2005-Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, 2006, pp. 173–180. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

A GENERALIZATION OF EKELAND'S VARIATIONAL PRINCIPLE WITH APPLICATIONS

ABDEL R. EL AMROUSS, NAJIB TSOULI

ABSTRACT. In this paper, we establish a variant of Ekeland's variational principle. This result suggest to introduce a generalization of the famous Palais-Smale condition. An example is provided showing how it is used to give the existence of minimizer for functions for which the Palais-Smale condition and the one introduced by Cerami are not satisfied.

1. INTRODUCTION

Let *E* be a complete metric space with metric *d* and $\Phi : E \to \mathbb{R} \cup \{\infty\}$ a lower semicontinuous function which is bounded from below and not identically to $+\infty$. The Ekeland's variational principle, see [1], allows for each $\varepsilon > 0$, each $\delta > 0$ and each $x \in E$ such as

$$\Phi(x) \le \inf \Phi + \varepsilon,$$

to build an element $v \in E$ minimizing the functional Φ_v given by

$$\Phi_v(x) = \Phi(x) + \frac{\varepsilon}{\delta}d(x,v).$$

This principle has wide applications in optimization and nonlinear analysis [1, 2, 4].

If E is a Banach space and $\Phi : E \to \mathbb{R}$ is Gâteaux differentiable, lower semicontinuous and bounded from below, then the Ekeland's variational principle provides the existence of a minimizing sequence (u_n) such as $\Phi'(u_n) \to 0$, when $n \to \infty$. It is well known that if Φ satisfies the Palais-Smale condition then Φ reaches its minimum. But, it is possible to find a minimizing sequence (u_n) such as $\Phi'(u_n) \to 0$, when $n \to \infty$, not having any convergent subsequence. Let us take the example of the function $\Phi(s) = \arctan(s)$.

Ekeland [2] prove that if Φ is bounded below and satisfies the Cerami condition for every $c \in \mathbb{R}$, introduced by [3], then Φ has a minimal point.

In this note, we prove a variant of Ekeland's variational principle. This result suggest to introduce a generalization of the classical Palais-Smale condition. An example is provided showing how it is used to give the existence of minimizer for functions for which the Palais-Smale condition or the Cerami condition are not

²⁰⁰⁰ Mathematics Subject Classification. 58E05, 35J65, 49B27.

Key words and phrases. Ekeland's principle variational; Palais-Smale condition; optimization. ©2006 Texas State University - San Marcos.

Published September 20, 2006.

satisfied. We also generalize some results cited in [1], [5], which the Palais-Smale condition or Cerami condition has failed.

2. VARIANTS OF EKELAND'S VARIATIONAL PRINCIPLE

In this section we will prove the following variant of Ekeland's variational principle. We start with a definition.

Definition 2.1. We say that $\alpha : [0, \infty[\rightarrow]0, \infty[$ is a comparison function of order k if for every $q \ge k$ there exist $c, d \ge 0$ such that

$$\frac{\alpha((t+1)s)}{\alpha(t)} \le cs^q + d, \forall t, s \in \mathbb{R}^+.$$

Examples:

(1) $\alpha(s) = (1+s)^k$ (2) $\alpha(s) = (1+s)^k Log(2+s)$

Let (E, d) be a complet space metric and $u \in E$. Denote by $\overline{B}(u, r) = \{x \in E \mid d(u, x) \leq r\}$ the closed boule and $B(u, r) = \{x \in E \mid d(u, x) < r\}$ the open boule.

Theorem 2.2. Let (E, d) be a complete space metric, $x_0 \in E$ fixed, $\Phi : E \to \mathbb{R}$ a lower semi-continuous and bounded below. Let $\alpha : [0, \infty[\to]0, \infty[$ be a comparison function of order k continuous nondecreasing. Thus for each $\varepsilon > 0$, each $\delta > 0$ and each $u \in E$ such that

$$\Phi(u) \le \inf_{\Sigma} \Phi + \varepsilon$$

there exists a convergent sequence $(z_n)_{n\geq 1}$ of E satisfies:

- (i) $z_1 = u, z_n \in \overline{B}(u, \gamma(u))$ with $\gamma(u)$ be a positive constant such that $u \mapsto \frac{\gamma(u)}{1+d(x_0,u)}$ is bounded in E
- (ii) The sequence $(d(x_0, z_n))_{n \ge 1}$ is nondecreasing
- (iii) $\sum_{n=1}^{j} \frac{d(z_n, z_{n+1})}{\alpha(d(x_0, z_{n+1}))} < 2\delta$, for all $j \ge 1$
- (iv) for $v = \lim_{n \to \infty} z_n, \Phi(v) \le \Phi(u)$
- (v) $d(u, v) \le \min\{\delta\alpha(d(x_0, v)), \gamma(u)\}$
- (vi) for every $w \in \overline{B}(u, \gamma(u)) \setminus B(u, d(x_0, u))$,

$$\Phi(w) \ge \Phi(v) - \frac{\varepsilon}{\delta \alpha(d(x_0, w))} d(v, w).$$

Proof. Let us define a partial order in E by letting

$$\Phi(r) \le \Phi(s) - \frac{\varepsilon}{\delta\alpha(d(x_0, r))} d(r, s)$$
(2.1)

and

$$d(x_0, r) \ge d(x_0, s).$$
 (2.2)

This relation is easily seen to be reflexive, antisymmetry and transitive. Indeed, it is clear that $r \prec r$, for every $r \in E$. The partial order \prec is antisymmetry. Indeed, if $r \prec s$ and $s \prec r$ then $d(x_0, r) = d(x_0, s)$,

$$\Phi(r) \le \Phi(s) - \frac{\varepsilon}{\delta\alpha(d(x_0, r))} d(r, s) \le \Phi(r) - \frac{2\varepsilon}{\delta\alpha(d(x_0, r))} d(r, s).$$

However d(r,s) = 0 and so r = s. \prec is transitive, because if $r \prec s$ and $s \prec t$ then $d(x_0,r) \ge d(x_0,s) \ge d(x_0,t)$ and

$$\Phi(r) \le \Phi(s) - \frac{\varepsilon}{\delta\alpha(d(x_0, r))} d(r, s), \quad \Phi(s) \le \Phi(t) - \frac{\varepsilon}{\delta\alpha(d(x_0, s))} d(t, s).$$
(2.3)

EJDE/CONF/14

From $d(t,s) \leq d(t,r) + d(r,s)$, (2.3) becomes

$$\Phi(r) \le \Phi(s) - \frac{\varepsilon}{\delta\alpha(d(x_0, r))} [d(t, r) - d(t, s)], \quad \Phi(s) \le \Phi(t) - \frac{\varepsilon}{\delta\alpha(d(x_0, s))} d(t, s).$$

This implies

$$\Phi(r) \le \Phi(t) + \left[\frac{\varepsilon}{\delta\alpha(d(x_0, r))} - \frac{\varepsilon}{\delta\alpha(d(x_0, s))}\right] d(t, s) - \frac{\varepsilon}{\delta\alpha(d(x_0, r))} d(r, t).$$

Since $\alpha(.)$ is nondecreasing and $d(x_0, r) \ge d(x_0, s)$, we obtain

$$r \prec s \text{ and } s \prec t \Rightarrow \begin{cases} \Phi(r) \leq \Phi(t) - \frac{\varepsilon}{\delta \alpha(d(x_0, r))} d(r, t) \\ d(x_0, r) \geq d(x_0, t) \\ \Rightarrow r \prec t. \end{cases}$$

Moreover, if we denote $S = \{r \in E \mid r \prec s\}$, by lower semi-continuity of E, S is closed.

Let ε , δ , u and $\gamma(u)$ given by theorem. Now we define a sequence S_n of subsets as follows. Start with $z_1 = u$ and define

$$S_1 = \{ w \in E \mid w \prec z_1 \} \cap \overline{B}(u, \gamma(u)),$$

and inductively

$$S_n = \{ w \in E \mid w \prec z_n \} \cap \overline{B}(u, \gamma(u)), z_{n+1} \in S_n$$

such that

$$\Phi(z_{n+1}) \le \inf_{S_n} \Phi + \frac{1}{(n+1)\alpha(d(x_0, z_n))}.$$
(2.4)

Clearly by transitivity of \prec the sequence $(S_n)_n$ is a decreasing sequence of non empty closed sets. Hence also $(d(x_0, z_n))_n$ is a bounded nondecreasing sequence and converges in $[d(x_0, u), d(x_0, u) + \gamma(u)]$.

Now we prove that the diameters of these sets go to zero: $diamS_n \to 0$. Indeed, on one hand $w \in S_{n+1}$ implies

$$\Phi(w) \le \Phi(z_{n+1}) - \frac{\varepsilon}{\delta\alpha(d(x_0, w))} d(w, z_{n+1}) \text{ and } d(x_0, w) \ge d(x_0, z_{n+1}).$$

From (2.4), it results

$$\Phi(w) \le \inf_{S_n} \Phi + \frac{1}{(n+1)\alpha(d(x_0, z_n))} - \frac{\varepsilon}{\delta\alpha(d(x_0, w))} d(w, z_{n+1}).$$

This implies

$$d(w, z_{n+1}) \le \frac{\delta}{\varepsilon(n+1)} \frac{\alpha(d(x_0, w))}{\alpha(d(x_0, z_n))}$$

On the other hand, we have that w belongs to $\overline{B}(u, \gamma(u))$, we obtain

$$d(w, z_{n+1}) \le \frac{\delta}{\varepsilon(n+1)} \frac{\alpha(\gamma(u) + d(x_0, u))}{\alpha(d(x_0, z_n))}.$$
(2.5)

Since the function $u \mapsto \frac{\gamma(u)}{1+d(x_0,u)}$ is bounded, then there exists M > 0 such that

$$\gamma(u) \le M(1 + d(x_0, u)).$$
 (2.6)

From (2.5), (2.6) and $\alpha(.)$ is a nondecreasing function, it results

$$d(w, z_{n+1}) \le \frac{\delta}{\varepsilon(n+1)} \frac{\alpha((M+1)(1+d(x_0, z_n)))}{\alpha(d(x_0, z_n))}.$$
(2.7)

By (2.7) and $\alpha(.)$ is a comparison function of order k, there exist c, d > 0 such that

$$d(w, z_{n+1}) \le \frac{\delta}{\varepsilon(n+1)} (c(M+1)^k + d), n \in \mathbb{N}$$

which gives diam S_{n+1} go to 0, when $n \to \infty$.

Now we claim that the unique point $v \in E$ in the intersection of the S_n 's satisfies conditions (iii)–(vi) of Theorem 2.2. Let then $\cap_n S_n = \{v\}$ and z_n converges to v. Since $z_j \prec z_{j-1} \prec \cdots \prec z_1$; and by (2.1), we have

$$\Phi(z_{j+1}) \le \Phi(z_j) - \frac{\varepsilon}{\delta\alpha(d(x_0, z_{j+1}))} d(z_j, z_{j+1})$$
$$\le \Phi(z_1) - \sum_{n=1}^j \frac{\varepsilon d(z_j, z_{j+1})}{\delta\alpha(d(x_0, z_{j+1}))}$$

or

$$\sum_{n=1}^{j} \frac{\varepsilon d(z_{j}, z_{j+1})}{\delta \alpha(d(x_{0}, z_{j+1}))} \leq \Phi(u) - \Phi(z_{j+1})$$
$$\leq \inf_{E} \Phi + \varepsilon - \Phi(z_{j+1}) \leq \varepsilon$$

Thus assertion (iii) is shown. Since $v \in S_1$, (iv) is clear. It also results from it that

$$\frac{\varepsilon}{\delta\alpha(d(x_0,v))}d(v,u) \le \Phi(u) - \Phi(v) \le \inf_E \Phi + \varepsilon - \Phi(v) \le \varepsilon.$$

The assertion (v) is shown.

Finally, we prove (vi), let $w \in E$ such that $w \prec v$ and $w \in \overline{B}(u, \gamma(u))$, then we have $w \prec z_n$ for every n. This gives $w \in \bigcap_n S_n$ and w = v, which means that v be an minimal element in $\overline{B}(u, \gamma(u))$, i.e.

$$w \in \overline{B}(u, \gamma(u))$$
 and $w \prec v \Rightarrow w = v$.

Consequently,

$$\Phi(w) > \Phi(v) - \frac{\varepsilon}{\delta\alpha(d(x_0, w))} d(v, w)$$

for every $w \in \overline{B}(u, \gamma(u)) \setminus B(x_0, d(x_0, v))$. The proof is complete.

3. Applications

In this section H denotes a Hilbert space, recall that a function $\Phi : H \to \mathbb{R}$ is called Gâteaux differentiable if at every point x_0 , there exists a continuous linear functional $f'(x_0)$ such that, for every $e \in X$,

$$\lim_{t \to 0} \frac{f(x_0 + te) - f(x_0)}{t} = \langle f'(x_0), e \rangle.$$

We always assume that $\alpha : [0, \infty[\rightarrow]0, \infty[$ is a continuous nondecreasing comparison function of order k. For the rest of the text we will write

$$\Phi^c = \{ u \in H : \Phi(u) \le c \},\$$

for the sublevel sets as usual.

Definition 3.1. We say that Φ satisfies (C_c^{α}) if: Every sequence $(u_n)_n \subset H$ such that $\Phi(u_n) \to c$ and $\Phi'(u_n)\alpha(||u_n||) \to 0$ possesses a convergent subsequence.

Remark 3.2. Note that if $\alpha(s) = cte$, the (C_c^{α}) condition is just the famous Palais-Smale condition and if $\alpha(s) = s + 1$, (C_c^{α}) is (C) condition introduced by Cerami in [3].

We can now state the following result.

Theorem 3.3. Let H be a Hilbert space, $\Phi : H \to \mathbb{R}$ lower semi-continuous, bounded below and Gâteaux differentiable. Let $\alpha : [0, \infty[\to]0, \infty[$ a continuous nondecreasing comparison function of order k. Assume that for every $\varepsilon > 0$,

$$\Phi^{a+\varepsilon} \cap K \neq \emptyset,$$

with K is bounded in H and Φ satisfies (C_a^{α}) , with $a = \inf_H \Phi$, then Φ has a minimal point.

For the proof of this theorem we will use the following lemmas.

Lemma 3.4. Under the conditions of Theorem 3.3, for every $\varepsilon > 0$, every $u \in H$ such that $\Phi(u) \leq \inf_{H} \Phi + \varepsilon$ and every $\delta > 0$ such that

$$\delta \le \frac{\|u\| + 1}{2\alpha(3(1 + \|u\|))}$$

there exists $v \in H$ that satisfies

- (1) $\Phi(v) \leq \Phi(u)$
- (2) $\frac{\|v-u\|}{\alpha(\|v\|)} \le \delta$
- (3) for every $h \in H, t \in \mathbb{R}$ such that $||h|| = 1, |t| \le 1$ and $t < v, h \ge 0$ we have

$$\Phi(v+th) \ge \Phi(v) - \frac{\varepsilon}{\delta\alpha(\|v+th\|)} |t|.$$

Proof. Let in Theorem 2.2, $x_0 = 0, \gamma(u) = 2(||u|| + 1)$ and d(x, y) = ||x - y|| for every $x, y \in H$. Then, by iv) and v) of Theorem 2.2, there exists $v \in H$ ($v = \lim_{n \to \infty} z_n, (z_n)$ the sequence built in theorem 2.2) such that

$$\Phi(v) \le \Phi(u) \text{ and } \|v - u\| \le \delta\alpha(\|v\|). \tag{3.1}$$

Thus assertions 1. and 2. follow.

Now we prove the assertion 3. Let $h \in H$ such that ||h|| = 1 and $|t| \leq 1$ we have $v \in \overline{B}(u, ||u|| + 1)$. Indeed, if not ||u|| + 1 < ||v - u||. Since $\alpha(.)$ is nondecreasing, $\delta \leq \frac{||u|| + 1}{2\alpha(3(1+||u||))}$ and by (3.1), it results

$$||u|| + 1 < ||v - u|| \le \delta\alpha(||v||) \le \delta\alpha(3(1 + ||u||))) \le \frac{||u|| + 1}{2}$$

This is a contradiction. Furthermore, we have

$$||v + th|| \le ||v|| + |t|||h|| = ||v|| + |t|$$

$$\le 2||u|| + 1 + 1 = \gamma(u).$$

On the other hand, it is clear , since $t\langle v, h \rangle \ge 0$, that

$$||v + th|| = [||v||^2 + ||th||^2 + 2t < v, h >]^{1/2} \ge ||v||.$$

Thus, by (iv), (v), (vi) of Theorem 2.2, assertions 1, 2, 3 of the lemma follow. \Box

Lemma 3.5. Under the conditions of Theorem 3.3, we have

$$|\langle \Phi'(v), h \rangle| \le \frac{\varepsilon}{\delta \alpha(\|v\|)}, \quad \forall h \in H, \|h\| = 1.$$
(3.2)

Proof. Let $h \in H$ such that ||h|| = 1 and consider two cases: Case 1. If $\langle v, h \rangle \geq 0$ and t > 0, from 3. of Lemma 3.4 and Φ being Gâteaux differentiable, letting t approach 0, we obtain

$$\langle \Phi'(v), h \rangle \ge -\frac{\varepsilon}{\delta \alpha(\|v\|)}.$$

Case 2. In the similar way, if $\langle v, h \rangle \leq 0$ and t < 0 goes to 0, we have

$$\langle \Phi'(v),h\rangle \leq \frac{\varepsilon}{\delta\alpha(\|v\|)}, \quad \forall h, \|h\| = 1.$$

Thus the Lemma 3.5 follows.

Proof of Theorem 3.3. For $\varepsilon = \frac{1}{n}$, with $n \ge 1$, there exists a sequence $(u_n) \subset K$ such that

$$\Phi(u_n) \le a + \frac{1}{n}$$

and, since (u_n) is bounded, there exists $\delta > 0$ such that

$$\delta \le \frac{\|u_n\| + 1}{\alpha(3(1 + \|u_n\|))}, \forall n \ge 1.$$

Consequently, by Lemma 3.4 and Lemma 3.5, there exists a sequence (v_n) satisfying

- (i) $\Phi(v_n) \leq \Phi(u_n)$
- (ii) $\|\Phi'(v_n)\|\alpha(\|v_n\|) \to 0$, as $n \to \infty$.

The (C_a^{α}) condition implies that (v_n) has a subsequence (v_{n_k}) convergent to some point u. Since Φ is lower semi-continuous, we get

$$\inf_{H} \Phi \le \Phi(u) \le \liminf_{k \to \infty} \Phi(v_{n_k}) \le \inf_{H} \Phi.$$

Therefore, $\Phi(u) = \inf_{H} \Phi$.

Now, we illustrate Theorem 3.3 by an example where the function Φ checks the conditions of Theorem 3.3, but the Palais-Smale condition and Cerami condition do not hold.

Example. Consider

$$f(s) = \begin{cases} \arctan(s) & \text{if } s \le 0\\ \sin(s) & \text{if } 0 \le s \le 2\pi\\ \arctan(s - 2\pi) & \text{if } s \ge 2\pi. \end{cases}$$

and $\Phi(u) = f(2\pi + Log(||u||^2 + 1) - (||u||^2 + 1)^{\frac{1}{2}})$ for $u \in H$. It is clear that Φ is C^1 functional and $a = \inf_H \Phi = -1$. Take

$$K = \{ u \in H : \log(\|u\|^2 + 1) - (\|u\|^2 + 1)^{\frac{1}{2}} \in [-2\pi, 0] \},\$$

it is easy to see that $\Phi^{-1+\varepsilon} \cap K \neq \emptyset$ for every $\varepsilon > 0$. On the other hand, Φ satisfies (C_c^{α}) , with $\alpha(s) = s^2 + 1$, and by Theorem 3.3, Φ has a minimal point u_0 which $\Phi'(u_0) = 0$.

Theorem 3.6. Let $\Phi: H \to \mathbb{R}$ be Gâteaux differentiable and bounded below, says $\operatorname{ainf}_{H} \Phi$. Assume that $\alpha: [0, \infty[\to]0, \infty[$ be a continuous nondecreasing function such that $\int_{1}^{\infty} \frac{1}{\alpha(s)} ds = +\infty$. If Φ satisfies (C_{a}^{α}) then the set $\Phi^{a+\beta}$ is bounded, for some $\beta > 0$.

The main point to prove Theorem 3.6 is the following.

Lemma 3.7. Under the conditions of Theorem 3.6, for every $\varepsilon > 0$, every $u \in H$ such that $\Phi(u) \leq \inf_{H} \Phi + \varepsilon$ and every $\delta > 0$ there exists $v \in H$ satisfies

(1) $\Phi(v) \leq \Phi(u)$ (2) $\frac{\|v-u\|}{\alpha(\|v\|)} \leq \delta$ (3) for every $h \in H$ such that $\|h\| = 1$, we have

$$|\langle \Phi'(v), h \rangle| \le \frac{\varepsilon}{\delta \alpha(\|v\|)}$$

Proof. Let in Theorem 2.2, $x_0 = 0$ and d(x, y) = ||x - y|| for every $x, y \in H$. From theorem 2.2 there exists a sequence $(z_n)_{n\geq 1}$ satisfying $(||z_n||)$ is nondecreasing and

$$\sum_{n=1}^{j} \frac{\|z_n - z_{n+1}\|}{\alpha(\|z_{n+1}\|)} < 2\delta, \quad \forall j \ge 1.$$
(3.3)

However, since $\int_1^\infty \frac{1}{\alpha(s)}\,ds = +\infty$ there exists $\gamma>0$ such that

$$\delta \le \frac{1}{2} \int_{\|u\|}^{\|u\|+\gamma} \frac{1}{\alpha(s)} \, ds. \tag{3.4}$$

Put $v = \lim_{n\to\infty} z_n$ and $\gamma(u) = 2||u|| + \gamma + 1$ in Theorem 2.2. Thus, by (iv)-(v) of Theorem 2.2, we obtain

$$\Phi(v) \le \Phi(u)$$
 and $||v - u|| \le \delta \alpha(||v||).$

For the proof of assertion 3, it is enough to verify that $h \in H$ such that ||h|| = 1we have $v + th \in \overline{B}(u, \gamma(u))$ for every t sufficiently small. Now we prove that

$$||z_n|| \le ||u|| + \gamma, \quad \forall n \ge 1.$$

$$(3.5)$$

If not, there exists $j \ge 1$ such that $||z_{j+1}|| > ||u|| + \gamma$. However, by (3.4) and α is nondecreasing, we obtain

$$2\delta \leq \int_{\|z_1\|}^{\|z_{j+1}\|} \frac{1}{\alpha(s)} ds$$
$$\leq \sum_{n=1}^{j} \int_{\|z_n\|}^{\|z_{n+1}\|} \frac{1}{\alpha(s)} ds$$
$$\leq \sum_{n=1}^{j} \frac{\|z_{n+1}\| - \|z_n\|}{\alpha(\|z_{n+1}\|)}$$
$$\leq \sum_{n=1}^{j} \frac{\|z_n - z_{n+1}\|}{\alpha(\|z_{n+1}\|)}.$$

This contradicts (3.3). Using (3.5), we have

$$\|v - u\| \le 2\|u\| + \gamma. \tag{3.6}$$

Thus, for $|t| \leq 1$ and $h \in H$ such that ||h|| = 1 and by (3.6), it results

$$||v + th - u|| \le 2||u|| + \gamma + 1 = \gamma(u).$$

Finally, the Lemma 3.5 allows to conclude. The proof is complete.

Proof of theorem 3.6. Suppose, by contradiction, that $\Phi^{a+\beta}$ is unbounded for all $\beta > 0$. Then, there exists (u_n) such that $||u_n|| \ge n$ and

$$\Phi(u_n) \le a + \frac{1}{n}.$$

and Lemma 3.7 with
$$\varepsilon = (\frac{1}{n})^2, \delta = \frac{1}{n}$$
 implies the existence of (v_n) satisfying

(i) $\Phi(v_n) \leq \Phi(u_n)$ (ii) $\|v_n - u_n\| \leq \frac{1}{n}\alpha(\|v_n\|)$ (iii) $\|\Phi'(v_n)\|\alpha(\|v_n\|) \to 0$, as $n \to \infty$.

We reach a contradiction with (C_a^{α}) , since (i)-(iii) give respectively

- (1) $\Phi(v_n) \to a$, as $n \to \infty$,
- (2) $||v_n|| \to \infty$, as $n \to \infty$,
- (3) $\|\Phi'(v_n)\|\alpha(\|v_n\|) \to 0$, as $n \to \infty$.

As an immediate consequence of the above results we have the following result.

Corollary 3.8. Let H be a Hilbert space, $\Phi : H \to \mathbb{R}$ lower semi-continuous, bounded below and Gâteaux differentiable. Assume that $\alpha : [0, \infty[\rightarrow]0, \infty[$ be a continuous nondecreasing function such that $\int_1^\infty \frac{1}{\alpha(s)} ds = +\infty$. If Φ satisfies (C_a^α) , with $a = \inf_{H} \Phi$, then Φ has a minimal point.

References

- [1] Ekeland I., On the variational principle, J. Math. Anal. Applic., 47 (1974) 324-357.
- [2] Ekeland I., Convexity methods in Hamiltonian mechanics, Springer, Berlin, (1990).
- [3] Cerami G., Un criterio de esistenza per i punti critici su varietá ilimitate, Rc. Ist. Lomb. Sci. Lett. 121,(1978) 332-336.
- [4] Clark, F. H. Optimisation and Nonsmooth Analysis, Wiley, NewYork1983.
- [5] Costa, D. G., Elves De B. eSilva; The Palais-Smale condition versus coercivity, Nonlinear Analysis, T. M. A. 16 (1991) 371-381.

Abdel R. El Amrouss

UNIVERSITY MOHAMED 1ER, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, OUJDA, MO-ROCCO

E-mail address: amrouss@sciences.univ-oujda.ac.ma

NAJIB TSOULI

UNIVERSITY MOHAMED 1ER, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, OUJDA, MO-ROCCO

E-mail address: tsouli@sciences.univ-oujda.ac.ma