2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 191-205.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

NON-AUTONOMOUS INHOMOGENEOUS BOUNDARY CAUCHY PROBLEMS

MOHAMMED FILALI, BELHADJ KARIM

$$
\begin{aligned}
& \text { AbSTRACT. In this paper we prove existence and uniqueness of classical solu- } \\
& \text { tions for the non-autonomous inhomogeneous Cauchy problem } \\
& \qquad \frac{d}{d t} u(t)=A(t) u(t)+f(t), \quad 0 \leq s \leq t \leq T \\
& L(t) u(t)=\Phi(t) u(t)+g(t), \quad 0 \leq s \leq t \leq T \\
& u(s)=x
\end{aligned}
$$

The solution to this problem is obtained by a variation of constants formula.

1. Introduction

Consider the boundary Cauchy problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=A(t) u(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t), \quad 0 \leq s \leq t \leq T \tag{1.1}\\
u(s)=x
\end{gather*}
$$

In the autonomous case $(A(t)=A, L(t)=L)$, the Cauchy problem 1.1 was studied by Greiner [3]. The author used the perturbation of domains of infinitesimal generators to study the homogeneous boundary Cauchy problem. He has also showed the existence of classical solution of (1.1) via a variation of constants formula. In the non-autonomous case, Kellerman [5] and Lan [6] showed the existence of an evolution family $(U(t, s))_{0 \leq s \leq t \leq T}$ which provides classical solutions of homogeneous boundary Cauchy problems. Filali and Moussi [2] showed the existence and uniqueness of classical solutions to the problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=A(t) u(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t)+g(t), \quad 0 \leq s \leq t \leq T \tag{1.2}\\
u(s)=x
\end{gather*}
$$

[^0]In this paper, we prove existence and uniqueness of classical solutions to the problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=A(t) u(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t)+g(t), \quad 0 \leq s \leq t \leq T \tag{1.3}\\
u(s)=x
\end{gather*}
$$

Our technique consists on transforming (1.3) into an ordinary Cauchy problem and giving an equivalence between the two problems. The solution is explicitly given by a variation of constants formula.

2. Evolution Family

Definition 2.1. A family of bounded linear operators $(U(t, s))_{0 \leq s \leq t \leq T}$ on X is an evolution family if
(a) $U(t, r) U(r, s)=U(t, s)$ and $U(t, t)=I d$ for all $0 \leq s \leq r \leq t \leq T$; and
(b) the mapping $(t, s) \rightarrow U(t, s) x$ is continuous on \triangle, for all $x \in X$ with

$$
\triangle=\left\{(t, s) \in \mathbb{R}_{+}^{2}: 0 \leq s \leq t \leq T\right\}
$$

Definition 2.2. A family of linear (unbounded) operators $(A(t))_{0 \leq t \leq T}$ on a Banach space X is a stable family if there are constants $M \geq 1, \omega \in \mathbb{R}$ such that $] \omega,+\infty[\subset$ $\rho(A(t))$ for all $0 \leq t \leq T$ and

$$
\left\|\prod_{i=1}^{m} R\left(\lambda, A\left(t_{i}\right)\right)\right\| \leq M \frac{1}{(\lambda-\omega)^{m}}
$$

for $\lambda>\omega$ and any finite sequence $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{m} \leq T$.
Let D, X and Y be Banach spaces, D densely and continuously embedded in X. Consider families of operators $A(t) \in L(D, X), L(t) \in L(D, Y), \Phi(t) \in L(X, Y)$ for $0 \leq t \leq T$. In this section, we use the operator matrices method to prove the existence of classical solutions for the non-autonomous inhomogeneous boundary Cauchy problem (1.3). We use the following theorem due to Tanaka [9].
Theorem 2.3. Let $(A(t))_{0 \leq t \leq T}$ be a stable family of linear operators on a Banach space X such that
(a) the domain $D=\left(D\left(A(t),\|\cdot\|_{D}\right)\right.$ is a Banach space independent of t,
(b) the mapping $t \rightarrow A(t) x$ is continuously differentiable in X for every $x \in D$.

Then there is an evolution family $(U(t, s))_{0 \leq s \leq t \leq T}$ on \bar{D}. Moreover, we have the following properties: (1) $U(t, s) D(s) \subset D(t)$ for all $0 \leq s \leq t \leq T$, where

$$
D(r)=\{x \in D: A(r) x \in \bar{D}\}, 0 \leq r \leq T
$$

(2) the mapping $t \rightarrow U(t, s) x$ is continuously differentiable in X on $[s, T]$ and

$$
\frac{d}{d t} U(t, s) x=A(t) U(t, s) x
$$

for all $x \in D(s)$ and $t \in[0, T]$.
We will assume that the following hypotheses:
(H1) The mapping $t \rightarrow A(t) x$ is continuously differentiable for all $x \in D$.
(H2) The family $\left(A_{0}(t)\right)_{0 \leq t \leq T}, A_{0}(t)=A(t) / \operatorname{ker} L(t)$ the restriction of $A(t)$ to $\operatorname{ker} L(t)$, is stable, with M_{0} and ω_{0} constants of stability.
(H3) The operator $L(t)$ is surjective for every $t \in[0, T]$ and the mapping $t \rightarrow$ $L(t) x$ is continuously differentiable for all $x \in D$.
(H4) The mapping $t \rightarrow \Phi(t) x$ is continuously differentiable for all $x \in X$.
(H5) There exist constants $\gamma>0$ and $\omega_{1} \in \mathbb{R}$ such that

$$
\begin{equation*}
\|L(t) x\|_{Y} \geq \frac{\lambda-\omega_{1}}{\gamma}\|x\|_{X} \tag{2.1}
\end{equation*}
$$

for $x \in \operatorname{ker}(\lambda I-A(t)), \omega_{1}<\lambda$ and $t \in[0, T]$.
Note that under the above hypotheses, Lan [6] has showed that $A_{0}(t)$ generates an evolution family $(U(t, s))_{0 \leq s \leq t \leq T}$ such that:
(a) $U(t, r) U(r, s)=U(t, s)$ and $U(t, t)=I d_{X}$ for all $0 \leq s \leq t \leq T$;
(b) $(t, s) \rightarrow U(t, s) x$ is continuously differentiable on Δ for all $x \in X$ with $\Delta=\left\{(t, s) \in \mathbb{R}_{+}{ }^{2}: 0 \leq s \leq t \leq T\right\} ;$
(c) there exists constants $M_{0} \geq 1$ and $\omega_{0} \in \mathbb{R}$ such that $\|U(t, s)\| \leq M_{0} e^{\omega_{0}(t-s)}$.

The following results with will be used in this article.
Lemma $2.4([3])$. For $t \in[0, T]$ and $\lambda \in \rho\left(A_{0}(t)\right)$, following properties are satisfied:
(1) $D=D\left(A_{0}(t)\right) \oplus \operatorname{ker}(\lambda I-A(t))$
(2) $L(t) / \operatorname{ker}(\lambda I-A(t))$ is an isomorphism from $\operatorname{ker}(\lambda I-A(t))$ onto Y
(3) $t \mapsto L_{\lambda, t}:=(L(t) / \operatorname{ker}(\lambda I-A(t)))^{-1}$ is strongly continuously differentiable.

As a consequence of this lemma, we have $L(t) L_{\lambda, t}=I d_{Y}, L_{\lambda, t} L(t)$ and ($I-$ $\left.L_{\lambda, t} L(t)\right)$ are the projections from D onto $\operatorname{ker}(\lambda I-A(t))$ and $D\left(A_{0}(t)\right)$.

3. The Homogeneous Problem

In this section, we consider the Cauchy problem 1.1. A function $u:[s, T] \rightarrow X$ is called classical solution if it is continuously differentiable, $u(t) \in D$ for all $0 \leq$ $s \leq t \leq T$ and u satisfies (1.1).

We now introduce the Banach spaces $Z=X \times Y, Z_{0}=X \times\{0\} \subset Z$ and we consider the projection of Z onto $X: p_{1}(x, y)=x$. Let $M(t)$ be the matrix-valued operator defined on Z by

$$
M(t)=\left(\begin{array}{cc}
A(t) & 0 \\
-L(t)+\Phi(t) & 0
\end{array}\right)=l(t)+\phi(t)
$$

where

$$
l(t)=\left(\begin{array}{cc}
A(t) & 0 \\
-L(t) & 0
\end{array}\right), \quad \phi(t)=\left(\begin{array}{cc}
0 & 0 \\
\Phi(t) & 0
\end{array}\right)
$$

and $D(M(t))=D \times\{0\}$.
Now, we consider the Cauchy problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=M(t) u(t), \quad 0 \leq s \leq t \leq T \tag{3.1}\\
u(s)=(x, 0)
\end{gather*}
$$

We start by proving the following lemma.
Lemma 3.1. Assume that hypothesis (H1)-(H5) hold. Then, the family of operators $(M(t))_{0 \leq t \leq T}$ is stable.

Remark 3.2. Since $L_{\lambda, t} L(t)$ is the projection from D onto $\operatorname{ker}(\lambda I-A(t))$ and $x-L_{\lambda, t} L(t) x \in D\left(A_{0}(t)\right)$, we have

$$
\begin{aligned}
& R\left(\lambda, A_{0}(t)\right)((\lambda I-A(t)) x)+L_{\lambda, t} L(t) x \\
& =R\left(\lambda, A_{0}(t)\right)\left((\lambda I-A(t))\left(x-L_{\lambda, t} L(t) x\right)+L_{\lambda, t} L(t) x\right.
\end{aligned}
$$

and

$$
\begin{equation*}
R\left(\lambda, A_{0}(t)\right)((\lambda I-A(t)) x)+L_{\lambda, t} L(t) x=x \tag{3.2}
\end{equation*}
$$

Proof of Lemma 3.1. Since $M(t)$ is a perturbation of $l(t)$ by a linear bounded operator on E, hence, in view of the perturbation result [7, Theorem 5.2.3], it is sufficient to show the stability of $l(t)$. For $\lambda>\omega_{0}$ and $\lambda \neq 0$, let

$$
R(\lambda)=\left(\begin{array}{cc}
R\left(\lambda, A_{0}(t)\right) & L_{\lambda, t} \\
0 & 0
\end{array}\right)
$$

We have $D(l(t))=D \times\{0\}$ and

$$
(\lambda I-l(t))\binom{x}{0}=\binom{(\lambda I-A(t)) x}{L(t) x}
$$

for $(x$
$0) \in D \times\{0\}$. By Remark 3.2, we obtain

$$
R(\lambda)(\lambda I-l(t))\binom{x}{0}=\binom{R\left(\lambda, A_{0}(t)\right)((\lambda I-A(t)) x)+L_{\lambda, t} L(t) x}{0}
$$

So that

$$
\begin{equation*}
R(\lambda)(\lambda I-l(t))\binom{x}{0}=\binom{x}{0} \tag{3.3}
\end{equation*}
$$

On the other hand, for $(x, y) \in X \times Y$, we have

$$
(\lambda I-l(t)) R(\lambda)\binom{x}{y}=\left(\begin{array}{cc}
\lambda I-A(t) & 0 \tag{3.4}\\
L(t) & \lambda
\end{array}\right)\binom{R\left(\lambda, A_{0}(t)\right) x+L_{\lambda, t} y}{0}=\binom{x}{y}
$$

from (3.3) and (3.4), we obtain that the resolvent of $l(t)$ is given by

$$
R(\lambda, l(t))=\left(\begin{array}{cc}
R\left(\lambda, A_{0}(t)\right) & L_{\lambda, t} \tag{3.5}\\
0 & 0
\end{array}\right) .
$$

By a direct computation, we obtain

$$
\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)=\left(\begin{array}{cc}
\prod_{i=1}^{m} R\left(\lambda, A_{0}\left(t_{i}\right)\right) & \prod_{i=1}^{m-1} R\left(\lambda, A_{0}\left(t_{i}\right) L_{\lambda, t_{m}}\right. \\
0 & 0
\end{array}\right)
$$

for a finite sequence $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{m} \leq T$ and we have

$$
\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\binom{x}{y}=\left(\prod_{i=1}^{m} R\left(\lambda, A_{0}(t)\right) x+\prod_{i=1}^{m-1} R\left(\lambda, A_{0}(t)\right) L_{\lambda, t_{m}} y\right)
$$

From hypothesis (H5), we conclude that $\left\|L_{\lambda, t}\right\| \leq \frac{\gamma}{(\lambda-\omega)}$ for all $t \in[0, T]$ and $\lambda>\omega$ and by using (H2), we obtain

$$
\begin{align*}
\left\|\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\binom{x}{y}\right\| & \leq\left\|\prod_{i=1}^{m} R\left(\lambda, A_{0}(t)\right) x\right\|+\left\|\prod_{i=1}^{m-1} R\left(\lambda, A_{0}(t)\right) L_{\lambda, t_{m}} y\right\| \tag{3.6}\\
& \leq \frac{M}{\left(\lambda-\omega_{0}\right)^{m}}\|x\|+\frac{\gamma M}{\left(\lambda-\omega_{0}\right)^{m-1}} \frac{1}{\lambda-\omega_{1}}\|y\|
\end{align*}
$$

For $\omega_{2}=\max \left(\omega_{0}, \omega_{1}\right)$, we have

$$
\| \prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\binom{x}{y} \| \leq \frac{M^{\prime}}{\left(\lambda-\omega_{2}\right)^{m}}(\|x\|+\|y\|)\right.
$$

where $M^{\prime}=\max (M, M \gamma)$. On $E=X \times Y$ equipped with the norm $\|(x, y)\|_{1}=$ $\|x\|+\|y\|$, we have:

$$
\| \prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\binom{x}{y} \| \leq \frac{M^{\prime}}{\left(\lambda-\omega_{2}\right)^{m}}\left(\|(x, y)\|_{1}\right)\right.
$$

In the following proposition we give the equivalence between the boundary problem (1.1) and the Cauchy problem (3.1).

Proposition 3.3. Let $(x, 0) \in D \times\{0\}$.
(1) If the function $t \rightarrow U(t)=\left(u_{1}(t), 0\right)$ is a classical solution of (3.1) with an initial value $(x, 0)$ then $t \rightarrow u_{1}(t)$ is a classical solution of (1.1) with the initial value x.
(2) Let u be a classical solution of (1.1) with the initial value x. Then the function $t \rightarrow U(t)=(u(t), 0)$ is a classical solution of (3.1) with the initial value ($x, 0$).

Proof. (1) Since $U(t)=\left(u_{1}(t), 0\right)$ is a classical solution of 3.1,,u_{1} is continuously differentiable on $[s, T]$ and $u_{1}(t) \in D$. Moreover,

$$
\begin{equation*}
\frac{d}{d t} U(t)=\binom{\frac{d}{d t} u_{1}(t)}{0}=M(t) U(t) \quad \text { and } \quad U(s)=\binom{x}{0} \tag{3.7}
\end{equation*}
$$

Therefore,

$$
\begin{gather*}
\frac{d}{d t} u_{1}(t)=A(t) u_{1}(t), \quad 0 \leq s \leq t \leq T \\
L(t) u_{1}(t)=\Phi(t) u_{1}(t), \quad 0 \leq s \leq t \leq T \tag{3.8}\\
u_{1}(s)=x
\end{gather*}
$$

This implies that u_{1} is a classical solution of (1.1).
(2) Let u is a classical solution of 1.1 , then u is continuously differentiable, $u(t) \in$ D for $t \geq s$ and

$$
\begin{gathered}
\frac{d}{d t} u(t)=A(t) u(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t), \quad 0 \leq s \leq t \leq T \\
u(s)=x
\end{gathered}
$$

Hence

$$
\binom{\frac{d}{d t} u(t)}{0}=\left(\begin{array}{cc}
A(t) & 0 \\
-L(t)+\Phi(t) & 0
\end{array}\right)\binom{u(t)}{0}
$$

with $(u(s), 0)=(x, 0)$. This implies that $U(t)=(u(t), 0)$ is a classical solution of (3.2) with the initial value $(x, 0)$.

The above proposition allows us to get the aim of this section by showing the well-posedness of the Cauchy problem 1.1.

Theorem 3.4. Assume that the hypotheses (H1)-(H5) hold. Then for every $x \in D$, such that $-L(s) x+\Phi(s) x=0$, the problem 1.1) has a unique classical solution. Moreover, u is given by $t \rightarrow p_{1}\left(U(t, s)\binom{x}{0}\right.$, where $U(t, s)$ is the evolution family generated by $\left(M(t)_{0 \leq t \leq T}\right)$.
Proof. For the Cauchy problem (3.1), we have the following:
(1) $D(M(t))=D \times\{0\}$ is independent of t.
(2) $t \rightarrow M(t)\binom{x}{0}$ is continuously differentiable for $(x, 0) \in D \times\{0\}$.
(3) The family $(M(t))_{0 \leq t \leq T}$ is stable.

Then the family $M(t)$ satisfies all conditions of Theorem 2.3 . Thus, there exist an evolution family $(U(t, s))_{0 \leq s \leq t}$ generated by the family $(M(t))_{0 \leq t \leq T}$ such that
(a) $U(t, t)=I d_{X \times\{0\}}$,
(b) $U(t, r) U(r, s)=U(t, s), 0 \leq s \leq r \leq t \leq T$,
(c) $(t, s) \rightarrow U(t, s)$ is strongly continuous,
(d) the function $t \rightarrow U(t, s)\binom{x}{0}$ is continuously differentiable in $X \times\{0\}$ on $[s, T]$, and satisfies

$$
\frac{d}{d t} U(t, s)\binom{x}{0}=M(t) U(t, s)\binom{x}{0} \quad \text { for } \quad\binom{x}{0} \in D(s)
$$

and

$$
\begin{equation*}
U(t, s) D(s) \subset D(t), \quad \text { for all } 0 \leq s \leq t \leq T \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
D(s) & =\left\{\binom{x}{0} \in D \times\{0\}: M(s)\binom{x}{0} \in X \times\{0\}\right\} \tag{3.10}\\
& =\operatorname{ker}(L(s)-\Phi(s)) \times\{0\}
\end{align*}
$$

Let $U(t, s)(x, 0)=\left(u_{1}(t), 0\right)$. We have

$$
\binom{\frac{d}{d t} u_{1}(t)}{0}=M(t)\binom{u_{1}(t)}{0}
$$

and for $u(t)=\left(u_{1}(t), 0\right)$, we have $\frac{d}{d t} u(t)=M(t) u(t)$, with $u(s)=(x, 0)$, thus $u(t)=\left(u_{1}(t), 0\right)$ is a classical solution of (3.1) and from Proposition 3.3, we have u_{1} is a classical solution of $\sqrt{1.1}$) and

$$
\begin{equation*}
u_{1}(t)=p_{1}\left(U(t, s)\binom{x}{0}\right) \tag{3.11}
\end{equation*}
$$

4. First Inhomogeneous Problem

In this section, we consider the inhomogeneous Cauchy problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=A(t) u(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t), \quad 0 \leq s \leq t \leq T \tag{4.1}\\
u(s)=x
\end{gather*}
$$

A function $u:[s, T] \rightarrow X$ is called classical solution if it is continuously differentiable, $u(t) \in D, t \geq s$ and u satisfies 4.1.

Consider the Banach space $E=X \times Y \times C^{1}([0, T], X), T>0$, where $C^{1}([0, T], X)$ is the space of continuously differentiable functions from $[0, T]$ into X equipped with the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$, for $f \in C^{1}([0, T], X)$. Let $B(t)$ be the operator matrices defined on E by

$$
B(t)=\left(\begin{array}{ccc}
A(t) & 0 & \delta_{t} \tag{4.2}\\
-L(t)+\Phi(t) & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with $D(B(t))=D \times\{0\} \times C^{1}([0, T], X)$. Where $\delta_{t}: C^{1}([0, T], X) \rightarrow X$ is the Dirac function concentrated at the point t with $\delta_{t}(f)=f(t)$. To the family $B(t)$ we associate the homogeneous Cauchy problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=B(t) u(t), \quad 0 \leq s \leq t \leq T \tag{4.3}\\
u(s)=(x, 0, f)
\end{gather*}
$$

with $(x, 0, f) \in D \times\{0\} \times C^{1}([0, T]$.
Lemma 4.1. Assume that hypothesis (H1)-(H5) hold. Then the family operators $(B(t))_{0 \leq t \leq T}$ is stable.
Proof. For $t \in[0, T]$, we write the operator $B(t)$ as $B(t)=l(t)+\phi(t)$, with

$$
l(t)=\left(\begin{array}{ccc}
A(t) & 0 & 0 \\
-L(t) & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \phi(t)=\left(\begin{array}{ccc}
0 & 0 & \delta_{t} \\
\Phi(t) & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We must show that $l(t)$ is stable and that

$$
R(\lambda, l(t))=\left(\begin{array}{ccc}
R\left(\lambda, A_{0}(t)\right) & L_{\lambda, t} & 0 \tag{4.4}\\
0 & 0 & 0 \\
0 & 0 & 1 / \lambda
\end{array}\right) .
$$

For $\lambda>\omega_{0}, \lambda \neq 0$, and $t \in[0, T]$, let

$$
R(\lambda)=\left(\begin{array}{ccc}
R\left(\lambda, A_{0}(t)\right) & L_{\lambda, t} & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 / \lambda
\end{array}\right)
$$

For $(x, y, f) \in X \times Y \times C^{1}([0, T], X)$, we have

$$
\left(\begin{array}{ccc}
R\left(\lambda, A_{0}(t)\right. & L_{\lambda, t} & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 / \lambda
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
f
\end{array}\right)=\left(\begin{array}{c}
R\left(\lambda, A_{0}(t)\right) x+L_{\lambda, t} y \\
0 \\
\frac{f}{\lambda}
\end{array}\right)
$$

by the Remark 3.2, we obtain

$$
(\lambda I-l(t)) R(\lambda)\left(\begin{array}{l}
x \tag{4.5}\\
y \\
f
\end{array}\right)=\left(\begin{array}{c}
(\lambda I-A(t))\left[R\left(\lambda, A_{0}(t)\right) x+L_{\lambda, t} y\right] \\
L(t)\left[R\left(\lambda, A_{0}(t)\right) x+L_{\lambda, t} y\right] \\
f
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
f
\end{array}\right)
$$

On the other hand, for $(x, 0, f) \in D \times\{0\} \times C^{1}([0, T], X)$, we have

$$
(\lambda I-l(t))\left(\begin{array}{l}
x \\
0 \\
f
\end{array}\right)=\left(\begin{array}{c}
(\lambda I-A(t)) x \\
L(t) x \\
\lambda f
\end{array}\right)
$$

and

$$
R(\lambda)(\lambda I-l(t))\left(\begin{array}{c}
x \\
0 \\
f
\end{array}\right)=\left(\begin{array}{c}
R\left(\lambda, A_{0}(t)\right)((\lambda I-A(t)) x)+L_{\lambda, t} L(t) x \\
0 \\
f
\end{array}\right)
$$

From Remark 3.2, we have

$$
R(\lambda)(\lambda I-l(t))\left(\begin{array}{l}
x \tag{4.6}\\
0 \\
f
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
f
\end{array}\right) .
$$

From (4.5 and 4.6), we obtain that the resolvent of $l(t)$ is given by

$$
R(\lambda, l(t))=\left(\begin{array}{ccc}
R\left(\lambda, A_{0}(t)\right) & L_{\lambda, t} & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 / \lambda
\end{array}\right)
$$

By recurrence we can obtain

$$
\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)=\left(\begin{array}{ccc}
\prod_{i=1}^{m} R\left(\lambda, A_{0}\left(t_{i}\right)\right) & \prod_{i=1}^{m-1} R\left(\lambda, A_{0}\left(t_{i}\right)\right) L_{\lambda, t_{m}} & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 / \lambda^{m}
\end{array}\right)
$$

For a finite sequence $0 \leq t_{1} \leq t_{2} \cdots \leq t_{m} \leq T$ and for $(x, y, f) \in E$, we have

$$
\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\left(\begin{array}{l}
x \\
y \\
f
\end{array}\right)=\left(\begin{array}{c}
\prod_{i=1}^{m} R\left(\lambda, A_{0}\left(t_{i}\right)\right) x+\prod_{i=1}^{m-1} R\left(\lambda, A_{0}\left(t_{i}\right)\right) L_{\lambda, t_{m}} y \\
0 \\
f / \lambda^{m}
\end{array}\right)
$$

Using (H5), we obtain

$$
\begin{aligned}
\left\|\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\left(\begin{array}{l}
x \\
y \\
f
\end{array}\right)\right\| & \leq\left\|\prod_{i=1}^{m} R\left(\lambda, A_{0}\left(t_{i}\right)\right) x+\prod_{i=1}^{m-1} R\left(\lambda, A_{0}\left(t_{i}\right)\right) L_{\lambda, t_{m}} y\right\|+\frac{\|f\|}{\lambda^{m}} \\
& \leq \frac{M}{\left(\lambda-\omega_{0}\right)^{m}}\|x\|+\frac{M}{\left(\lambda-\omega_{0}\right)^{m-1}} \frac{\gamma}{\lambda-\omega_{1}}\|y\|+\frac{\|f\|}{\lambda^{m}}
\end{aligned}
$$

Define $\omega_{2}=\max \left(0, \omega_{0}, \omega_{1}\right)$. Then

$$
\left\|\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\left(\begin{array}{l}
x \\
y \\
f
\end{array}\right)\right\| \leq \frac{M^{\prime}}{\left(\lambda-\omega_{2}\right)^{m}}(\|x\|+\|y\|+\|f\|)
$$

where $M^{\prime}=\max (M, M \gamma)$ and

$$
\begin{equation*}
\left\|\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\right\| \leq \frac{M^{\prime}}{\left(\lambda-\omega_{2}\right)^{m}} \tag{4.7}
\end{equation*}
$$

This inequality shows that the family $l(t)$ is stable and by using [7, Theorem 5.2.3], the family $B(t)$ is stable.

Proposition 4.2. Let $(x, 0, f) \in D \times\{0\} \times C^{1}([0, T], X)$.
(1) If the function $t \rightarrow u(t)=\left(u_{1}(t), 0, u_{2}(t)\right)$ is a classical solution of 4.3) with an initial value $(x, 0, f)$ then $t \rightarrow u_{1}(t)$ is a classical solution of (4.1) with the initial value x.
(2) Let u is a classical solution of (4.1) with the initial value x. Then, the function $t \rightarrow U(t)=(u(t), 0, f)$ is a classical solution of 4.3) with the initial value $(x, 0, f)$.

Proof. (1) If $u(t)=\left(u_{1}(t), 0, u_{2}(t)\right)$ is a classical solution of 4.3), then u_{1} is continuously differentiable on $[s, T], u_{1} \in D$ and we have

$$
\frac{d}{d t} u(t)=\left(\begin{array}{c}
\frac{d}{d t} u_{1}(t) \\
0 \\
\frac{d}{d t} u_{2}(t)
\end{array}\right)=B(t) u(t)
$$

which implies

$$
\left(\begin{array}{c}
\frac{d}{d t} u_{1}(t) \\
0 \\
\frac{d}{d t} u_{2}(t)
\end{array}\right)=\left(\begin{array}{ccc}
A(t) & 0 & \delta_{t} \\
-L(t)+\Phi(t) & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
u_{1}(t) \\
0 \\
u_{2}(t)
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\frac{d}{d t} u_{1}(t) \\
0 \\
\frac{d}{d t} u_{2}(t)
\end{array}\right)=\left(\begin{array}{c}
A(t) u_{1}(t)+\delta_{t} u_{2}(t) \\
-L(t) u_{1}(t)+\Phi(t) u_{1}(t) \\
0
\end{array}\right)
$$

with

$$
u(s)=\left(\begin{array}{c}
u_{1}(s) \\
0 \\
u_{2}(s)
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
f
\end{array}\right)
$$

One has $\frac{d}{d t} u_{2}(t)=0$. This implies $u_{2}(t)=u_{2}(s)=f$; therefore, $\delta_{t} u_{2}(t)=\delta_{t} f=$ $f(t)$ and we have

$$
\begin{gathered}
\frac{d}{d t} u_{1}(t)=A(t) u_{1}(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u_{1}(t)=\Phi(t) u_{1}(t), \quad 0 \leq s \leq t \leq T \\
u_{1}(s)=x
\end{gathered}
$$

Therefore, u_{1} is a classical solution of 4.1 with the initial value x.
(2) If u is a classical solution of 4.1, then u is continuously differentiable, $u(t) \in D$ and

$$
\begin{gathered}
\frac{d}{d t} u(t)=A(t) u(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t), \quad 0 \leq s \leq t \leq T \\
u(s)=x
\end{gathered}
$$

Moreover,

$$
\left(\begin{array}{c}
\frac{d}{d t} u(t) \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccc}
A(t) & 0 & \delta_{t} \\
-L(t)+\Phi(t) & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
u(t) \\
0 \\
f
\end{array}\right)
$$

With $u(s)=x, U(t)=(u(t), 0, f)$ is continuously differentiable, $U(t) \in D(B(t))=$ $D \times\{0\} \times C^{1}([0, T], X)$ then it is a classical solution of 4.3) with the initial value ($x, 0, f$).

Theorem 4.3. Let $f \in C^{1}([0, T], X)$. Assume that the hypothesis (H1)-(H5) hold. Then for all $x \in D$, such that $-L(s) x+\Phi(s) x=0$, problem 4.1 has a unique classical solution solution u. Moreover, u is given by

$$
\begin{equation*}
u(t)=U_{\Phi}(t, s) x+\int_{s}^{t} U_{\Phi}(t, s) f(r) d r \tag{4.8}
\end{equation*}
$$

where $U_{\Phi}(t, s)$ is an evolution family solution of the problem (3.1)

Proof. Consider the problem

$$
\begin{gathered}
\frac{d}{d t} u(t)=B(t) u(t), \quad 0 \leq s \leq t \leq T \\
u(s)=(x, 0, f)
\end{gathered}
$$

We have showed that $(B(t))_{0 \leq t \leq T}$ is a stable family and the function $t \rightarrow B(t) y$ is continuously differentiable, for all $y \in D(B(t))=D \times\{0\} \times C^{1}([0, T], X)$ and that $D(B(t))$ is independent of t. Then there exist an evolution system $U(t, s)$ on $X \times\{0\} \times C^{1}([0, T], X)$ such that

$$
U(t, s)\left(\begin{array}{l}
x \\
0 \\
f
\end{array}\right)=\left(\begin{array}{c}
u_{1}(t) \\
0 \\
u_{2}(t)
\end{array}\right)=u(t)
$$

is a classical solution of 4.3 and from the Proposition 4.2, u_{1} is a classical solution of 4.1), for $(x, 0, f) \in \operatorname{ker}(L(s)-\Phi(s)) \times\{0\} \times C^{1}([0, T], X)$. Let $v(r)=$ $U_{\Phi}(t, r) u_{1}(r)$. Then v is differentiable and

$$
\frac{d}{d r} v(r)=-U_{\Phi}(t, r) A_{\Phi}(r) u_{1}(r)+U_{\Phi}(t, r)\left[A_{\Phi}(r) u_{1}(r)+f(r)\right]
$$

where $A_{\Phi}(t)=A(t) / \operatorname{ker}(L(t)-\Phi(t))$; therefore,

$$
\begin{equation*}
\frac{d}{d r} v(r)=U_{\Phi}(t, r) f(r) \tag{4.9}
\end{equation*}
$$

Integrating 4.9) from s to t, we obtain

$$
u_{1}(t)=U_{\Phi}(t, s) x+\int_{s}^{t} U_{\Phi}(t, r) f(r) d r
$$

which completes the proof.

5. Second Inhomogeneous Problem

In this section, we consider the Inhomogeneous Cauchy problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=A(t) u(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t)+g(t), \quad 0 \leq s \leq t \leq T \tag{5.1}\\
u(s)=x
\end{gather*}
$$

A function $u:[s, T] \rightarrow X$ is a classical solution if it is continuously differentiable, $u(t) \in D$, for all $t \geq s$ and u satisfies (5.1).

Consider the Banach space $E=X \times Y \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$, where $C^{1}([0, T], X)$ and $C^{1}([0, T], Y)$ are equipped with the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ for f in $C^{1}([0, T], X)$ or in $C^{1}([0, T], Y)$. Consider the operator matrices

$$
B(t)=\left(\begin{array}{cccc}
A(t) & 0 & \delta_{t} & 0 \tag{5.2}\\
-L(t)+\Phi(t) & 0 & 0 & \frac{\delta_{t}}{} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

with

$$
D(B(t))=D \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)
$$

where $\delta_{t}: C^{1}([0, T], X) \rightarrow X$ such that $\delta_{t}(f)=f(t)$ and $\overline{\delta_{t}}: C^{1}([0, T], Y) \rightarrow Y$ such that $\overline{\delta_{t}}(g)=g(t)$. To the family $B(t)$, we associate the homogeneous Cauchy problem

$$
\begin{gather*}
\frac{d}{d t} u(t)=B(t) u(t), \quad 0 \leq s \leq t \leq T \tag{5.3}\\
u(s)=(x, 0, f, g)
\end{gather*}
$$

for $(x, 0, f, g) \in D \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)=D_{1}$.
Lemma 5.1. Assume that the hypothesis (H1)-(H5) hold. Then the family operators $B(t)$ is stable.

Proof. For $t \in[0, T]$, we write the $B(t)$ defined in 5.2 as $B(t)=l(t)+\phi(t)$, where

$$
l(t)=\left(\begin{array}{cccc}
A(t) & 0 & 0 & 0 \\
-L(t) & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \phi(t)=\left(\begin{array}{cccc}
0 & 0 & \delta_{t} & 0 \\
\Phi(t) & 0 & 0 & \frac{\delta_{t}}{0} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

we must show that the family $l(t)$ is stable. Let

$$
R(\lambda)=\left(\begin{array}{cccc}
R\left(\lambda, A_{0}(t)\right) & L_{\lambda, t} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / \lambda & 0 \\
0 & 0 & 0 & 1 / \lambda
\end{array}\right)
$$

For $\lambda>\omega_{0}, \lambda \neq 0$ and $t \in[0, T]$ we show that $R(\lambda, l(t))=R(\lambda)$. For $(x, y, f, g) \in$ $X \times Y \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$, we have

$$
R(\lambda)\left(\begin{array}{l}
x \tag{5.4}\\
y \\
f \\
g
\end{array}\right)=\left(\begin{array}{c}
R\left(\lambda, A_{0}(t)\right) x+L_{\lambda, t} y \\
0 \\
f / \lambda \\
g / \lambda
\end{array}\right)
$$

by the Remark 3.2 and with the same proof as Lemma 4.1 we obtain

$$
(\lambda I-l(t)) R(\lambda)\left(\begin{array}{l}
x \tag{5.5}\\
y \\
f \\
g
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
f \\
g
\end{array}\right)
$$

On the other hand, for $(x, 0, f, g) \in D \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$, we have

$$
(\lambda I-l(t))\left(\begin{array}{l}
x \\
0 \\
f \\
g
\end{array}\right)=\left(\begin{array}{c}
(\lambda I-A(t)) x \\
L(t) x \\
\lambda f \\
\lambda g
\end{array}\right)
$$

and

$$
R(\lambda)(\lambda I-l(t))\left(\begin{array}{l}
x \tag{5.6}\\
0 \\
f \\
g
\end{array}\right)=\left(\begin{array}{c}
R\left(\lambda, A_{0}(t)\right)((\lambda I-A(t)) x)+L_{\lambda, t} L(t) x \\
0 \\
f \\
g
\end{array}\right)=\left(\begin{array}{l}
x \\
0 \\
f \\
g
\end{array}\right)
$$

then from 5.5, 5.6) and Remark 3.2, we have $R(\lambda)=R(\lambda I, l(t))$. By recurrence we obtain

$$
\prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)=\left(\begin{array}{cccc}
\prod_{i=1}^{m} R\left(\lambda, A_{0}\left(t_{i}\right)\right) & \prod_{i=1}^{m-1} R\left(\lambda, A_{0}\left(t_{i}\right)\right) L_{\lambda, t_{m}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / \lambda^{m} & 0 \\
0 & 0 & 0 & 1 / \lambda^{m}
\end{array}\right)
$$

for a finite sequence $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{m} \leq T$.
Now on the space $X \times Y \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$, we consider the norm

$$
\begin{equation*}
\|(x, y, f, g)\|=(\|x\|+\|y\|+\|f\|+\|g\|) \tag{5.7}
\end{equation*}
$$

For $(x, y, f, g) \in X \times Y \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$, we have

$$
\begin{aligned}
\| \prod_{i=1}^{m} R\left(\lambda, l\left(t_{i}\right)\right)\left(\begin{array}{l}
x \\
y \\
f \\
g
\end{array}\right) & \leq \frac{M}{\left(\lambda-\omega_{0}\right)^{m}}\|x\|+\frac{M \gamma}{\left(\lambda-\omega_{0}\right)^{m-1}} \frac{1}{\lambda-\omega_{1}}\|y\|+\frac{\|f\|}{\lambda^{m}}+\frac{\|g\|}{\lambda^{m}} \\
& \leq \frac{M^{\prime}}{\left(\lambda-\omega_{2}\right)^{m}}(\|x\|+\|y\|+\|f\|+\|g\|)
\end{aligned}
$$

where $\omega_{2}=\max \left(0, \omega_{0}, \omega_{1}\right)$ and $M^{\prime}=\max (M, M \gamma)$. Since $B(t)$ is a perturbation of $l(t)$, by a linear operator $\phi(t)$ on E; hence, in view of perturbation result [7] Theorem 5.2.3], $B(t)$ is stable.

Proposition 5.2. Let $(x, 0, f, g) \in D \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$
(1) If the function $t \rightarrow u(t)=\left(u_{1}(t), 0, u_{2}(t), u_{3}(t)\right)$ is a classical solution of 5.3) with an initial value $(x, 0, f, g)$ then $t \rightarrow u_{1}(t)$ is a classical solution of (5.1) with the initial value x.
(2) Let u is a classical solution of (5.1) with the initial value x. Then, the function $t \rightarrow U(t)=(u(t), 0, f, g)$ is a classical solution of 5.3 with the initial value $(x, 0, f, g)$.

Proof. (1) If $u(t)=\left(u_{1}(t), 0, u_{2}(t), u_{3}(t)\right)$ is a classical solution of 5.3), then u_{1} is continuously differentiable on $[s, T]$ and we have

$$
\left(\begin{array}{c}
\frac{d}{d t} u_{1}(t) \\
0 \\
\frac{d}{d t} u_{2}(t) \\
\frac{d}{d t} u_{3}(t)
\end{array}\right)=\left(\begin{array}{cccc}
A(t) & 0 & \delta_{t} & 0 \\
-L(t)+\Phi(t) & 0 & 0 & \overline{\delta_{t}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
u_{1}(t) \\
0 \\
u_{2}(t) \\
u_{3}(t)
\end{array}\right)
$$

This implies

$$
\begin{gathered}
\frac{d}{d t} u_{1}(t)=A(t) u_{1}(t)+\delta_{t} u_{2}(t), \quad 0 \leq s \leq t \leq T \\
L(t) u_{1}(t)=\Phi(t) u_{1}(t)+\overline{\delta_{t}} u_{3}(t), \quad 0 \leq s \leq t \leq T \\
\frac{d}{d t} u_{2}(t)=0 \\
\frac{d}{d t} u_{3}(t)=0
\end{gathered}
$$

One has $\frac{d}{d t} u_{3}(t)=0$ which implies $u_{3}(t)=u_{3}(s)=g$ and $L(t) u_{1}(t)=\Phi(t) u_{1}(t)+$ $g(t)$. Also $\frac{d}{d t} u_{2}(t)=0$ implies $u_{2}(t)=u_{2}(s)=f$ and $\frac{d}{d t} u_{1}(t)=A(t) u_{1}(t)+f(t)$.

Then

$$
\begin{gathered}
\frac{d}{d t} u_{1}(t)=A(t) u_{1}(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u_{1}(t)=\Phi(t) u_{1}(t)+g(t), \quad 0 \leq s \leq t \leq T \\
u_{1}(s)=x
\end{gathered}
$$

Thus u_{1} is a classical solution of (5.1) with the initial value x.
(2) Let u is a classical solution of (5.1). This implies that u is continuously differentiable and $u(t) \in D \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$. Moreover,

$$
\begin{gathered}
\frac{d}{d t} u(t)=A(t) u(t)+f(t), \quad 0 \leq s \leq t \leq T \\
L(t) u(t)=\Phi(t) u(t)+g(t), \quad 0 \leq s \leq t \leq T \\
u(s)=x
\end{gathered}
$$

This implies

$$
\left(\begin{array}{c}
\frac{d}{d t} u(t) \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{cccc}
A(t) & 0 & \delta_{t} & 0 \\
-L(t)+\Phi(t) & 0 & 0 & \frac{\delta_{t}}{} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
u(t) \\
0 \\
f \\
g
\end{array}\right)
$$

with $u(s)=x$. Then $U(t)=(u(t), 0, f, g)$ is continuously differentiable, $U(t) \in$ $D \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$, for all $t \in[s, T]$ and $U(t)$ is a classical solution of (5.1) with the initial value $(x, 0, f, g)$.

Theorem 5.3. Let $f \in C^{1}([0, T], X)$ and $g \in C^{1}([0, T], Y)$. Assume that the hypothesis (H1)-(H5) hold. Then for every $x \in D$ such that $-L(s) x+\Phi(s) x+g(s)=$ 0, problem (5.1) has a unique classical solution.

Proof. Consider the homogenous Cauchy problem

$$
\begin{gathered}
\frac{d}{d t} u(t)=B(t) u(t), \quad 0 \leq s \leq t \leq T \\
u(s)=(x, 0, f, g)
\end{gathered}
$$

By Lemma 5.1, $B(t)$ is a stable family and the function $t \rightarrow B(t) y$ is continuously differentiable for all $y \in D_{1}=D(B(t))$ independent of t. Then there exist an evolution family $U(t, s)$ on $X \times\{0\} \times C^{1}([0, T], X) \times C^{1}([0, T], Y)$ such that

$$
U(t, s)\left(\begin{array}{l}
x \\
0 \\
f \\
g
\end{array}\right)=\left(\begin{array}{c}
u_{1}(t) \\
0 \\
u_{2}(t) \\
u_{3}(t)
\end{array}\right)=u(t)
$$

is a classical solution of (5.3) and from the Proposition 5.2, u_{1} is a classical solution of (5.1). The uniqueness of u_{1} comes from the uniqueness of the solution of 5.3 and Proposition 5.2.

Theorem 5.4. Let $f \in C^{1}([0, T], X)$ and $g \in C^{1}([0, T], Y)$. If u is a classical solution of (5.1) then u is given by the variation of constants formula
$u(t)=U(t, s)\left(I-L_{\lambda, s} L(s)\right) x+g(t, u(t))+\int_{s}^{t} U(t, r)\left[\lambda g(r, u(r))-g(r, u(r))^{\prime}+f(r)\right] d r$,
where $U(t, s)$ is the evolution family generated by $A_{0}(t)$ and

$$
g(t, u(t))=L_{\lambda, t}(\Phi(t) u(t)+g(t))
$$

Proof. Let now u be a classical solution of (5.1). Take

$$
u_{2}(t)=L_{\lambda, t} L(t) u(t) \quad \text { and } \quad u_{1}(t)=\left(I-L_{\lambda, t} L(t)\right) u(t)
$$

Then the functions

$$
u_{2}(t)=g(t, u(t))=L_{\lambda, t}(\Phi(t) u(t)+g(t)) \quad \text { and } \quad u_{1}(t)
$$

are differentiable. Since $u_{2}(t) \in \operatorname{ker}(\lambda I-A(t))$, we have $A(t) u_{2}(t)=\lambda u_{2}(t)$ and

$$
\begin{aligned}
\frac{d}{d t} u_{1}(t) & =\frac{d}{d t} u(t)-\frac{d}{d t} u_{2}(t) \\
& =A(t) u(t)-(g(t, u(t)))^{\prime}+f(t) \\
& =A(t)\left(u_{1}(t)+u_{2}(t)\right)+f(t)-(g(t, u(t)))^{\prime} \\
& =A(t) u_{1}(t)+\lambda\left(g(t, u(t))+f(t)-(g(t, u(t)))^{\prime}\right.
\end{aligned}
$$

When we define $h(t):=\lambda g(t, u(t))+f(t)-(g(t, u(t)))^{\prime}$, we get

$$
\begin{equation*}
u_{1}(t)=U(t, s) u_{1}(s)+\int_{s}^{t} U(t, r) h(r) d r \tag{5.9}
\end{equation*}
$$

By replacing $u_{1}(s)$ by $\left(I-L_{\lambda, s} L(s)\right) x$, we obtain

$$
\begin{equation*}
u_{1}(t)=U(t, s)\left(I-L_{\lambda, s} L(s)\right) x+\int_{s}^{t} U(t, r) h(r) d r \tag{5.10}
\end{equation*}
$$

it follows that

$$
\begin{aligned}
u(t)= & u(t, s)\left(I-L_{\lambda, s} L(s)\right) x+g(t, u(t)) \\
& +\int_{s}^{t} u(t, r)\left[\lambda g(r, u(r))-(g(r, u(r)))^{\prime}+f(r)\right] d r
\end{aligned}
$$

which completes the proof.

References

[1] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in mathematics,Springer-verlag, 194(2000).
[2] M. Filali and M. Moussi, Non-autonomous Inhomogeneous Boundary Cauchy Problems and Retarded Equations. Kyungpook Math. J. 44(2004), 125-136.
[3] G. Greiner, Perturbing the boundary conditions of a generator, Houston J. math., 13(1987), 213-229.
[4] T. Kato, Linear evolution equations, of hyperbolic type, J. Fac. Sci. Tokyo, 17(1970), 241-258.
[5] H. Kellerman, Linear evolution equations with time-dependent domain, semesterbericht Funktionalanalysis, Tübingen, Wintersemester, (1985-1986).
[6] N. T. Lan, On nonautonomous Functional Differential Equations, J. Math. Anal. App., 239 (1999), 158-174.
[7] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York Springer, 1983.
[8] A. Rhandi, Extrapolation methods to solve nonautonomous retarded differential equations, Studia Math, 126 (1997), 219-233.
[9] N. Tanaka, Quasilinear Evolution Equations with non-densely defined operators, Diff. Int. Equat., 9 (1996), 1067-1106.

Mohammed Filali
Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address: filali@sciences.univ-oujda.ac.ma
Belhadj Karim
Département de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed 1er, Oujda, Maroc

E-mail address, B. Karim: karim@sciences.univ-oujda.ac.ma

[^0]: 2000 Mathematics Subject Classification. 34G10, 47D06.
 Key words and phrases. Boundary Cauchy problem; evolution families; solution; well posedness; variation of constants formula.
 (C) 2006 Texas State University - San Marcos.

 Published ??, 2006.

