2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 163-172.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF TWO NONTRIVIAL SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS

ABDEL R. EL AMROUSS, FOUZIA MORADI, MIMOUN MOUSSAOUI

Abstract

This paper concerns the existence of multiple nontrivial solutions for some nonlinear problems. The first nontrivial solution is found using a minimax method, and the second by computing the Leray-Schauder index and the critical group near 0 .

1. Introduction

We consider the Dirichlet problem

$$
\begin{gather*}
-\Delta u=\lambda_{k} u+f(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

where Ω is a bounded domain in \mathbb{R}^{n}, and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear function satisfying the Carathéodory conditions, and $0<\lambda_{1}<\lambda_{2} \leq \ldots \lambda_{k} \leq \ldots$ is the sequence of eigenvalues of the problem

$$
\begin{gathered}
-\Delta u=\lambda u \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Let us denote by $E\left(\lambda_{j}\right)$ the λ_{j}-eigenspace and by $F(s)$ the primitive $\int_{0}^{s} f(t) d t$.
There are several works studying the problem

$$
\begin{gather*}
-\Delta u=\lambda_{k} u+f(x, u)+h \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

where $h \in L^{2}(\Omega)$; see for example [4, 5, 6, 8, 9]. We write

$$
\begin{array}{cc}
l_{ \pm}(x)=\liminf _{s \rightarrow \pm \infty} \frac{f(x, s)}{s}, & k_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{f(x, s)}{s}, \\
L_{ \pm}(x)=\liminf _{s \rightarrow \pm \infty} \frac{2 F(x, s)}{s^{2}}, & K_{ \pm}(x)=\limsup _{s \rightarrow \pm \infty} \frac{2 F(x, s)}{s^{2}} .
\end{array}
$$

In [6], the solvability of 1.2 for every $h \in L^{2}(\Omega)$, is ensured when

$$
0<v_{k} \leq l_{ \pm}(x) \leq k_{ \pm}(x) \leq v_{k+1}<\lambda_{k+1}-\lambda_{k}
$$

[^0]where v_{k} and v_{k+1} are constants.
However, in the autonomous case $f(x, s)=f(s)$, De Figuerido and Gossez [5] introduced a density condition that requires $\frac{f(s)}{s}$ to be between 0 and $\alpha=\lambda_{k+1}-\lambda_{k}$ as $s \rightarrow \pm \infty$, and showed the existence of solution for any h. Next in 4], Costa and Oliveira proved an existence result for 1.2 under the following conditions:
\[

$$
\begin{gather*}
0 \leq l_{ \pm}(x) \leq k_{ \pm}(x) \leq \lambda_{k+1}-\lambda_{k} \quad \text { uniformly for a.e } x \in \Omega \tag{1.3}\\
0 \preceq L_{ \pm}(x) \leq K_{ \pm}(x) \preceq \lambda_{k+1}-\lambda_{k} \quad \text { uniformly for a.e } x \in \Omega . \tag{1.4}
\end{gather*}
$$
\]

Here the relation $a(x) \preceq b(x)$ indicates that $a(x) \leq b(x)$ on Ω, with strict inequality holding on subset of positive measure.

Later in [9], the authors proved an existence result in situation $L_{ \pm}(x)=0$ for a.e $x \in \Omega$ and $K_{ \pm}(x)=\lambda_{k+1}-\lambda_{k}$ for a.e $x \in \Omega$. They replaced (1.4) by classical resonance conditions of Ahmad-Lazer-Paul on two sides of 1.4 and showed that 1.2 is solvable. More recently, in [8, the author interested to study the existence of two nontrivial solutions in the case $k=1$ and under other weaker conditions cited above.

The aim of this paper is to generalize the above result for $k \geq 1$. We assume the following assumptions:
(F0) $\left|f^{\prime}(s)\right| \leq c\left(|s|^{p}+1\right), s \in \mathbb{R}, p<\frac{4}{n-2}$ if $n \geq 3$ and no restriction if $n=1,2$.
(F1) $s f(s) \geq 0$ for $|s| \geq r>0$ and

$$
\limsup _{s \rightarrow \pm \infty} \frac{f(s)}{s} \leq \lambda_{k+1}-\lambda_{k}=\alpha
$$

(F2) $\lim _{\|v\| \rightarrow \infty, v \in E\left(\lambda_{k}\right)} \int F(v(x)) d x=+\infty$.
(F3) There exists $\eta \in \mathbb{R}, 0<\eta<\alpha$, such that

$$
\liminf _{n \rightarrow+\infty} \frac{\mu\left(G_{n}\right)}{n}>0
$$

where $G_{n}=\{s \in]-n, n\left[, s \neq 0\right.$, and $\left.\frac{f(s)}{s} \leq \alpha-\eta\right\}$ and μ denotes the Lebesgue measure on \mathbb{R}.
(F4) $f^{\prime}(0)+\lambda_{k}<\lambda_{1}$
Theorem 1.1. Let f be C^{1} function, with $f(0)=0$, that satisfies the conditions (F0)-(F4). Then 1.1 has at least two nontrivial solutions.

This paper is organized as follows: In section 2, we give some technical lemmas and some results of critical groups. The proof of our result is carried out in section 3.

2. Preliminaries Lemmas

Let us consider the functional defined on $H_{0}^{1}(\Omega)$ by

$$
\Phi(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2} \lambda_{k} \int u^{2} d x-\int F(u) d x
$$

where $H_{0}^{1}(\Omega)$ is the usual Sobolev space obtained through the completion of $C_{c}^{\infty}(\Omega)$ with respect to the norm induced by the inner product

$$
\langle u, v\rangle=\int_{\Omega} \nabla u \nabla v d x, \quad u, v \in H_{0}^{1}(\Omega)
$$

It is well known that under a linear growth condition on f, the functional Φ is well defined on $H_{0}^{1}(\Omega)$, weakly lower semi-continuous and $\Phi \in C^{1}\left(H_{0}^{1}, \mathbb{R}\right)$, with

$$
\left\langle\Phi^{\prime}(u), v\right\rangle=\int_{\Omega} \nabla u \nabla v d x-\lambda_{k} \int u v d x-\int f(u) v d x, \quad \text { for } u, v \in H_{0}^{1}(\Omega) .
$$

Consequently, the weak solutions of the problem (1.1) are the critical points of the functional Φ. Moreover, under the condition(F0), Φ is a C^{2} functional with the second derivative given by

$$
\Phi^{\prime \prime}(u) v \cdot w=\int \nabla v \nabla w d x-\lambda_{k} \int v w d x-\int f^{\prime}(u) v w d x
$$

for $u, v, w \in H_{0}^{1}(\Omega)$.
Since we are going to apply the variational characterization of the eigenvalues, we shall decompose the space $H_{0}^{1}(\Omega)$ as $E=E_{-} \oplus E_{k} \oplus E_{k+1} \oplus E_{+}$, where E_{-}is the subspace spanned by the λ_{j} - eigenfunctions with $j<k$ and E_{j} is the eigenspace generated by the λ_{j}-eigenfunctions and E_{+}is the orthogonal complement of $E_{-} \oplus$ $E_{k} \oplus E_{k+1}$ in $H_{0}^{1}(\Omega)$ and we shall decompose for any $u \in H_{0}^{1}(\Omega)$ as following $u=u^{-}+u^{k}+u^{+}$where $u^{-} \in E_{-}, u^{k} \in E_{k}, u^{k+1} \in E_{k+1}$ and $u^{+} \in E_{+}$. We can verify easily that

$$
\begin{align*}
& \int|\nabla u|^{2} d x-\lambda_{i} \int|u|^{2} d x \geq \delta_{i}\|u\|^{2} \quad \forall u \in \oplus_{j \geq i+1} E_{j} \tag{2.1}\\
& \int|\nabla u|^{2} d x-\lambda_{i} \int|u|^{2} d x \leq-\delta_{i}\|u\|^{2} \quad \forall u \in \oplus_{j \leq i} E_{j} \tag{2.2}
\end{align*}
$$

where $\delta_{i}=\min \left\{1-\frac{\lambda_{i}}{\lambda_{i+1}}, \frac{\lambda_{i}}{\lambda_{i-1}}-1\right\}$.
2.1. A compactness condition. To apply minimax methods for finding critical points of Φ, we need to verify that Φ satisfies a compacteness condition of the PalaisSmail type which was introduced by Cerami [2], and recently was generalized by the first author in [7].
Definition. Let E be a real Banach space and $\Phi \in C^{1}(E, \mathbb{R})$.
(i) A sequence $\left(u_{n}\right)$ is said to be a $(C)_{c}$ sequence, at the level $c \in \mathbb{R}$, if there is a sequence $\epsilon_{n} \rightarrow 0$, such that

$$
\begin{align*}
& \Phi\left(u_{n}\right) \rightarrow c \tag{2.3}\\
&\left\|u_{n}\right\|\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle_{H_{0}^{1}, H^{-1}} \leq \epsilon_{n}\|v\| \quad \forall v \in H_{0}^{1} . \tag{2.4}
\end{align*}
$$

(ii) A functional $\Phi \in C^{1}(E, \mathbb{R})$, is said to satisfy a condition $(C)_{c}$, at the level $c \in \mathbb{R}$, if every $(C)_{c}$ sequence $\left(u_{n}\right)$, possesses a convergent subsequence.

Now, we present some technical lemmas.
Lemma 2.1. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ and $\left(p_{n}\right) \subset L^{\infty}(\Omega)$ be sequences, and let A a nonnegative constant such that

$$
0 \leq p_{n}(x) \leq A \quad \text { a.e. in } \Omega \text { and for all } n \in \mathbb{N}
$$

and $p_{n} \rightharpoonup 0$ in the weak ${ }^{*}$ topology of L^{∞}, as $n \rightarrow \infty$. Then, there are subsequences $\left(u_{n}\right),\left(p_{n}\right)$ satisfying the above conditions, and there is a positive integer n_{0} such that for all $n \geq n_{0}$,

$$
\begin{equation*}
\int p_{n} u_{n}\left(\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{k+1}+u_{n}^{+}\right)\right) d x \geq \frac{-\delta_{k}}{2}\left\|u_{n}^{+}+u_{n}^{k+1}\right\|^{2} \tag{2.5}
\end{equation*}
$$

Proof. Since $p_{n} \geq 0$ a.e. in Ω, we see that

$$
\begin{align*}
& \int p_{n} u_{n}\left(\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{k+1}+u_{n}^{+}\right)\right) \\
& \geq-\int p_{n}\left(u_{n}^{+}+u_{n}^{k+1}\right)^{2} d x \tag{2.6}\\
& \geq-\left[\int p_{n}\left(\frac{u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}^{+}+u_{n}^{k+1}\right\|}\right)^{2} d x\right]\left\|u_{n}^{+}+u_{n}^{k+1}\right\|^{2}
\end{align*}
$$

Moreover, by the compact imbedding of $H_{0}^{1}(\Omega)$ into $L^{2}(\Omega)$ and $p_{n} \rightharpoonup 0$ in the weak* topology of L^{∞}, when $n \rightarrow \infty$, then there are subsequences $\left(u_{n}\right),\left(p_{n}\right)$ such that

$$
\int p_{n}\left(\frac{u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}^{+}+u_{n}^{k+1}\right\|}\right)^{2} d x \rightarrow 0
$$

Therefore, there exists $n_{0} \in \mathbb{N}$ such that for $n \geq n_{0}$ we have

$$
\begin{equation*}
\int p_{n}\left(\frac{u_{n}^{+}+u_{n}^{k+1}}{\left\|u_{n}^{+}+u_{n}^{k+1}\right\|}\right)^{2} d x \leq \frac{\delta_{k}}{2} \tag{2.7}
\end{equation*}
$$

Combining inequalities 2.6 and 2.7), we get inequality 2.5.
Lemma 2.2. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be a (C) sequence. If

$$
f_{n}(x)=\frac{f\left(u_{n}(x)\right)}{u_{n}(x)} \chi_{\left[\left|u_{n}(x)\right| \geq r_{\epsilon}\right]} \rightharpoonup 0
$$

in the weak* topology of L^{∞}, as $n \rightarrow \infty$. Then, there is subsequence $\left(u_{n}\right)$ such that $\left(\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|\right)_{n}$ is uniformly bounded in n.

Proof. Since $\left(u_{n}\right)_{n} \subset H_{0}^{1}$ be a (C) sequence, (2.3) and 2.4) are satisfied. Now, we prove that the sequence $\left(\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\|\right)_{n}$ is uniformly bounded in n. Take $v=\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{+}+u_{n}^{k+1}\right)$ in 2.4), $p_{n}(x)=f_{n}(x)$, and

$$
\begin{aligned}
\begin{array}{l}
\Lambda=\{
\end{array} & -\int\left|\nabla u_{n}^{-}\right|^{2}+\lambda_{k} \int\left|u_{n}^{-}\right|^{2} d x+\int\left|\nabla\left(u_{n}^{+}+u_{n}^{k+1}\right)\right|^{2} \\
& \left.-\lambda_{k} \int\left|u_{n}^{+}+u_{n}^{k+1}\right|^{2} d x+\int p_{n} u_{n}\left(\left(u_{n}^{-}+u_{n}^{k}\right)-\left(u_{n}^{k+1}+u_{n}^{+}\right)\right) d x\right\} \\
\Gamma=\{ & \epsilon_{n}+\int_{\left|u_{n}(x)\right| \leq r_{\epsilon}} \mid f\left(u_{n}(x)| |\left(u_{n}^{+}+u_{n}^{k+1}\right)-\left(u_{n}^{-}+u_{n}^{k}\right) \mid d x\right\}
\end{aligned}
$$

Then $\Lambda \leq \Gamma$. By the Poincaré inequality, from (2.1), 2.2), 2.5), and $\Lambda \leq \Gamma$, it follows that there exists constants A_{ϵ} and B_{ϵ} such that

$$
\frac{\delta_{k}}{2}\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|^{2} \leq \epsilon_{n}+A_{\epsilon}\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|+B_{\epsilon} .
$$

This gives that $\left(\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|\right)_{n}$ is uniformly bounded in n.
Lemma 2.3. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ such that $\left\|u_{n}^{-}+\left(u_{n}^{+}+u_{n}^{k+1}\right)\right\|$ is uniformly bounded in n and there exists A such that if $A \leq \Phi\left(u_{n}\right)$, then

$$
\int F\left(\frac{u_{n}^{k}}{2}\right) d x \leq M
$$

Proof. From $A \leq \Phi\left(u_{n}\right)$, and Poincaré inequality, we have

$$
\begin{equation*}
\int F\left(\frac{u_{n}^{k}}{2}\right) d x \leq-A+\int\left[F\left(\frac{u_{n}^{k}}{2}\right)-F\left(u_{n}\right)\right] d x+\frac{1}{2}\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\|^{2} . \tag{2.8}
\end{equation*}
$$

Since $f \in C^{1}(\bar{\Omega}, \mathbb{R})$ satisfy (F1), there exists two functions $\gamma, h: \Omega \rightarrow \mathbb{R}$ such that

$$
f(t)=t \gamma(t)+h(t)
$$

with $0 \leq \gamma(t)=\frac{f(t)}{t} \chi[|t| \geq r] \leq \lambda_{k+1}-\lambda_{k}$ and $h(t)=f(t) \chi[|t|<r]$. However, by the mean value theorem, we get

$$
\begin{align*}
\int\left[F\left(\frac{u_{n}^{k}}{2}\right)-F\left(u_{n}\right)\right] d x= & \int_{\Omega} \int_{0}^{1} f\left(t \frac{u_{n}^{k}}{2}+(1-t) u_{n}\right) d t\left(\frac{u_{n}^{k}}{2}-u_{n}\right) d x \\
= & \int_{\Omega} \int_{0}^{1} h\left(t \frac{u_{n}^{k}}{2}+(1-t) u_{n}\right) d t\left(\frac{u_{n}^{k}}{2}-u_{n}\right) d x \\
& +\int_{\Omega} \int_{0}^{1} \gamma\left(t \frac{u_{n}^{k}}{2}+(1-t) u_{n}\right)\left[t\left(\frac{u_{n}^{k}}{2}-u_{n}\right)^{2}+\left(\frac{u_{n}^{k}}{2}-u_{n}\right) u_{n}\right] \tag{2.9}
\end{align*}
$$

Set $t_{1}=\min \left\{t \in[0,1]: \int_{0}^{1} h\left(t \frac{u_{n}^{k}}{2}+(1-t) u_{n}\right) \neq 0\right\}$ and $t_{2}=\max \{t \in[0,1]:$ $\left.\int_{0}^{1} h\left(t \frac{u_{n}^{k}}{2}+(1-t) u_{n}\right) \neq 0\right\}$. It is clear that

$$
\begin{equation*}
\left(t_{2}-t_{1}\right)\left|\frac{u_{n}^{k}}{2}-u_{n}\right| \leq 2 r \tag{2.10}
\end{equation*}
$$

So that using $2.9,2.10$ and the Poincaré inequality, and an elementary inequality

$$
\left(\frac{a}{2}-b\right)^{2}+\left(\frac{a}{2}-b\right) b \leq(a-b)^{2} .
$$

We have

$$
\begin{align*}
& \int\left[F\left(\frac{u_{n}^{k}}{2}\right)-F\left(u_{n}\right)\right] d x \\
& \leq \int_{\Omega} \int_{t_{1}}^{t_{2}} h\left(t \frac{u_{n}^{k}}{2}+(1-t) u_{n}\right) d t\left(\frac{u_{n}^{k}}{2}-u_{n}\right) d x+\frac{\lambda_{k+1}-\lambda_{k}}{4 \lambda_{1}}\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\|^{2} \\
& \leq 2 r \sup _{|s| \leq r}|f(s)| \operatorname{meas}(\Omega)+\frac{\lambda_{k+1}-\lambda_{k}}{4 \lambda_{1}}\left\|u_{n}^{-}+u_{n}^{+}+u_{n}^{k+1}\right\|^{2} \tag{2.11}
\end{align*}
$$

From 2.8 and 2.11, there exists $M>0$ such that

$$
\int F\left(\frac{u_{n}^{k}}{2}\right) d x \leq M
$$

2.2. Critical groups. Let H be a Hilbert space and $\Phi \in C^{1}(H, \mathbb{R})$ satisfying the Palais-Smaile condition or the Cerami condition. Set $\Phi^{c}=\{u \in H \mid \Phi(u) \leq c\}$ and denote by $H_{q}(X, Y)$ the q-th relative singular homology group with integer coefficient. The critical groups of Φ at an isolated critical point u with $\Phi(u)=c$ are defined by

$$
C_{q}(\Phi, u)=H_{q}\left(\Phi^{c} \cap U, \Phi^{c} \cap U \backslash\{u\}\right) ; \quad q \in Z
$$

where U is a closed neighborhood of u.

Let $K=\left\{u \in H \mid \Phi^{\prime}(u)=0\right\}$ be the set of critical points of Φ and $a<\inf _{K} \Phi$. The critical groups of Φ at infinity are defined by

$$
C_{q}(\Phi, \infty)=H_{q}\left(H, \Phi^{a}\right) ; \quad q \in Z
$$

We will use the notation $\operatorname{deg}\left(\Phi^{\prime}, U, 0\right)$ for the Leray-Schauder degree of Φ with respect to the set U and the value 0 . Denote also by $\operatorname{index}\left(\Phi^{\prime}, u\right)$ the LeraySchauder index of Φ^{\prime} at critical point u. Recall that this quantity is defined as $\lim _{r \rightarrow 0} \operatorname{deg}\left(\Phi^{\prime}, B_{r}(u), 0\right)$, if this limit exists, where $B_{r}(u)$ is the ball of radius r centered at u.

Proposition 2.4 ([3]). If u is a mountain pass point of Φ, then

$$
C_{q}(\Phi, u)=\delta_{q, 1} Z
$$

Proposition 2.5 ([1]). Assume that $H=H^{+} \oplus H^{-}$, Φ is bounded from below on H^{+}and $\Phi(u) \rightarrow-\infty$ as $\|u\| \rightarrow \infty$ with $u \in H^{-}$. Then

$$
C_{\mu}(\Phi, \infty) \neq 0, \quad \text { with } \mu=\operatorname{dim} H^{-}<\infty
$$

3. Proof of Theorem 1.1

First, we prove that Φ satisfies the Cerami condition.
Lemma 3.1. Under the assumptions (F0)-(F3), Φ satisfies the $(C)_{c}$ condition on $H_{0}^{1}(\Omega)$, for all $c \in \mathbb{R}$.
Proof. Let $\left(u_{n}\right)_{n} \subset H_{0}^{1}$ be a $(C)_{c}$ sequence, i.e

$$
\begin{align*}
& \Phi\left(u_{n}\right) \rightarrow c \tag{3.1}\\
&\left\|u_{n}\right\|\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle_{H_{0}^{1}, H^{-1}} \leq \epsilon_{n}\|v\| \quad \forall v \in H_{0}^{1} \tag{3.2}
\end{align*}
$$

where $\epsilon_{n} \rightarrow 0$. It clearly suffices to show that $\left(u_{n}\right)_{n}$ remains bounded in H_{0}^{1}. Assume by contradiction. Defining $z_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$, we have $\left\|z_{n}\right\|=1$ and, passing if necessary to a subsequence, we may assume that $z_{n} \rightharpoonup z$ weakly in $H_{0}^{1}, z_{n} \rightarrow z$ strongly in $L^{2}(\Omega)$ and $z_{n}(x) \rightarrow z(x)$ a.e. in Ω. By the linear growth of f, the sequence $\left(\frac{f\left(u_{n}(x)\right)}{\left\|u_{n}\right\|}\right)_{n}$ remains bounded in L^{2}, then for a subsequence, we have

$$
\frac{f\left(u_{n}(x)\right)}{\left\|u_{n}\right\|} \rightharpoonup \zeta \quad \text { in } L^{2}
$$

and by standard arguments based on assumptions F0),F1), ζ can be written as $\zeta(x)=m(x) z(x)$, where m satisfies (see 4]).

$$
0 \leq m(x) \leq \lambda_{k+1}-\lambda_{k} \quad \text { a.e. in } \Omega .
$$

However, divide 3.2 by $\left\|u_{n}\right\|^{2}$ and goes to the limit we obtain

$$
\frac{\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle}{\left\|u_{n}\right\|}=\int \nabla z_{n} \nabla v-\lambda_{k} \int z_{n} v-\int \frac{f\left(u_{n}\right)}{\left\|u_{n}\right\|} v d x \rightarrow 0
$$

for every $v \in H_{0}^{1}$. On the other hand, since z_{n} converges to z weakly in H_{0}^{1}, strongly in L^{2} and $\frac{f\left(u_{n}(x)\right)}{\left\|u_{n}\right\|}$ converges weakly in L^{2} to ζ, we deduce

$$
\begin{equation*}
\frac{\left\langle\Phi^{\prime}\left(u_{n}\right), v\right\rangle}{\left\|u_{n}\right\|} \rightarrow \int \nabla z \nabla v-\lambda_{k} \int z v-\int \zeta v d x=0 \quad \forall v \in H_{0}^{1}(\Omega) \tag{3.3}
\end{equation*}
$$

Claim: We will prove that $z_{n} \rightarrow z$ strongly in H_{0}^{1}. Indeed, taking $v=z$ in (3.3) we have

$$
\begin{equation*}
\|z\|^{2}=\lambda_{k} \int z^{2}+\int m(x) z^{2} . \tag{3.4}
\end{equation*}
$$

On the other hand, by (3.2) it results

$$
\begin{equation*}
\frac{\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle}{\left\|u_{n}\right\|^{2}} \rightarrow 1-\lambda_{k} \int z^{2}-\int m(x) z^{2}=0 \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5), it follows $\|z\|=1$. Since $z_{n} \rightharpoonup z,\left\|z_{n}\right\| \rightarrow\|z\|$ and $H_{0}^{1}(\Omega)$ is convex uniformly space the claim follows. So that, z is a nontrivial solution of problem

$$
\begin{gather*}
-\Delta z=\left(\lambda_{k}+m(x)\right) z \quad \text { in } \Omega \\
z=0 \quad \text { on } \partial \Omega . \tag{3.6}
\end{gather*}
$$

We now distinguish three cases: i) $\lambda_{k}<m(x)+\lambda_{k}$ and $m(x)+\lambda_{k}<\lambda_{k+1}$ on subset of positive measure; (ii) $m(x)+\lambda_{k} \equiv \lambda_{k}$; (iii) $m(x)+\lambda_{k} \equiv \lambda_{k+1}$.

Case i: We have z is a nontrivial solution of problem (3.6), then 1 is an eigenvalue of this problem. On the other hand, by strict monotonicity $\lambda_{k}\left(\lambda_{k}+m(x)\right)<1$ and $\lambda_{k+1}\left(\lambda_{k}+m(x)\right)>1$, which gives a contradiction.

Case ii: By (F1), for $\varepsilon>0$, there exists a constant $r_{\varepsilon}>r$ such that

$$
\begin{equation*}
0 \leq \frac{f(s)}{s} \leq \lambda_{k+1}-\lambda_{k}+\varepsilon \quad \forall|s| \geq r_{\varepsilon} \tag{3.7}
\end{equation*}
$$

Put $f_{n}(x)=\frac{f\left(u_{n}(x)\right)}{u_{n}(x)} \chi\left\{\left|u_{n}(x)\right| \geq r_{\varepsilon}\right\}$, which remains bounded in L^{∞}, passing if necessary to a subsequence, $f_{n} \rightarrow l$ in the weak* topology of L^{∞}. By 3.7), the L^{∞}-function l satisfies

$$
0 \leq l(x) \leq \lambda_{k+1}-\lambda_{k}+\varepsilon \quad \text { a.e.in } \Omega
$$

Multiply f_{n} by z_{n}^{2}, integrate on Ω and going to the limit, to have

$$
\int f_{n} z_{n}^{2} d x=\int \frac{f\left(u_{n}(x)\right)}{\left\|u_{n}\right\|} z_{n} \rightarrow \int m(x) z^{2} d x=\int l(x) z^{2} d x=0
$$

By the unique continuation Property of Δ and $l \geq 0$, we deduce that $l \equiv 0$ a.e.in Ω. Then, by lemma 2.2 and lemma 2.3 there exists $M>0$ such that

$$
\int F\left(\frac{u_{n}^{k}}{2}\right) d x \leq M
$$

This is a contradiction with assumption (F2) and $\left\|u_{n}^{k}\right\| \rightarrow+\infty$.
Case iii: If $m(x) \equiv \lambda_{k+1}-\lambda_{k}$. Dividing (3.1) by $\left\|u_{n}\right\|^{2}$, we obtain

$$
\frac{\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}}=\frac{1}{2}\left\|z_{n}\right\|^{2}-\frac{\lambda_{k}}{2} \int z_{n}^{2}-\int \frac{\left.\overline{F(} u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d x \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

However, it results that

$$
\lim _{n \rightarrow+\infty} \int \frac{F\left(u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d x=\frac{1}{2} \alpha \int z^{2} d x
$$

Applying Fatou's lemma, we have

$$
\int_{z>0}\left(\alpha-K_{+}\right) z^{2} d x+\int_{z<0}\left(\alpha-K_{-}\right) z^{2} d x \leq 0
$$

This is a contradiction with assumption (F3), since (F3) is equivalent to $K_{ \pm}=$ $\lim \sup _{s \rightarrow \pm \infty} \frac{2 F(s)}{s^{2}}<\alpha$. (see [10]). The proof of lemma is complete.

Lemma 3.2. Under the hypothesis of Theorem 1.1. the functional Φ has the following properties:
(i) $\Phi(w) \rightarrow+\infty$, as $\|w\| \rightarrow+\infty, w \in W^{+}=E_{k+1} \oplus E_{+}$.
(ii) $\Phi(v) \rightarrow-\infty$, as $\|v\| \rightarrow+\infty, w \in W^{-}=E_{k} \oplus E_{-}$.

Proof. (i) Φ is coercive on W^{+}. Indeed, the assumption (F3) is equivalent to $K_{ \pm}=\lim \sup _{s \rightarrow \pm \infty} \frac{2 F(s)}{s^{2}}<\alpha$. Thus, there exists an $B_{\varepsilon} \geq 0$ such that

$$
F(s) \leq \frac{\alpha}{2} s^{2}-\varepsilon s^{2}+B_{\varepsilon} \quad \forall s \in \mathbb{R}
$$

Hence, for every $w \in W^{+}$, we obtain

$$
\begin{aligned}
\Phi(w) & =\frac{1}{2}\|w\|^{2}-\frac{\lambda_{k}}{2} \int w^{2}-\int F(w) d x \\
& \geq \frac{\lambda_{k+1}-\lambda_{k}}{2 \lambda_{k+1}}\|w\|^{2}-\frac{\alpha-2 \varepsilon}{2} \int w^{2}-B_{\varepsilon}|\Omega| \\
& \geq \frac{\varepsilon}{\lambda_{k+1}}\|w\|^{2}-B_{\varepsilon}|\Omega|
\end{aligned}
$$

However, $\Phi(w) \rightarrow+\infty$, as $\|w\| \rightarrow+\infty$.
(ii) Assume by contradiction that there exists a constant $B>0$ and a sequence $\left(v_{n}\right) \subset V$ with $\left\|v_{n}\right\| \rightarrow \infty$ such that

$$
B \leq \Phi\left(v_{n}\right) \leq-\delta\left\|v_{n}^{-}\right\|^{2}
$$

Therefore, by lemma 2.3. since $\left\|v_{n}^{-}\right\|$is bounded, there exists $M>0$ such that

$$
\int F\left(\frac{v_{n}^{k}}{2}\right) d x \leq M
$$

which contradicts (F2).
Lemma 3.3. Under the condition (F4), the functional Φ has the following properties:
(i) There is an $R>0$ and $\beta>0$ such that $\Phi \geq \beta$ on $\partial B_{R}(0)$.
(ii) $C_{q}(\Phi, 0)=\delta_{q, 0} Z$

Proof. (i) We start by proving the first assertion. On one hand, it is easy to see that if $\lambda_{k}+f^{\prime}(0) \leq 0$ we have

$$
\Phi^{\prime \prime}(0) u . u \geq\|u\|^{2}
$$

On the other hand, where $\lambda_{k}+f^{\prime}(0)>0$, the Poincaré's inequality gives that

$$
\Phi^{\prime \prime}(0) u . u=\|u\|^{2}-\lambda_{k} \int u^{2}-\int f^{\prime}(0) u^{2} d x \geq\left(1-\frac{\lambda_{k}+f^{\prime}(0)}{\lambda_{1}}\right)\|u\|^{2}
$$

Put $\gamma=1-\frac{\lambda_{k}+f^{\prime}(0)}{\lambda_{1}}$ and by (F4), we have $\gamma>0$ and

$$
\Phi^{\prime \prime}(0) u . u \geq \gamma\|u\|^{2}
$$

Taylor's formula implies

$$
\Phi(u)=\frac{1}{2} \Phi^{\prime \prime}(0) u . u+o\left(\|u\|^{2}\right) \geq\left(\frac{\gamma}{2}+\frac{o\left(\|u\|^{2}\right)}{\|u\|^{2}}\right)\|u\|^{2}
$$

with $\frac{o\left(\|u\|^{2}\right)}{\|u\|^{2}} \rightarrow 0$, as $\|u\| \rightarrow 0$. Consequently, the assertion (i) follows.
(ii) Since $u=0$ is a local mininum of Φ, we have

$$
C_{q}(\Phi, 0)=\delta_{q, 0} Z
$$

Lemma 3.4. The functional Φ has at least one critical point u_{0}, such that

$$
C_{q}\left(\Phi, u_{0}\right)=\delta_{q, 1} Z
$$

Proof. According to (ii) of Lemma 3.2, Φ is anti-coercive on W^{-}we can find an $e \in H_{0}^{1}$ such that $\|e\| \geq M>R$ and $\Phi(e) \leq 0$. So by mountain pass theorem, there exists a critical point u_{0} of mountain pass type, such that

$$
C_{1}\left(\Phi, u_{0}\right) \neq 0
$$

By proposition 2.4 it results that $C_{q}\left(\Phi, u_{0}\right)=\delta_{q, 1} Z$. The proof of lemma is complete.

Proof of Theorem 1.1. For this proof we distinguish two cases.
Case 1: If $k=1$, we assume that $\left\{0, u_{0}\right\}$ is the critical set of Φ and let $R>0$, such that $\left\{0, u_{0}\right\} \subset B_{R}(0)$. By the Riesz representation theorem we can write

$$
\left\langle\Phi^{\prime}(u), v\right\rangle=\langle u, v\rangle-\langle N u, v\rangle, \quad \text { for all } u, v \in H_{0}^{1}(\Omega)
$$

where $\langle u, v\rangle=\int_{\Omega} \nabla u \nabla v$ and $\langle N u, v\rangle=\int\left[\lambda_{1} u+f(u)\right] v d x$. So that, $\Phi^{\prime}=I-N$ and By the Sobolev embedding theorem, N is compact. We see that Φ^{\prime} has the form Identity-compact, so that Leary-Shauder techniques are applicable

$$
\begin{align*}
\operatorname{deg}\left(\Phi^{\prime}, B_{R}(0), 0\right) & =\operatorname{index}\left(\Phi^{\prime}, 0\right)+\operatorname{index}\left(\Phi^{\prime}, u_{0}\right) \\
& =\sum_{q=0}^{\infty}(-1)^{q} \operatorname{dim} C_{q}(\Phi, 0)+\sum_{q=0}^{\infty}(-1)^{q} \operatorname{dim} C_{q}\left(\Phi, u_{0}\right) \tag{3.8}\\
& =1-1=0
\end{align*}
$$

In a similar way we can define a compact map $T: H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ by

$$
\langle T u, v\rangle=\int\left(\lambda_{1}+\mu\right) u v d x
$$

where $0<\mu<\lambda_{2}-\lambda_{1}$. Now we claim that there is a priori bound in $H_{0}^{1}(\Omega)$ for all possible solutions of the family of equations (see [12])

$$
\begin{gathered}
-\Delta u-\lambda_{1} u=(1-t) \mu u+t f(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

The homotopy invariance of Leray-Schauder degree implies

$$
\operatorname{deg}\left(\Phi^{\prime}, B_{R}(0), 0\right)=\operatorname{deg}\left(I-T, B_{R}(0), 0\right)=-1
$$

This contradicts (3.8).

Case 2: If $k \geq 2$, by Lemma 3.1, the functional Φ satisfies the condition (C). Since Φ is weakly lower semi continuous and coercive on W^{+}, Φ is bounded from below on W^{+}. Moreover, by (ii) of Lemma 3.2, Φ is anti-coercive on W^{-}, thus we can apply the proposition 2.5 and we conclude that

$$
C_{\mu}(\Phi, \infty) \neq 0
$$

where $\mu=\operatorname{dim} W^{-} \geq k \geq 2$. It follows from the Morse inequality that Φ has a critical point u_{1} with

$$
C_{\mu}\left(\Phi, u_{1}\right) \neq 0
$$

Since $\mu \neq 1$ and $\mu \neq 0$, then the problem 1.1) has at least two nontrivial solutions. The proof of theorem is complete.

References

[1] T. Bartsh, S. J. Li, Critical point theory for asymptotically quadratic functionals and applications with resonance, Nonlinear Analysis, T. M. A. 28, 419-441, 1997.
[2] G. Cerami, Un criterio de esistenza per i punti critici su varietá ilimitate, Rc. Ist. Lomb. Sci. Lett. 121, 332-336, 1978.
[3] K. C. Chang, Infinite dimensional Morse theory and Multiple solutions problems, Birkhäuser, Boston, 1993.
[4] D. G. Costa \& A. S. Oliveira, Existence of solution for a class of semilinear elliptic problems at double resonance, Bol. Soc. Bras. Mat. 19. 21-37, 1988.
[5] D. G. DeFigueiredo \& J. P. Gossez, Conditions de non résonance pour certains problémes elliptiques semi-linéaires, C. R. Acad. Sc. Paris, 302, pp. 543-545, (1986).
[6] C. L. Dolph, Nonlinear integral equations of the Hammertein type, Trans. Amer. Math. SOC. 66, pp. 289-307, (1949).
[7] A. R. El Amrouss, Critical point theorems and applications to differential equations, Acta Mathematica Sinica, English Series, 21 no 1, 129-142, 2005.
[8] A. R. El Amrouss, Multiple solutions of a resonant semilinear elliptic problems, to appear.
[9] A. R. El Amrouss \& M. Moussaoui, Resonance at two consecutive eigenvalues for semilinear elliptic problem: A variational approach, Ann. Sci. Math. Qubec, 23 no 2, 157-171, 1999.
[10] J.P. Gossez \& P. Omari, Periodic solutions of a second order ordinary differential equation; a necessary and sufficient condition for nonresonance, J. Diff. Equations 94 No. 1, 67-82, 1991.
[11] J. Mawhin, \& M. Willem, Critical point theory and Hamiltonien systems, Springer-Verlag, New York, 1989.
[12] M. N. Nkashama, Density condition at infinity and resonance in nonlinear elliptic partial differential equations, Nonlinear Analysis, Theory, Methods \& Applications, Vol, 22, No 3, pp. 251-265, 1994.

Abdel R. El Amrouss
University Mohamed 1er, Faculty of sciences, Department of Mathematics, Oujda, MoROCCO

E-mail address: amrouss@sciences.univ-oujda.ac.ma
Fouzia Moradi
University Mohamed 1er, Faculty of sciences, Department of Mathematics, Oujda, MoROCCO

E-mail address: foumoradi@yahoo.fr
Mimoun Moussaoui
University Mohamed 1er, Faculty of sciences, Department of Mathematics, Oujda, MoROCCO

E-mail address: moussaoui@sciences.univ-oujda.ac.ma

[^0]: 2000 Mathematics Subject Classification. 58E05, 35J65, 56J20.
 Key words and phrases. Variational elliptic problem; resonance; critical group;
 Morse theory; minimax method.
 (C) 2006 Texas State University - San Marcos.

 Published September 20, 2006.

