2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 83-94.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON A PROBLEM OF LOWER LIMIT IN THE STUDY OF NONRESONANCE WITH LERAY-LIONS OPERATOR

AOMAR ANANE, OMAR CHAKRONE, MOHAMMED CHEHABI

Abstract. We prove the solvability of the Dirichlet problem

$$
\begin{gathered}
A u=f(u)+h \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

for a given h, under a condition involving only the asymptotic behaviour of the potential F of f, where A is a Leray-Lions operator.

1. Introduction and statement of results

This paper concerns the existence of solutions to the problem

$$
\begin{gather*}
A u=f(u)+h \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a bounded domain of $\mathbb{R}^{N}, N \geq 1, A$ is an operator of the form $A(u)=$ $-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} A_{i}(\nabla u), f$ is a continuous function from \mathbb{R} to \mathbb{R} and h is a given function on Ω. Also we consider the problem

$$
\begin{gather*}
-\Delta_{p} u=f(u)+h \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

where Δ_{p} denotes the p-Laplacian $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), 1<p<\infty$.
A classical result, essentially due to Hammerstein [9 asserts that if f satisfies a suitable polynomial growth restriction connected with the Sobolev imbeddings and if

$$
\begin{equation*}
\limsup _{x \rightarrow \pm \infty} \frac{2 F(s)}{|s|^{2}}<\lambda_{1} \tag{1.3}
\end{equation*}
$$

then problem $\sqrt{1.2}$ with $p=2$ is solvable for any h. Here F denotes the primitive $F(s)=\int_{0}^{\Omega} f(t) d t$ and λ_{1} is the first eigenvalue of $-\Delta$ on $H_{0}^{1}(\Omega)$. Several improvements of this result have been considered in the recent years.

[^0]In 1989, the case $N=1$ and $p=2$ was considered in [7]. It was shown there that (1.2) with $p=2$ is solvable for any $h \in L^{\infty}(\Omega)$ if

$$
\begin{equation*}
\liminf _{x \rightarrow \pm \infty} \frac{2 F(s)}{|s|^{2}}<\lambda_{1} \tag{1.4}
\end{equation*}
$$

When $N \geq 1$ and $p=2$, showed later in [8] that (1.2) is solvable for any $h \in L^{\infty}(\Omega)$ if

$$
\begin{equation*}
\liminf _{s \rightarrow \pm \infty} \frac{2 F(s)}{|s|^{2}}<\left(\frac{\pi}{2 R(\Omega)}\right)^{2} \tag{1.5}
\end{equation*}
$$

where $R(\Omega)$ denotes the radius of the smallest open ball $B(\Omega)$ containing Ω. This result was extended to the p-Laplacian case in [5] where solvability of 1.2) was derived under the condition

$$
\begin{equation*}
\liminf _{s \rightarrow \pm \infty} \frac{p F(s)}{|s|^{p}}<(p-1)\left\{\frac{1}{R(\Omega)} \int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{1 / p}}\right\}^{p} \tag{1.6}
\end{equation*}
$$

Note that this condition reduces to 1.5 when $p=2$.
The question now naturally arises whether $(p-1)\left\{\frac{1}{R(\Omega)} \int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{1 / p}}\right\}^{p}$ can be replaced by λ_{1} in 1.6), where λ_{1} denotes the first eigenvalue of $-\Delta_{p}$ on $W_{0}^{1, p}(\Omega)$ (cf[1]).

Observe that for $N>1$ and $p=2,\left(\frac{\pi}{2 R(\Omega)}\right)^{2}<\lambda_{1}$, and a similar strict inequality holds when $1<p<\infty$. In [2], it was showed that the constants in (1.5) and 1.6) can be improved a little bit.

Denote by $l(\Omega)$ the length of the smallest edge of an arbitrary parallelepiped containing Ω. If

$$
\begin{equation*}
\liminf _{s \rightarrow \pm \infty} \frac{p F(s)}{|s|^{p}}<C_{p}(l) \tag{1.7}
\end{equation*}
$$

where $C_{p}(l)=(p-1)\left\{\frac{2}{l(\Omega)} \int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{1 / p}}\right\}^{p}$ then for any $h \in L^{\infty}(\Omega)$ the problem (1.2) has a solution $u \in W_{0}^{1, p}(\Omega) \cap C^{1}(\Omega)$.

Observe that for $N=1, C_{p}=\lambda_{1}$ the first eigenvalue of $-\Delta$ on $\left.\Omega=\right] 0, l(\Omega)[$.
In particular, $C_{2}=\left(\frac{\pi}{l}\right)^{2}$, and it recovers the result of [7]. It is clear that (1.7) is a weaker hypothesis than 1.6 . The difference between (1.7) and 1.6 is particularly important when Ω is a rectangle or a triangle. However $C_{p}(l)<\lambda_{1}$ when $N>1$, and the question raised above remains open.

In this paper we investigate the question of replacing Δ_{p} by the operator of the form

$$
A(u)=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} A_{i}(\nabla u)
$$

We assume the following hypotheses:
(A0) For all $i \in\{1,2, \ldots, N\}, A_{i}: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$ is continuous.
(A1) there exists $(c, k) \in(] 0,+\infty[)^{2}$ such that $\left|A_{i}(\xi)\right| \leq c|\xi|^{p-1}+K$ for all $\xi \in \mathbb{R}^{\mathbb{N}}$, and all $i \in\{1,2, \ldots, N\}$.
(A2) (a) $\sum_{i=1}^{N}\left(A_{i}(\xi)-A_{i}\left(\xi^{\prime}\right)\right)\left(\xi_{i}-\xi_{i}^{\prime}\right)>0$ for all $\xi \neq \xi^{\prime} \in \mathbb{R}^{N}$;
(b) for all $i \in\{1,2, \ldots, N\}$, the function defined by $r_{i}(s)=A_{i}(0, \ldots, 0, s, 0, \ldots, 0)$ for $s \in \mathbb{R}$ is odd;
(c) for each $i \in\{1,2, \ldots, N\}$, there exists $\left.a_{i} \in\right] 0,+\infty[$ such that $\lim _{s \rightarrow+\infty} r_{i}(s) / s^{p-1}=a_{i}$
(d) for each $i \in\{1,2, \ldots, N\}, r_{i} \in C^{1}\left(\mathbb{R}^{*}\right)$ and $\lim _{s \rightarrow 0} s r_{i}^{\prime}(s)=0$;
(e) for all $i \in\{1,2, \ldots, N\}, A_{i}(\xi)=0$ for all $\xi \in \mathbb{R}^{N}$ such that $\xi_{i}=0$.

Remark 1.1. (1) The hypothesis (A2)(d) is in particular satisfied if we suppose that for $i \in\{1, \ldots, N\}, r_{i} \in C^{1}\left(\mathbb{R}^{*}\right)$ and there exists $q_{i}, 1<q_{i}<\infty$, there exists $\eta_{i}>0$, there exists $(a, b) \in \mathbb{R}^{2}$, such that for all $|s|<\eta_{i},\left|r_{i}^{\prime}(s)\right| \leq a|s|^{q_{i}-2}+b$.
(2) The assumption (A2)(d) is an hypothesis of homogenization at infinity for the operator A.

Definition 1.2. For $i \in\{1,2, \ldots, N\}$, we define

$$
l_{i}(s)=\frac{1}{p-1}\left[s r_{i}(s)-\int_{0}^{s} r_{i}(t) d t\right] \quad \forall s \in \mathbb{R}
$$

Proposition 1.3. Assume (A0), (A1) and (A2). Then: (1) The operator A: $W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is defined, strictly monotone and

$$
\langle A u, v\rangle=\sum_{i=1}^{N} \int_{\Omega} A_{i}(\nabla u) \frac{\partial v}{\partial x_{i}} d x \quad \forall u, v \in W_{0}^{1, p}(\Omega) .
$$

(2) For each $i \in\{1,2, \ldots, N\}$, the function $r_{i}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, strictly increasing and $r_{i}(0)=0$.
(3) For each $i \in\{1,2, \ldots, N\}$, the function l_{i} satisfies
(i) l_{i} is even, continuous and $l_{i}(0)=0$;
(ii) $\lim _{s \rightarrow+\infty} \frac{l_{i}(s)}{s^{p}}=\frac{a_{i}}{p}$
(iii) $l_{i} \in C^{1}(\mathbb{R})$ and $l_{i}^{\prime}(s)= \begin{cases}\frac{s r_{i}^{\prime}(s)}{p-1} & \text { if } s \neq 0 \\ 0 & \text { if } s=0 .\end{cases}$
(iv) l_{i} is strictly increasing in \mathbb{R}^{+}.

Proof. (1) By (A0), (A1), it is clear that the operator A is defined from $W_{0}^{1, p}(\Omega)$ to $W^{-1, p^{\prime}}(\Omega)$, we have

$$
\langle A u, v\rangle=\sum_{i=1}^{N} \int_{\Omega} A_{i}(\nabla u) \frac{\partial v}{\partial x_{i}} d x \quad \forall u, v \in W_{0}^{1, p}(\Omega)
$$

and by (A1)(a), we verify easily that A is strictly monotone.
(2) Let $i \in\{1, \ldots, N\}$. By (A0) and (A2)-(b), r_{i} is continuous and $r_{i}(0)=0$, in the end r_{i} is strictly increasing. Indeed, let $\left(s, s^{\prime}\right) \in \mathbb{R}^{2}$ such that $s \neq s^{\prime}$, we have

$$
\left(r_{i}(s)-r_{i}\left(s^{\prime}\right)\right)\left(s-s^{\prime}\right)=\sum_{i=1}^{N}\left(A_{i}(\xi)-A_{i}\left(\xi^{\prime}\right)\right)\left(\xi_{i}-\xi_{i}^{\prime}\right)>0
$$

where $\xi=(0, \ldots, s, \ldots 0)$ and $\xi^{\prime}=\left(0, \ldots, s^{\prime}, \ldots 0\right)$
(3)(i) By the foregoing, the function l_{i} is even, continuous and $l_{i}(0)=0$ for every $i \in\{1, \ldots, N\}$
(3)(ii) We show first that

$$
\begin{equation*}
\lim _{s \rightarrow+\infty} \frac{1}{s^{p}} \int_{0}^{s} r_{i}(t) d t=\frac{a_{i}}{p} . \tag{1.8}
\end{equation*}
$$

Let $\varepsilon>0$, by (A2)(c), there exists $\eta_{\varepsilon}=\eta$ such that $\left|r_{i}(s)-a_{i} s^{p-1}\right| \leq \varepsilon s^{p-1}$ for all $s \geq \eta$.

Integrating from η to s, we obtain

$$
\left|\int_{0}^{s} r_{i}(t) d t-\int_{0}^{\eta} r_{i}(t) d t-\frac{a_{i}}{p}\left[s^{p}-\eta^{p}\right]\right| \leq \frac{\varepsilon}{p}\left[s^{p}-\eta^{p}\right] .
$$

Dividing by s^{p} and letting $n \rightarrow+\infty$, we obtain

$$
\lim _{s \rightarrow+\infty}\left|\frac{1}{s^{p}} \int_{0}^{s} r_{i}(t) d t-\frac{a_{i}}{p}\right|=0
$$

i.e 1.8 holds. Writing

$$
\frac{l_{i}(s)}{s^{p}}=\frac{1}{p-1}\left\{\frac{r_{i}(s)}{s^{p-1}}-\frac{1}{s^{p}} \int_{0}^{s} r_{i}(t) d t\right\}
$$

By (1.8) and (A2)(c), we have $\lim _{s \rightarrow+\infty} \frac{l_{i}(s)}{s^{p}}=\frac{a_{i}}{p}$
(3)(iii) Since $r_{i} \in C^{1}\left(\mathbb{R}^{*}\right)$, we have $l_{i} \in C^{1}\left(\mathbb{R}^{*}\right)$ and $l_{i}^{\prime}(s)=\frac{1}{p-1} s r_{i}^{\prime}(s)$ for every $s \neq 0$. On the other hand, for $s \neq 0$, since r_{i} is increasing and odd, we have

$$
\left|\frac{l_{i}(s)}{s}\right|=\frac{1}{p-1}\left|r_{i}(s)-\frac{1}{s}\right| \int_{0}^{s} r_{i}(t) d t \leq \frac{2}{p-1} r_{i}(|s|)
$$

It results that $l_{i}^{\prime}(0)$ exists and $l_{i}^{\prime}(0)=0$. By (A2)-(d) we obtain $\lim _{s \rightarrow 0} l_{i}^{\prime}(s)=$ $\lim _{s \rightarrow 0} s r_{i}^{\prime}(s)$. This proves that $l_{i} \in C^{1}(\mathbb{R})$.
$(3)(\mathrm{iv})$ is a consequence of (3)(iii)

Example 1.4. We give at first some examples for operators A satisfying the hypothesis (A0), (A1) and (A2). (1) Let

$$
A u=-\Delta_{p} u=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}}\right)
$$

Then we have $A_{i}(\xi)=|\xi|^{p-2} \xi_{i}$ for every $\xi=\left(\xi_{i}\right) \in \mathbb{R}^{N}$.
$r(s)=r_{i}(s)=|s|^{p-2} s$ for every $s \in \mathbb{R}$ and every $i \in\{1, \ldots, N\}$.
$l(s)=l_{i}(s)=\frac{1}{p}|s|^{p}$ for every $s \in \mathbb{R}$ and every $i \in\{1, \ldots, N\}$.
(2) Let

$$
A u=-\Delta_{p} u-\Delta_{q} u=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left(|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}}+|\nabla u|^{q-2} \frac{\partial u}{\partial x_{i}}\right)
$$

where $1<q<p<+\infty$. Then we have $A_{i}(\xi)=|\xi|^{p-2} \xi_{i}+|\xi|^{q-2} \xi_{i}$ for every $\xi=\left(\xi_{i}\right) \in \mathbb{R}^{N}$.
$r(s)=r_{i}(s)=|s|^{p-2} s+|s|^{q-2} s$ for every $s \in \mathbb{R}$ and every $i \in\{1, \ldots, N\}$.
$l(s)=l_{i}(s)=\frac{1}{p}|s|^{p}+\frac{q-1}{q(p-1)}|s|^{q}$ for every $s \in \mathbb{R}$ and every $i \in\{1, \ldots, N\}$.
(3) Let

$$
\left.A u=-\Delta_{p, \varepsilon} u=-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}}\left[\varepsilon+|\nabla u|^{2}\right)^{\frac{p-2}{2}} \frac{\partial u}{\partial x_{i}}\right]
$$

where $\varepsilon>0$. Then we have $A_{i}(\xi)=\left(\varepsilon+|\xi|^{2}\right)^{\frac{p-2}{2}} \xi_{i}$ for every $\xi=\left(\xi_{i}\right) \in \mathbb{R}^{N}$. $r(s)=r_{i}(s)=\left(\varepsilon+|s|^{2}\right)^{\frac{p-2}{2}} s$ for every $s \in \mathbb{R}$ and every $i \in\{1, \ldots, N\}$.
$l(s)=l_{i}(s)=\left(\varepsilon+|s|^{2}\right)^{\frac{p-2}{2}}\left(\frac{s^{2}}{p}-\frac{\varepsilon}{p(p-1)}\right)+\frac{1}{p(p-1)} \varepsilon^{\frac{p}{2}}$ for every $s \in \mathbb{R}$ and every $i \in\{1, \ldots, N\}$.

2. Proof of Main Theorem

We consider the Dirichlet problem (1.1) where Ω is a bounded domain of \mathbb{R}^{N}, $N \geq 1, f$ is a continuous function from \mathbb{R} to \mathbb{R} and $h \in L^{\infty}(\Omega)$.

Denote by $[A B]$ the smallest edge of an arbitrary parallelepiped containing Ω. Making an orthogonal change of variables, we can always suppose that $A B$ is parallel to one of the axis of \mathbb{R}^{N}. So $\Omega \subset P=\prod_{j=1}^{N}\left[a_{j}, b j\right]$ with, for some i, $|A B|=b_{i}-a_{i}=\min _{1 \leq j \leq N}\left\{b_{j}-a_{j}\right\}$, a quantity which we denote by $b-a$.

Denote by $l=l_{i}, r=r_{i}, F$ the primitive $F(s)=\int_{0}^{s} f(t) d t$ and

$$
C_{p}=(p-1)\left\{\frac{2}{b-a} \int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{\frac{1}{p}}}\right\}^{p}
$$

Theorem 2.1. Assume

$$
\begin{equation*}
\liminf _{s \rightarrow \pm \infty} \frac{F(s)}{l(s)}<C_{p} \tag{2.1}
\end{equation*}
$$

Then for any $h \in L^{\infty}(\Omega)$, the problem (1.1) has a solution $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ in the weak sense; i.e

$$
\sum_{i=1}^{N} \int_{\Omega} A_{i}(\nabla u) \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} f(u) \varphi+\int_{\Omega} h \varphi \quad \forall \varphi \in W_{0}^{1, p}(\Omega)
$$

Definition 2.2. An upper solution for 1.1 is defined as a function $\beta: \bar{\Omega} \rightarrow \mathbb{R}$ such that

- $\beta \in C^{1}(\bar{\Omega})$
- $A(\beta) \in C(\bar{\Omega})$
- $A(\beta)(x) \geq f(\beta(x))+h(x)$ a e x in Ω.

A lower solution α is defined by reversing the inequalities above.
Lemma 2.3. Assume that (1.1) admits an upper solution β and a lower solution α with $\alpha(x) \leq \beta(x)$ in Ω. Then (1.1) admits a solution $u \in W_{0}^{1, p}(\Omega) \cap C^{1}(\Omega)$, with $\alpha(x) \leq u(x) \leq \beta(x)$ in Ω.

Proof. Let

$$
\widetilde{f}(x, s)= \begin{cases}f(\beta(x)) & \text { if } s \geq \beta(x) \\ f(s) & \text { if } \alpha(x) \leq s \leq \beta(x) \\ f(\alpha(x)) & \text { if } s \leq \alpha(x)\end{cases}
$$

for every $(x, s) \in \bar{\Omega} \times \mathbb{R}$ such that \tilde{f} is bounded and continuous in $\bar{\Omega} \times \mathbb{R}$, then the problem

$$
\begin{gather*}
A u=\widetilde{f}(x, u)+h(x) \quad \text { in } \Omega \tag{2.2}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

admits a solution $u \in W_{0}^{1, p}(\Omega)$ in the weak sense, indeed the operator A is strictly monotone, so we can use the result of Lions [10] concerned the pseudomonotones operators.

We claim that $\alpha(x) \leq u(x) \leq \beta(x)$ in Ω, which clearly implies the conclusion.
To prove the first inequality, one multiplies 2.2 by $w=u-u_{\alpha}$, where $u_{\alpha}(x)=$ $\max (u(x), \alpha(x))$, integrates by parts and uses the fact that α is a lower solution we obtain $\langle A(u)-A(u-w), w\rangle \leq 0$, which implies $w=0$ (since A is strictly monotone).

Lemma 2.4. Let $a<b$ and $M>0$, and assume

$$
\begin{equation*}
\liminf _{s \rightarrow+\infty} \frac{F(s)}{l(s)}<C_{p} \tag{2.3}
\end{equation*}
$$

then there exists $\beta_{1} \in C^{1}(I)$ such that $\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} \in C(I)$ and

$$
\begin{gathered}
-\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} \geq f\left(\beta_{1}(t)\right)+M \quad \forall t \in I, \\
\beta_{1}(t) \geq 0 \quad \forall t \in I
\end{gathered}
$$

where $I=[a, b]$.
Lemma 2.5. Assume

$$
\begin{equation*}
\liminf _{s \rightarrow-\infty} \frac{F(s)}{l(s)}<C_{p} \tag{2.4}
\end{equation*}
$$

then there exists $\alpha_{1} \in C^{1}(I)$ such that $\left(r\left(\alpha_{1}^{\prime}(t)\right)\right)^{\prime} \in C(I)$ and

$$
\begin{gathered}
-\left(r\left(\alpha_{1}^{\prime}(t)\right)\right)^{\prime} \leq f\left(\alpha_{1}(t)\right)-M \quad \forall t \in I \\
\alpha_{1}(t) \leq 0 \quad \forall t \in I
\end{gathered}
$$

where $I=[a, b]$.
Accepting for a moment the conclusion of these two lemmas, let us turn to the Proof of Theorem 2.1. By Lemma 2.3 it suffices to show the existence of an upper solution and a lower solution for (1.1). Let us describe the construction of the upper solution (that of the lower solution is similar).

Let $M>\|h\|_{\infty}$ and $i \in\{1,2, \ldots, N\}$ such that $b=b_{i}, a=a_{i}$. By Lemma 2.4 there exists $\beta_{1}: I \rightarrow \mathbb{R}$ such that $\beta_{1} \in C^{1}(I),\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} \in C(I)$ and

$$
\begin{gathered}
-\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} \geq f\left(\beta_{1}(t)\right)+M \quad \forall t \in I, \\
\beta_{1}(t) \geq 0 \quad \forall t \in I
\end{gathered}
$$

Writing $\beta(x)=\beta_{1}\left(x_{i}\right)$ for all $x=\left(x_{i}\right) \in \bar{\Omega}$, it is clear that $\beta \in C^{1}(\bar{\Omega}), A(\beta(x))=$ $A\left(\beta_{1}\left(x_{i}\right)\right) \in C(\bar{\Omega})$, and we have by (A2)(e):

$$
\begin{aligned}
A(\beta(x)) & =-\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} A_{j}(\nabla \beta(x)) \\
& =-\frac{\partial}{\partial x_{i}}\left(r_{i}\left(\beta_{1}^{\prime}\left(x_{i}\right)\right)\right) \\
& =-\left(r\left(\beta_{1}^{\prime}\left(x_{i}\right)\right)\right)^{\prime} \\
& \geq f\left(\beta_{1}\left(x_{i}\right)\right)+M \\
& =f(\beta(x))+M \\
& \geq f(\beta(x))+h(x) \quad \text { a.e. } x \in \Omega
\end{aligned}
$$

The proof of Theorem 2.1 is thus complete.
Next, we present the proof of Lemma 2.4. The proof of Lemma 2.5 follows similarly.

First case. Suppose $\inf _{s \geq 0} f(s)=-\infty$. Then there exists $\beta \in \mathbb{R}^{*}+$ such that $f(\beta)<-M$, and the constant function β provides a solution to the problem in Lemma 2.4 .

Second case. Suppose now $\inf _{s \geq 0} f(s)>-\infty$. Let $K>M$ such that $\inf _{s \geq 0} f(s)>$ $-K+1$. Thus $f(s)+K \geq 1$ for all $s \geq 0$. Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(s)= \begin{cases}f(s)+K & \text { if } s \geq 0 \\ f(0)+K & \text { if } s<0\end{cases}
$$

and denote $G(s)=\int_{0}^{s} g(t) d t$ for all s in \mathbb{R}. It is easy to see that $g(s) \geq 1$ for all s in \mathbb{R} and that

$$
0 \leq \liminf _{s \rightarrow+\infty} \frac{G(s)}{l(s)}=\liminf _{s \rightarrow+\infty} \frac{F(s)}{l(s)}<C_{p}
$$

Now it is clearly sufficient to prove the existence of a function $\beta_{1}: I \rightarrow \mathbb{R}$ such that $\beta_{1} \in C^{1}(I),\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} \in C(I)$ and

$$
\begin{aligned}
-\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} & =g\left(\beta_{1}(t)\right) \quad \forall t \in I \\
\beta_{1}(t) & \geq 0 \quad \forall t \in I
\end{aligned}
$$

For this purpose we will need the following four Lemmas.
Lemma 2.6. Let $0<c<\infty$ and $t \in] 0,1[$, then

$$
\lim _{\alpha \rightarrow+\infty} \frac{\alpha}{l^{-1}(c(l(\alpha)-l(\alpha t)))}=\frac{1}{c^{1 / p}\left(1-t^{p}\right)^{\frac{1}{p}}}
$$

In particular by, Fatou Lemma,

$$
\frac{1}{c^{1 / p}} \int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{1 / p}} \leq \liminf _{\alpha \rightarrow+\infty} \int_{0}^{1} \frac{\alpha d t}{l^{-1}(c(l(\alpha)-l(\alpha t)))}
$$

Proof. Denote $s(\alpha)=\frac{\alpha}{l^{-1}(c(l(\alpha)-l(\alpha t)))}$ and $\frac{a_{i}}{p}=d$. By Proposition 1.3 (3)(ii), we have

$$
\lim _{s \rightarrow+\infty} \frac{s^{1 / p}}{l^{-1}(s)}=d^{1 / p}
$$

On the other hand,

$$
\lim _{\alpha \rightarrow+\infty}[c(l(\alpha)-l(\alpha t))]=+\infty
$$

and more generally,

$$
\lim _{\alpha \rightarrow+\infty} \frac{l(\alpha)-l(\alpha t)}{\alpha^{p}}=d\left(1-t^{p}\right)>0
$$

Writing

$$
s(\alpha)=\frac{1}{\left[\frac{c(l(\alpha)-l(\alpha t))}{\alpha^{p}}\right]^{1 / p}} \frac{[c(l(\alpha)-l(\alpha t))]^{1 / p}}{l^{-1}(c(l(\alpha)-l(\alpha t)))}
$$

Letting $n \rightarrow+\infty$ and by the three limits above, we have

$$
\lim _{\alpha \rightarrow+\infty} s(\alpha)=\frac{1}{c^{1 / p}\left(1-t^{p}\right)^{1 / p}}
$$

Lemma 2.7. For $d>0$, define

$$
\tau_{G}(d)=\int_{0}^{d} \frac{d s}{l^{-1}\left[\frac{G(d)-G(s)}{p-1}\right]}
$$

Then

$$
\limsup _{d \rightarrow+\infty} \tau_{G}(d) \geq\left(\int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{1 / p}}\right)\left(\frac{1}{p-1} \liminf _{s \rightarrow+\infty} \frac{G(s)}{l(s)}\right)^{1 / p}
$$

In particular 2.3) implies $\lim \sup _{d \rightarrow+\infty} \tau_{G}(d)>(b-a) / 2$.
Proof. Let ρ be a positive number such that $\liminf _{s \rightarrow+\infty} \frac{G(s)}{l(s)}<\rho<C_{l}$. Then $\limsup _{s \rightarrow+\infty}[\rho l(s)-G(s)]=+\infty$. Let w_{n} be the smallest number in $[0, n]$ such that $\max _{0 \leq s \leq n} K(s)=K\left(w_{n}\right)$ where $K(s)=\rho l(s)-G(s)$; it is easily seen that $\left(w_{n}\right)$ is increasing with respect to n. Since $\rho l(s)-G(s)<\rho l\left(w_{n}\right)-G\left(w_{n}\right)$ for all $s \in\left[0, w_{n}[\right.$, we have $\frac{G\left(w_{n}\right)-G(s)}{p-1}<\frac{\rho}{p-1}\left(l\left(w_{n}\right)-l(s)\right)$ for all $s \in\left[0, w_{n}[\right.$, since $l:[0,+\infty[\rightarrow$ $[0,+\infty[$ is an increasing homeomorphism, we have

$$
\frac{1}{l^{-1}\left[\frac{\rho}{p-1}\left(l\left(w_{n}\right)-l(s)\right)\right]}<\frac{1}{l^{-1}\left[\frac{1}{p-1}\left(G\left(w_{n}\right)-G(s)\right)\right]}
$$

Integrating from 0 to w_{n} and changing variable $s=u w_{n}$ in the first member of inequality, we obtain

$$
\int_{0}^{1} \frac{w_{n}}{l^{-1}\left[\frac{\rho}{p-1}\left(l\left(w_{n}\right)-l\left(w_{n} s\right)\right)\right]} d s \leq \tau_{G}\left(w_{n}\right)
$$

Letting $n \rightarrow+\infty$, we obtain

$$
\liminf _{n \rightarrow+\infty} \int_{0}^{1} \frac{w_{n}}{l^{-1}\left[\frac{\rho}{p-1}\left(l\left(w_{n}\right)-l\left(w_{n} s\right)\right)\right]} d s \leq \limsup _{n \rightarrow+\infty} \tau_{G}\left(w_{n}\right)
$$

By Lemma 2.6, it results

$$
\limsup _{d \rightarrow+\infty} \tau_{G}(d) \geq\left[\int_{0}^{1} \frac{d t}{\left(1-t^{p}\right)^{1 / p}}\right]\left[\frac{\rho}{p-1}\right]^{\frac{-1}{p}}
$$

Letting $\rho \rightarrow \liminf _{s \rightarrow+\infty} \frac{G(s)}{l(s)}$, the Lemma is proved.
Lemma 2.8. Let $d>0$ and consider the mapping T_{d} defined by

$$
T_{d}(u)=d-\int_{a}^{t} r^{-1}\left(\left[\int_{a}^{\tau} g(u(s)) d s\right]^{1 /(p-1)}\right) d \tau
$$

in the Banach space $C(I)$. Then T_{d} has a fixed point.
Proof. Clearly by Ascoli's theorem T_{d} is compact. The proof of Lemma 2.8 uses an homotopy argument based on the Leray Schauder topological degree. So T_{d} will have a fixed point if the following condition holds:

There exists $\rho>0$ such that $\left(I-\lambda T_{d}\right)(u) \neq 0$ for all $u \in \partial B(0, \rho)$ for all $\lambda \in[0,1]$, where $\partial B(0, \rho)=\left\{u \in C(I) ;\|u\|_{\infty}=\rho\right\}$.

To prove that this condition holds, suppose by contradiction that for all $n=$ $1,2, \ldots$ there exists $u_{n} \in \partial B(0, n), \lambda_{n} \in[0,1]$ such that: $u_{n}=\lambda_{n} T_{d}\left(u_{n}\right)$. The latter relation implies

$$
\begin{equation*}
u_{n}=\lambda_{n} d-\lambda_{n} \int_{a}^{t} r^{-1}\left(\left[\int_{a}^{\tau} g(u(s)) d s\right]^{\frac{1}{p-1}}\right) d \tau \tag{2.5}
\end{equation*}
$$

Therefore, $u_{n} \in C^{1}(I)$ and we have successively

$$
\begin{gather*}
\left.\left.u_{n}^{\prime}(t)=-\lambda_{n} r^{-1}\left(\left[\int_{a}^{\tau} g(u(s)) d s\right]^{\frac{1}{p-1}}\right)<0 \quad \forall t \in\right] a, b\right], \tag{2.6}\\
u_{n}^{\prime}(a)=0
\end{gather*}
$$

$\left(r\left[\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right]\right)^{\prime} \in C(I)$ and

$$
\begin{equation*}
-\left(r\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)^{\prime}=g\left(u_{n}(t)\right) \quad \forall t \in I \tag{2.7}
\end{equation*}
$$

Note that by 2.6), $u_{n}^{\prime}(t)<0$ in $\left.] a, b\right]$, so that u_{n} is decreasing. Hence, for $n>d$, $u_{n}(b)=-n$. Multiplying the equation 2.7 by $u_{n}^{\prime}(t)$, we obtain

$$
\begin{equation*}
-\lambda_{n}\left(l\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)^{\prime}=\frac{1}{p-1} \frac{d}{d t} G\left(u_{n}(t)\right) . \tag{2.8}
\end{equation*}
$$

Indeed

$$
\begin{aligned}
\left(l\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)^{\prime} & =\left[l\left(r^{-1}\left(r\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)\right)\right]^{\prime} \\
& =\left(l \circ r^{-1}\right)^{\prime}\left(r\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)\left(r\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)^{\prime} \\
& =\frac{1}{p-1} \frac{u_{n}^{\prime}(t)}{\lambda_{n}}\left(r\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)^{\prime}
\end{aligned}
$$

By (2.8), we have

$$
\lambda_{n}\left(l\left(\frac{u_{n}^{\prime}(t)}{\lambda_{n}}\right)\right)=\frac{1}{p-1}\left(G\left(\lambda_{n} d\right)-G\left(u_{n}(t)\right)\right.
$$

and

$$
-\frac{u_{n}^{\prime}(t)}{\lambda_{n} l^{-1}\left[\frac{G\left(\lambda_{n} d\right)-G\left(u_{n}(t)\right)}{(p-1) \lambda_{n}}\right]}=1
$$

Integrating from a to b and changing variable $s=u_{n}(t) \quad\left(u_{n}(a)=\lambda_{n} d\right.$ and $u_{n}(b)=$ $-n$), we obtain

$$
\int_{-n}^{\lambda_{n} d} \frac{d s}{\lambda_{n} l^{-1}\left[\frac{G\left(\lambda_{n} d\right)-G(s)}{(p-1) \lambda_{n}}\right]}=b-a
$$

i.e.

$$
\int_{0}^{\lambda_{n} d} \frac{d s}{\lambda_{n} l^{-1}\left[\frac{G\left(\lambda_{n} d\right)-G(s)}{(p-1) \lambda_{n}}\right]}=b-a+\int_{0}^{-n} \frac{d s}{\lambda_{n} l^{-1}\left[\frac{G\left(\lambda_{n} d\right)-G(s)}{(p-1) \lambda_{n}}\right]} \geq 0
$$

Since $G(s)=s g(0)$ for $s \leq 0$ and changing variable $s=-u$, we obtain

$$
\begin{equation*}
0 \leq(b-a)-\int_{0}^{n} \frac{d s}{\lambda_{n} l^{-1}\left[\frac{G\left(\lambda_{n} d\right)-s g(0)}{(p-1) \lambda_{n}}\right]} \tag{2.9}
\end{equation*}
$$

Denote by $l(u)=\frac{G\left(\lambda_{n} d\right)-G(s)}{(p-1) \lambda_{n}}$ such that $l^{\prime}(u) d u=\frac{g(0)}{(p-1) \lambda_{n}} d s$ and $d s=\frac{\lambda_{n}}{g(0)} r^{\prime}(u) u d u$ for $u \neq 0$ and denote $\alpha_{n}=l^{-1}\left[\frac{G\left(\lambda_{n} d\right)}{(p-1) \lambda_{n}}\right]$ and $\beta_{n}=l^{-1}\left[\frac{\left(G\left(\lambda_{n} d\right)+n g(0)\right)}{(p-1) \lambda_{n}}\right]$. By 2.9), we obtain

$$
\begin{aligned}
0 & \leq(b-a)-\int_{\alpha_{n}}^{\beta_{n}} \frac{r^{\prime}(u)}{g(0)} d u \\
& =(b-a)-\frac{1}{g(0)} r\left\{l^{-1}\left[\frac{G\left(\lambda_{n} d\right)-n g(0)}{(p-1) \lambda_{n}}\right]\right\}+\frac{1}{g(0)} r\left\{l^{-1}\left[\frac{G\left(\lambda_{n} d\right)}{(p-1) \lambda_{n}}\right]\right\}
\end{aligned}
$$

Since

$$
\frac{G\left(\lambda_{n} d\right)-n g(0)}{(p-1) \lambda_{n}} \geq \frac{n g(0)}{(p-1)}, \quad \frac{G\left(\lambda_{n} d\right)}{(p-1) \lambda_{n}} \leq \frac{d}{p-1} \max _{0 \leq s \leq d}|g(s)|
$$

and $r \circ l^{-1}$ is increasing, it results that

$$
0 \leq(b-a)-\frac{1}{g(0)} r\left\{l^{-1}\left[\frac{n g(0)}{(p-1) \lambda_{n}}\right]\right\}+\frac{1}{g(0)} r\left\{l^{-1}\left[\frac{d}{p-1} \max _{0 \leq s \leq d}|g(s)|\right]\right\}
$$

Letting $n \rightarrow+\infty$, we get a contradiction. Let us denote by $u_{d} \in C(I)$ a fixed point of the mapping T_{d} of Lemma 2.8

Lemma 2.9. There exists $d>0$ such that $u_{d}(t) \geq 0$ for all $t \in\left[a, \frac{a+b}{2}[\right.$.
Proof. We know that u_{d} is decreasing and that $u_{d}(a)=d$ for all $d>0$. Let us distinguish two cases.

First if there exists $d>0$ such that $u_{d}(b) \geq 0$, then the conclusion of Lemma 2.9 clearly follows. So we can assume that $u_{d}(b)<0$ for every $d>0$. Since $u_{d}(a)=d>0$, there exists $\left.\delta_{d} \in\right] a, b\left[\right.$ such that $u_{d}\left(\delta_{d}\right)=0$. It is clear that $u_{d}(t) \geq 0$ for all $t \in\left[a, \delta_{d}\left[\right.\right.$, and so it is sufficient to show that $\lim \sup _{d \rightarrow+\infty} \delta_{d}>\frac{a+b}{2}$. Processing as in the proof of Lemma 2.8, we obtain

$$
-u_{d}^{\prime}(t)\left\{l^{-1}\left(\frac{G(d)-G\left(u_{d}(t)\right)}{p-1}\right)\right\}^{-1}=1
$$

Integrating from a to δ_{d} and changing variable $s=u_{d}(t)$, one gets

$$
\tau_{G}(d)=\int_{0}^{d} \frac{d s}{l^{-1}\left[\frac{G(d)-G(s)}{p-1}\right]}=\delta_{d}-a
$$

consequently

$$
\limsup _{d \rightarrow+\infty} \delta_{d}>a+\frac{b-a}{2}=\frac{a+b}{2}
$$

Proof of Lemma 2.4 continued. . Denoting $u_{d}(t)$ by $u(t)$, we have $u \in C^{1}(I)$, $\left(r\left(u^{\prime}\right)\right)^{\prime} \in C(I)$ and

$$
\begin{gathered}
-\left(r\left(u^{\prime}\right)\right)^{\prime}=g(u(s)) \quad \forall t \in I, \\
u(t) \geq 0 \quad \forall t \in\left[a, \frac{a+b}{2}[,\right. \\
u^{\prime}(a)=0 .
\end{gathered}
$$

Define a function β_{1} from $[a, b]$ to \mathbb{R} by

$$
\beta_{1}(t)= \begin{cases}u\left(\frac{3 a+b}{2}-t\right) & \text { if } t \in\left[a, \frac{a+b}{2}\right], \\ u\left(t-\frac{b-a}{2}\right) & \text { if } t \in\left[\frac{a+b}{2}, b\right] .\end{cases}
$$

We will show that this function β fulfills the conditions of Lemma 2.4. To see this it is sufficient to show that
(a) β_{1} is nonnegative in $[a, b]$,
(b) $\beta_{1} \in C^{1}([a, b])$,
(c) $\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime} \in C([a, b])$ and $-\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime}=g\left(\beta_{1}(t)\right)$ for all $t \in[a, b]$.

Proof of (a). If $a \leq t \leq \frac{a+b}{2}$, then $a \leq \frac{3 a+b}{2}-t \leq \frac{a+b}{2}$, and if $\frac{a+b}{2} \leq t \leq b$, then $a \leq t-\frac{b-a}{2} \leq \frac{a+b}{2}$, so that the conclusion follows from the sign of u on $\left[a, \frac{a+b}{2}\right]$.

Proof of (b). $\beta_{1} \in C^{1}\left(\left[a, \frac{a+b}{2}[), \beta_{1} \in C^{1}(] \frac{a+b}{2}, b\right]\right)$, and moreover $\frac{d}{d t^{+}} \beta_{1}\left(\frac{a+b}{2}\right)=$ $u^{\prime}(a)=0$ and $\frac{d}{d t^{-}} \beta_{1}\left(\frac{a+b}{2}\right)=u^{\prime}(a)=0$.

Proof of (c). We know that $-\left(r\left(u^{\prime}(t)\right)\right)^{\prime}=g(u(t))$ for $t \in[a, b]$, therefore

$$
-\left(r\left(u^{\prime}(t)\right)=\int_{a}^{t} g(u(s)) d s\right.
$$

If $a \leq t \leq \frac{a+b}{2}$ then $a \leq \frac{3 a+b}{2}-t \leq \frac{a+b}{2}$, which gives

$$
\beta_{1}(t)=u\left(\frac{3 a+b}{2}-t\right) \quad \text { and } \quad \beta_{1}^{\prime}(t)=-u^{\prime}\left(\frac{3 a+b}{2}-t\right) .
$$

We obtain

$$
-\left(r\left(u^{\prime}\left(\frac{a+b}{2}-t\right)\right)=r\left(\beta_{1}^{\prime}(t)\right)\right.
$$

The change of variable $u=\frac{3 a+b}{2}-s$ yields

$$
\int_{a}^{\frac{3 a+b}{2}-t} g(u(s)) d s=\int_{t}^{\frac{a+b}{2}} g\left(u\left(\frac{3 a+b}{2}-s\right)\right) d s
$$

hence

$$
r\left(\beta_{1}^{\prime}(t)\right)=\int_{t}^{\frac{a+b}{2}} g\left(\beta_{1}(s)\right) d s \quad \forall t \in\left[a, \frac{a+b}{2}\right]
$$

and

$$
-\left(r\left(\beta_{1}^{\prime}(t)\right)\right)^{\prime}=g\left(\beta_{1}(t)\right) \quad \forall t \in\left[a, \frac{a+b}{2}\right]
$$

The proof is similar for all $t \in\left[\frac{a+b}{2}, b\right]$.

References

[1] A. Anane, Simplicité et isolation de la première valeur propre du p-laplacien avec poids, C.R. Acad. Sci. Paris Sr. I Math. 305 (1987), 725-728.
[2] A. Anane and O. Chakrone; On a probem of lower limit in the study of nonresonance, Abstract and Applied Analysis, Vol. 2, Nos. 3-4, 1997, pp. 43-53.
[3] E. di Benedetto, $C^{1, \alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850.
[4] D. G. de Figuerido and J. P. Gossez; Nonresonance below the first eigenvalue dor a semilinear elliptic problem, Math. Ann. 281 (1988), 589-610.
[5] A. El Hachimi and J. P. Gossez; A note on a nonresonance condition for quasilinear elliptic problem, Nonlinear Anal, 22 (1994), 229-236.
[6] A. El Hachimi and J. P. Gossez; On a nonresonance condition near the first eigenvalue for a quasilinear elliptic problem, Partial Differential Equations (Han-sur-Less, 1993), 144-151, Math. Res, $\neq \mathbf{8 2}$, Akademie-Verlag, Berlin, 1994.
[7] M. Fernandes, P. Omari and F. Zanolin; On the solvability of a semilineair two point BVP around the first eingenvalue, Differential Integral Equations, 2 (1989), 63-79.
[8] A. Fonda, J. P. Gossez and F. Zanolin; On a nonresonance condition for a semi-linear elliptic problem, Differential Integral Equations, 4 (1991), 945-951.
[9] A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), 117-176.
[10] J. L. Lions, Quelques méthodes de résolutions des problèmes aux limites non-linéaires, Dunod, Paris, Gauthier-Villars, (1969).
[11] D. Del Santo and P. Omari; Nonresonance conditions on the potential for a semilinear elliptic problem, J. Differential Equations, 108 (1994), 120-138.

Aomar Anane
Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: anane@sciences.univ-oujda.ac.ma

Omar Chakrone
Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: chakrone@sciences.univ-oujda.ac.ma
Mohammed Chehabi
Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: chehb_md@yahoo.fr

[^0]: 2000 Mathematics Subject Classification. 35J60, 35P30.
 Key words and phrases. Leray-Lions operator; Nonresonance; fist eigenvalue.
 © 2006 Texas State University - San Marcos.
 Published September 20, 2006.

