text{if } \alpha(x) \le s \le \beta(x), \\ f(\alpha(x)) & \text{if } s \le \alpha(x) \end{cases}$$

for every $(x,s) \in \overline{\Omega} \times \mathbb{R}$ such that \tilde{f} is bounded and continuous in $\overline{\Omega} \times \mathbb{R}$, then the problem

$$Au = f(x, u) + h(x) \quad \text{in } \Omega$$

$$u = 0 \quad \text{on } \partial\Omega$$
(2.2)

admits a solution $u \in W_0^{1,p}(\Omega)$ in the weak sense, indeed the operator A is strictly monotone, so we can use the result of Lions [10] concerned the pseudomonotones operators.

We claim that $\alpha(x) \leq u(x) \leq \beta(x)$ in Ω , which clearly implies the conclusion.

To prove the first inequality, one multiplies (2.2) by $w = u - u_{\alpha}$, where $u_{\alpha}(x) = \max(u(x), \alpha(x))$, integrates by parts and uses the fact that α is a lower solution we obtain $\langle A(u) - A(u - w), w \rangle \leq 0$, which implies w = 0 (since A is strictly monotone).

Lemma 2.4. Let a < b and M > 0, and assume

$$\liminf_{s \to +\infty} \frac{F(s)}{l(s)} < C_p.$$
(2.3)

then there exists $\beta_1 \in C^1(I)$ such that $(r(\beta'_1(t)))' \in C(I)$ and

$$-(r(\beta_1'(t)))' \ge f(\beta_1(t)) + M \quad \forall t \in I,$$

$$\beta_1(t) \ge 0 \quad \forall t \in I$$

where I = [a, b].

Lemma 2.5. Assume

$$\liminf_{s \to -\infty} \frac{F(s)}{l(s)} < C_p.$$
(2.4)

then there exists $\alpha_1 \in C^1(I)$ such that $(r(\alpha'_1(t)))' \in C(I)$ and

$$-(r(\alpha'_1(t)))' \le f(\alpha_1(t)) - M \quad \forall t \in I$$
$$\alpha_1(t) \le 0 \quad \forall t \in I$$

where I = [a, b].

Accepting for a moment the conclusion of these two lemmas, let us turn to the Proof of Theorem 2.1. By Lemma 2.3 it suffices to show the existence of an upper solution and a lower solution for (1.1). Let us describe the construction of the upper solution (that of the lower solution is similar).

Let $M > ||h||_{\infty}$ and $i \in \{1, 2, ..., N\}$ such that $b = b_i$, $a = a_i$. By Lemma 2.4 there exists $\beta_1 : I \to \mathbb{R}$ such that $\beta_1 \in C^1(I)$, $(r(\beta'_1(t)))' \in C(I)$ and

$$-(r(\beta'_1(t)))' \ge f(\beta_1(t)) + M \quad \forall t \in I,$$

$$\beta_1(t) \ge 0 \quad \forall t \in I.$$

Writing $\beta(x) = \beta_1(x_i)$ for all $x = (x_i) \in \overline{\Omega}$, it is clear that $\beta \in C^1(\overline{\Omega})$, $A(\beta(x)) = A(\beta_1(x_i)) \in C(\overline{\Omega})$, and we have by (A2)(e):

$$\begin{split} A(\beta(x)) &= -\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} A_{j}(\nabla \beta(x)) \\ &= -\frac{\partial}{\partial x_{i}} (r_{i}(\beta_{1}'(x_{i}))) \\ &= -(r(\beta_{1}'(x_{i})))' \\ &\geq f(\beta_{1}(x_{i})) + M \\ &= f(\beta(x)) + M \\ &\geq f(\beta(x)) + h(x) \quad \text{a.e.} x \in \Omega \end{split}$$

The proof of Theorem 2.1 is thus complete.

Next, we present the proof of Lemma 2.4. The proof of Lemma 2.5 follows similarly.

First case. Suppose $\inf_{s\geq 0} f(s) = -\infty$. Then there exists $\beta \in \mathbb{R}^* +$ such that $f(\beta) < -M$, and the constant function β provides a solution to the problem in Lemma 2.4.

Second case. Suppose now $\inf_{s\geq 0} f(s) > -\infty$. Let K > M such that $\inf_{s\geq 0} f(s) > -K + 1$. Thus $f(s) + K \geq 1$ for all $s \geq 0$. Define $g : \mathbb{R} \to \mathbb{R}$ by

$$g(s) = \begin{cases} f(s) + K & \text{if } s \ge 0\\ f(0) + K & \text{if } s < 0 \end{cases}$$

and denote $G(s) = \int_0^s g(t)dt$ for all s in \mathbb{R} . It is easy to see that $g(s) \ge 1$ for all s in \mathbb{R} and that

$$0 \le \liminf_{s \to +\infty} \frac{G(s)}{l(s)} = \liminf_{s \to +\infty} \frac{F(s)}{l(s)} < C_p.$$

Now it is clearly sufficient to prove the existence of a function $\beta_1 : I \to \mathbb{R}$ such that $\beta_1 \in C^1(I), (r(\beta'_1(t)))' \in C(I)$ and

$$\begin{split} -(r(\beta_1'(t)))' &= g(\beta_1(t)) \quad \forall t \in I \\ \beta_1(t) \geq 0 \quad \forall t \in I \end{split}$$

For this purpose we will need the following four Lemmas.

Lemma 2.6. Let $0 < c < \infty$ and $t \in]0, 1[$, then

$$\lim_{\alpha \to +\infty} \frac{\alpha}{l^{-1}(c(l(\alpha) - l(\alpha t)))} = \frac{1}{c^{1/p}(1 - t^p)^{\frac{1}{p}}}$$

In particular by, Fatou Lemma,

$$\frac{1}{c^{1/p}} \int_0^1 \frac{dt}{(1-t^p)^{1/p}} \le \liminf_{\alpha \to +\infty} \int_0^1 \frac{\alpha dt}{l^{-1}(c(l(\alpha) - l(\alpha t)))}$$

Proof. Denote $s(\alpha) = \frac{\alpha}{l^{-1}(c(l(\alpha)-l(\alpha t)))}$ and $\frac{a_i}{p} = d$. By Proposition 1.3 (3)(ii), we have

$$\lim_{s \to +\infty} \frac{s^{1/p}}{l^{-1}(s)} = d^{1/p}.$$

On the other hand,

$$\lim_{\alpha \to +\infty} [c(l(\alpha) - l(\alpha t))] = +\infty,$$

and more generally,

$$\lim_{\alpha \to +\infty} \frac{l(\alpha) - l(\alpha t)}{\alpha^p} = d(1 - t^p) > 0.$$

Writing

$$s(\alpha) = \frac{1}{\left[\frac{c(l(\alpha) - l(\alpha t))}{\alpha^p}\right]^{1/p}} \frac{[c(l(\alpha) - l(\alpha t))]^{1/p}}{l^{-1}(c(l(\alpha) - l(\alpha t)))}$$

Letting $n \to +\infty$ and by the three limits above, we have

$$\lim_{\alpha \to +\infty} s(\alpha) = \frac{1}{c^{1/p} (1 - t^p)^{1/p}}$$

Lemma 2.7. For d > 0, define

$$\tau_G(d) = \int_0^d \frac{ds}{l^{-1} \left[\frac{G(d) - G(s)}{p - 1} \right]} \,.$$

Then

$$\limsup_{d \to +\infty} \tau_G(d) \ge \left(\int_0^1 \frac{dt}{(1-t^p)^{1/p}}\right) \left(\frac{1}{p-1} \liminf_{s \to +\infty} \frac{G(s)}{l(s)}\right)^{1/p}$$

_	

In particular (2.3) implies $\limsup_{d\to+\infty} \tau_G(d) > (b-a)/2$.

Proof. Let ρ be a positive number such that $\liminf_{s \to +\infty} \frac{G(s)}{l(s)} < \rho < C_l$. Then $\limsup_{s \to +\infty} [\rho l(s) - G(s)] = +\infty$. Let w_n be the smallest number in [0, n] such that $\max_{0 \le s \le n} K(s) = K(w_n)$ where $K(s) = \rho l(s) - G(s)$; it is easily seen that (w_n) is increasing with respect to n. Since $\rho l(s) - G(s) < \rho l(w_n) - G(w_n)$ for all $s \in [0, w_n[$, we have $\frac{G(w_n) - G(s)}{p-1} < \frac{\rho}{p-1}(l(w_n) - l(s))$ for all $s \in [0, w_n[$, since $l : [0, +\infty[\to [0, +\infty[$) is an increasing homeomorphism, we have

$$\frac{1}{l^{-1}\left[\frac{\rho}{p-1}(l(w_n) - l(s))\right]} < \frac{1}{l^{-1}\left[\frac{1}{p-1}(G(w_n) - G(s))\right]}.$$

Integrating from 0 to w_n and changing variable $s = uw_n$ in the first member of inequality, we obtain

$$\int_0^1 \frac{w_n}{l^{-1}[\frac{\rho}{p-1}(l(w_n) - l(w_n s))]} ds \le \tau_G(w_n).$$

Letting $n \to +\infty$, we obtain

$$\liminf_{n \to +\infty} \int_0^1 \frac{w_n}{l^{-1} \left[\frac{\rho}{p-1} (l(w_n) - l(w_n s)) \right]} ds \le \limsup_{n \to +\infty} \tau_G(w_n).$$

By Lemma 2.6, it results

$$\limsup_{d \to +\infty} \tau_G(d) \ge \left[\int_0^1 \frac{dt}{(1-t^p)^{1/p}} \right] \left[\frac{\rho}{p-1} \right]^{\frac{-1}{p}}.$$

Letting $\rho \to \liminf_{s \to +\infty} \frac{G(s)}{l(s)}$, the Lemma is proved.

Lemma 2.8. Let d > 0 and consider the mapping T_d defined by

$$T_{d}(u) = d - \int_{a}^{t} r^{-1} \left(\left[\int_{a}^{\tau} g(u(s)) ds \right]^{1/(p-1)} \right) d\tau$$

in the Banach space C(I). Then T_d has a fixed point.

Proof. Clearly by Ascoli's theorem T_d is compact. The proof of Lemma 2.8 uses an homotopy argument based on the Leray Schauder topological degree. So T_d will have a fixed point if the following condition holds:

There exists $\rho > 0$ such that $(I - \lambda T_d)(u) \neq 0$ for all $u \in \partial B(0, \rho)$ for all $\lambda \in [0, 1]$, where $\partial B(0, \rho) = \{u \in C(I); ||u||_{\infty} = \rho\}.$

To prove that this condition holds, suppose by contradiction that for all n = 1, 2, ... there exists $u_n \in \partial B(0, n)$, $\lambda_n \in [0, 1]$ such that: $u_n = \lambda_n T_d(u_n)$. The latter relation implies

$$u_n = \lambda_n d - \lambda_n \int_a^t r^{-1} \left(\left[\int_a^\tau g(u(s)) ds \right]^{\frac{1}{p-1}} \right) d\tau$$
(2.5)

Therefore, $u_n \in C^1(I)$ and we have successively

$$u'_{n}(t) = -\lambda_{n} r^{-1} \left(\left[\int_{a}^{\tau} g(u(s)) ds \right]^{\frac{1}{p-1}} \right) < 0 \quad \forall t \in]a, b],$$

$$u'_{n}(a) = 0,$$
(2.6)

$$\left(r\left[\frac{u_{n}'(t)}{\lambda_{n}}\right]\right)' \in C(I) \text{ and}$$

 $-\left(r\left(\frac{u_{n}'(t)}{\lambda_{n}}\right)\right)' = g(u_{n}(t)) \quad \forall t \in I.$ (2.7)

Note that by (2.6), $u'_n(t) < 0$ in]a, b], so that u_n is decreasing. Hence, for n > d, $u_n(b) = -n$. Multiplying the equation (2.7) by $u'_n(t)$, we obtain

$$-\lambda_n \left(l\left(\frac{u_n'(t)}{\lambda_n}\right) \right)' = \frac{1}{p-1} \frac{d}{dt} G(u_n(t)).$$
(2.8)

Indeed

$$\begin{pmatrix} l\left(\frac{u_n'(t)}{\lambda_n}\right) \end{pmatrix}' = \left[l\left(r^{-1}\left(r\left(\frac{u_n'(t)}{\lambda_n}\right)\right) \right) \right]'$$

$$= (l \circ r^{-1})' \left(r\left(\frac{u_n'(t)}{\lambda_n}\right)\right) \left(r\left(\frac{u_n'(t)}{\lambda_n}\right)\right)'$$

$$= \frac{1}{p-1} \frac{u_n'(t)}{\lambda_n} \left(r\left(\frac{u_n'(t)}{\lambda_n}\right)\right)'$$

By (2.8), we have

$$\lambda_n \left(l\left(\frac{u'_n(t)}{\lambda_n}\right) \right) = \frac{1}{p-1} (G(\lambda_n d) - G(u_n(t)))$$

and

$$-\frac{u_n'(t)}{\lambda_n l^{-1}\left[\frac{G(\lambda_n d) - G(u_n(t))}{(p-1)\lambda_n}\right]} = 1.$$

Integrating from a to b and changing variable $s = u_n(t)$ $(u_n(a) = \lambda_n d$ and $u_n(b) = -n$, we obtain

$$\int_{-n}^{\lambda_n d} \frac{ds}{\lambda_n l^{-1} \left[\frac{G(\lambda_n d) - G(s)}{(p-1)\lambda_n}\right]} = b - a$$

i.e.

$$\int_0^{\lambda_n d} \frac{ds}{\lambda_n l^{-1} \left[\frac{G(\lambda_n d) - G(s)}{(p-1)\lambda_n} \right]} = b - a + \int_0^{-n} \frac{ds}{\lambda_n l^{-1} \left[\frac{G(\lambda_n d) - G(s)}{(p-1)\lambda_n} \right]} \ge 0$$

Since G(s) = sg(0) for $s \leq 0$ and changing variable s = -u, we obtain

$$0 \le (b-a) - \int_0^n \frac{ds}{\lambda_n l^{-1} \left[\frac{G(\lambda_n d) - sg(0)}{(p-1)\lambda_n} \right]}$$
(2.9)

Denote by $l(u) = \frac{G(\lambda_n d) - G(s)}{(p-1)\lambda_n}$ such that $l'(u)du = \frac{g(0)}{(p-1)\lambda_n}ds$ and $ds = \frac{\lambda_n}{g(0)}r'(u)udu$ for $u \neq 0$ and denote $\alpha_n = l^{-1} \left[\frac{G(\lambda_n d)}{(p-1)\lambda_n}\right]$ and $\beta_n = l^{-1} \left[\frac{(G(\lambda_n d) + ng(0))}{(p-1)\lambda_n}\right]$. By (2.9), we obtain

$$0 \le (b-a) - \int_{\alpha_n}^{\beta_n} \frac{r'(u)}{g(0)} du$$

= $(b-a) - \frac{1}{g(0)} r \{ l^{-1} [\frac{G(\lambda_n d) - ng(0)}{(p-1)\lambda_n}] \} + \frac{1}{g(0)} r \{ l^{-1} [\frac{G(\lambda_n d)}{(p-1)\lambda_n}] \}$

Since

$$\frac{G(\lambda_n d) - ng(0)}{(p-1)\lambda_n} \ge \frac{ng(0)}{(p-1)}, \quad \frac{G(\lambda_n d)}{(p-1)\lambda_n} \le \frac{d}{p-1} \max_{0 \le s \le d} |g(s)|$$

and $r \circ l^{-1}$ is increasing, it results that

$$0 \le (b-a) - \frac{1}{g(0)} r \left\{ l^{-1} \left[\frac{ng(0)}{(p-1)\lambda_n} \right] \right\} + \frac{1}{g(0)} r \left\{ l^{-1} \left[\frac{d}{p-1} \max_{0 \le s \le d} |g(s)| \right] \right\}.$$

Letting $n \to +\infty$, we get a contradiction. Let us denote by $u_d \in C(I)$ a fixed point of the mapping T_d of Lemma 2.8

Lemma 2.9. There exists d > 0 such that $u_d(t) \ge 0$ for all $t \in [a, \frac{a+b}{2}]$.

Proof. We know that u_d is decreasing and that $u_d(a) = d$ for all d > 0. Let us distinguish two cases.

First if there exists d > 0 such that $u_d(b) \ge 0$, then the conclusion of Lemma 2.9 clearly follows. So we can assume that $u_d(b) < 0$ for every d > 0. Since $u_d(a) = d > 0$, there exists $\delta_d \in]a, b[$ such that $u_d(\delta_d) = 0$. It is clear that $u_d(t) \ge 0$ for all $t \in [a, \delta_d[$, and so it is sufficient to show that $\limsup_{d \to +\infty} \delta_d > \frac{a+b}{2}$. Processing as in the proof of Lemma 2.8, we obtain

$$-u_d'(t) \left\{ l^{-1} \left(\frac{G(d) - G(u_d(t))}{p - 1} \right) \right\}^{-1} = 1.$$

Integrating from a to δ_d and changing variable $s = u_d(t)$, one gets

$$\tau_G(d) = \int_0^d \frac{ds}{l^{-1} \left[\frac{G(d) - G(s)}{p - 1} \right]} = \delta_d - a,$$

consequently

$$\limsup_{d \to +\infty} \delta_d > a + \frac{b-a}{2} = \frac{a+b}{2}$$

Proof of Lemma 2.4 continued. Denoting $u_d(t)$ by u(t), we have $u \in C^1(I)$, $(r(u'))' \in C(I)$ and

$$-(r(u'))' = g(u(s)) \quad \forall t \in I,$$
$$u(t) \ge 0 \quad \forall t \in [a, \frac{a+b}{2}[,$$
$$u'(a) = 0.$$

Define a function β_1 from [a, b] to \mathbb{R} by

$$\beta_1(t) = \begin{cases} u(\frac{3a+b}{2}-t) & \text{if } t \in [a, \frac{a+b}{2}], \\ u(t-\frac{b-a}{2}) & \text{if } t \in [\frac{a+b}{2}, b]. \end{cases}$$

We will show that this function β fulfills the conditions of Lemma 2.4. To see this it is sufficient to show that

- (a) β_1 is nonnegative in [a, b],
- (b) $\beta_1 \in C^1([a, b]),$

(c) $(r(\beta'_1(t)))' \in C([a, b])$ and $-(r(\beta'_1(t)))' = g(\beta_1(t))$ for all $t \in [a, b]$.

Proof of (a). If $a \le t \le \frac{a+b}{2}$, then $a \le \frac{3a+b}{2} - t \le \frac{a+b}{2}$, and if $\frac{a+b}{2} \le t \le b$, then $a \le t - \frac{b-a}{2} \le \frac{a+b}{2}$, so that the conclusion follows from the sign of u on $[a, \frac{a+b}{2}]$. Proof of (b). $\beta_1 \in C^1([a, \frac{a+b}{2}]), \beta_1 \in C^1(]\frac{a+b}{2}, b])$, and moreover $\frac{d}{dt+}\beta_1(\frac{a+b}{2}) = u'(a) = 0$ and $\frac{d}{dt-}\beta_1(\frac{a+b}{2}) = u'(a) = 0$.

Proof of (c). We know that -(r(u'(t)))' = g(u(t)) for $t \in [a, b]$, therefore

$$-(r(u'(t)) = \int_a^t g(u(s))ds.$$

If $a \le t \le \frac{a+b}{2}$ then $a \le \frac{3a+b}{2} - t \le \frac{a+b}{2}$, which gives

$$\beta_1(t) = u(\frac{3a+b}{2}-t)$$
 and $\beta'_1(t) = -u'(\frac{3a+b}{2}-t).$

We obtain

$$-(r(u'(\frac{a+b}{2}-t)) = r(\beta'_1(t)).$$

The change of variable $u = \frac{3a+b}{2} - s$ yields

$$\int_{a}^{\frac{3a+b}{2}-t} g(u(s))ds = \int_{t}^{\frac{a+b}{2}} g(u(\frac{3a+b}{2}-s))ds,$$

hence

$$r(\beta_1'(t)) = \int_t^{\frac{a+b}{2}} g(\beta_1(s)) ds \quad \forall t \in [a, \frac{a+b}{2}]$$

and

$$-(r(\beta_1'(t)))' = g(\beta_1(t)) \quad \forall t \in [a, \frac{a+b}{2}]$$

The proof is similar for all $t \in [\frac{a+b}{2}, b]$.

References

- A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris Sr. I Math. 305 (1987), 725-728.
- [2] A. Anane and O. Chakrone; On a probem of lower limit in the study of nonresonance, Abstract and Applied Analysis, Vol. 2, Nos. 3-4, 1997, pp. 43-53.
- [3] E. di Benedetto, C^{1, \u03c0 local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850.}
- [4] D. G. de Figuerido and J. P. Gossez; Nonresonance below the first eigenvalue dor a semilinear elliptic problem, Math. Ann. 281 (1988), 589-610.
- [5] A. El Hachimi and J. P. Gossez; A note on a nonresonance condition for quasilinear elliptic problem, Nonlinear Anal, 22 (1994), 229-236.
- [6] A. El Hachimi and J. P. Gossez; On a nonresonance condition near the first eigenvalue for a quasilinear elliptic problem, Partial Differential Equations (Han-sur-Less, 1993), 144-151, Math. Res, ≠82, Akademie-Verlag, Berlin, 1994.
- [7] M. Fernandes, P. Omari and F. Zanolin; On the solvability of a semilineair two point BVP around the first eingenvalue, Differential Integral Equations, 2 (1989), 63-79.
- [8] A. Fonda, J. P. Gossez and F. Zanolin; On a nonresonance condition for a semi-linear elliptic problem, Differential Integral Equations, 4 (1991), 945-951.
- [9] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), 117-176.
- [10] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non-linéaires, Dunod, Paris, Gauthier-Villars, (1969).
- [11] D. Del Santo and P. Omari; Nonresonance conditions on the potential for a semilinear elliptic problem, J. Differential Equations, 108 (1994), 120-138.

Aomar Anane

Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: anane@sciences.univ-oujda.ac.ma

Omar Chakrone

Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: chakrone@sciences.univ-oujda.ac.ma

Mohammed Chehabi

Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: chehb_md@yahoo.fr