2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 227-229.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

# UNIFORMLY ERGODIC THEOREM FOR COMMUTING MULTIOPERATORS 

SAMIR LAHRECH, ABDERRAHIM MBARKI, ABDELMALEK OUAHAB, SAID RAIS


#### Abstract

In this paper, we established some uniformly Ergodic theorems by using multioperators satisfying the E-k condition introduce in 3. One consequence, is that if $I-T$ is quasi-Fredholm and satisfies E-k condition then $T$ is uniformly ergodic. Also we give some conditions for uniform ergodicity of a commuting multioperators satisfies condition E-k. These results are of interest in view of analogous results for unvalued operators (see, for example 2]) also in view of the recent developments in the ergodic theory and its applications.


## 1. Introduction and main results

Throughout this paper, $X$ is a complex Banach space, and $L(X)$ is the algebra of linear continuous operators acting in $X$. If there is an integer $n$ for which $T^{n+1} X=T^{n} X$, then we say that $T$ has finite descent and the smallest integer $d(T)$ for which equality occurs is called the descent of $T$. If there is exists an integer $m$ for which $\operatorname{ker} T^{m+1}=\operatorname{ker} T^{m}$, then $T$ is said to have finite ascent and the smallest integer $a(T)$ for this equality occurs is called ascent of $T$. If both $a(T)$ and $d(T)$ are finite, then they are equal [1, 38.3]. We say that $T$ is chain-finite and that its chain length is this common minimal value. Moreover [1, 38.4], in this case there is a decomposition of the vector space

$$
X=T^{d(T)} X \oplus \operatorname{ker} T^{d(T)}
$$

We now focus on the topological situation: For every $T \in L(X)$ we set

$$
\begin{equation*}
M_{i}(T)=i^{-1}\left(I+T+T^{2}+\cdots+T^{i-1}\right), \quad i=1,2,3, \ldots \tag{1.1}
\end{equation*}
$$

i.e. the averages associated with $T$, where $I=i d_{X}$ is the identity of $X$. If $T=$ $\left(T_{1}, T_{2}, \ldots, T_{n}\right) \in L(X)^{n}$ is commuting multioperator (briefly, c.m.), we also set

$$
\begin{equation*}
M_{v}(T)=M_{v_{1}}\left(T_{1}\right) M_{v_{2}}\left(T_{2}\right) \ldots M_{v_{n}}\left(T_{n}\right), \quad v \in Z_{+}^{n}, v \geq e \tag{1.2}
\end{equation*}
$$

where $Z_{+}^{n}$ is the family of multi-indices of length $n$ (i.e. n-tuples of nonnegative integers) and $e:=(1,1, \ldots, 1) \in Z_{+}^{n}$. In other words, 1.2 defines the averages associated with $T$.

2000 Mathematics Subject Classification. 47A35, 47A13.
Key words and phrases. Average; E-k condition; finite descent; uniform ergodicity.
(C) 2006 Texas State University - San Marcos.

Published September 20, 2006.

Definition 1.1. A commuting multioperator $T \in L(X)^{n}$ is said to be uniformly ergodic if the limit

$$
\begin{equation*}
\lim _{v} M_{v}(T) \tag{1.3}
\end{equation*}
$$

exists in the uniform topology of $L(X)$.
Remark 1.2. (a) If $n=1$, then (1.3) is automatically fulfilled, and therefore the above definition extends the usual concept of uniformly ergodic operator (see, for example [2]).
(b) If $T=\left(I, \ldots, T_{j}, I, \ldots, I\right) \in L(X)^{n}$, then $T$ is uniformly ergodic if and only the $\lim _{v_{j}} M_{v_{j}}\left(T_{j}\right)$ exists in the uniform topology of $L(X)$.

Definition 1.3 (3). Let $k=\left(k_{1}, \ldots k_{n}\right) \in Z_{+}^{n}$ and $T \in L(X)^{n}$ be a c.m. We say that $T$ satisfies condition E-k if $\lim _{v}\left(I-T_{j}\right)^{k_{j}} M_{v}(T)=0$ for each $j \in\{1, \ldots, n\}$.

It is clear that condition E-k implies condition E-n for any $n \geq k$ Thus we see that the example $T=\left(T_{1}, I, \ldots, I\right) \in Z_{+}^{n}$ with

$$
T_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

This shows that E-2e is strictly weaker than E-e.
Theorem 1.4. Let $k \in Z_{+}^{n}$. Suppose $T \in L(X)^{n}$ satisfies condition $E-k$ and $\sum_{j=1}^{n}\left(I-T_{j}\right)^{k_{j}} X, \sum_{j=1}^{n}\left(I^{*}-T_{j}^{*}\right)^{k_{j}} X^{*}$ are closed in $X$ and $X^{*}$ respectively. If $\left[\sum_{j=1}^{n}\left(I-T_{j}\right)^{k_{j}} X\right] \cap\left[\cap_{j=1}^{n} \operatorname{ker}\left(I-T_{j}\right)^{k_{j}}\right]=\{0\}$. Then $T$ is uniformly ergodic
Proof. Arguing exactly as in [5, Theorem 1], with $\delta_{T}$ and $\gamma_{T}$ given by

$$
\oplus_{j=1}^{n} x_{j} \rightarrow \delta_{T}\left(\oplus_{j=1}^{n} x_{j}\right)=\sum_{j=1}^{n}\left(I-T_{j}\right)^{k_{j}} x_{j} \text { and } x \rightarrow \gamma_{T}(x)=\oplus_{j=1}^{n}\left(I-T_{j}\right)^{k_{j}} x
$$

Theorem 1.5. Let $T \in L(X)$ satisfy condition $E-r$, and one of the following nine conditions:
(a) $I-T$ has chain length at most $r$
(b) 1 is a pole of the resolvent of order at most $r$
(c) $I-T$ is quasi-Fredholm operator
(d) $(I-T)^{r} X$ is closed and $\operatorname{ker}(I-T)^{r}$ has a closed $T$-invariant complement
(e) $(I-T)^{r} X \bigoplus \operatorname{ker}(I-T)^{r}=(I-T)^{r} X+\operatorname{ker}(I-T)^{r}$
(f) $(I-T)^{m} X$ is closed for all $m \geq r$
(g) $(I-T)^{r} X$ is closed
(h) $(I-T)^{m} X$ is closed for some $m \geq r$
(i) $I-T$ has finite descent.

Then $T$ is uniformly ergodic.
Proof. Firstly, from [3, Theorem 6], the above statements (a)-(i) are equivalent. Then, take $G=(T, I, \ldots I) \in L(X)^{n}$ and $k=(r, 1, \ldots, 1) \in Z_{+}^{n}$; Therefore, we have $\sum_{j=1}^{n}\left(I-G_{j}\right)^{k_{j}} X=(I-T)^{r} X$ is closed, it follows that $\sum_{j=1}^{n}\left(I^{*}-G_{j}^{*}\right)^{k_{j}} X^{*}=$ $\left(I^{*}-T^{*}\right)^{r} X^{*}$ is closed, which implies since $(I-T)^{r} X \cap \operatorname{ker}(I-T)^{r}=\{0\}$, that $G$ is uniformly ergodic in $L(X)^{n}$. From Theorem 1.4 this means that $T$ is uniformly ergodic in $L(X)$

Theorem 1.6. Let $k \in Z_{+}^{n}$. If $T \in L(X)^{n}$ A c.m. satisfies condition $E-k$, such that $\sum_{j=1}^{n}\left(I-T_{j}\right)$ has chain length at most 1 and $\operatorname{ker}\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)=\cap_{j=1}^{n} \operatorname{ker}\left(I-T_{j}\right)$. Then $T$ is uniformly.

Proof. There are two cases
Case 1: $d\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)=0$. Then $\sum_{j=1}^{n}\left(I-T_{j}\right)$ is bijective then $X=\sum_{j=1}^{n}(I-$ $\left.T_{j}\right) X \oplus \operatorname{ker}\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)$, which implies, since $\cap_{j=1}^{n} \operatorname{ker}\left(I-T_{j}\right) \subset \operatorname{ker}\left(\sum_{j=1}^{n}(I-\right.$ $\left.\left.T_{j}\right)\right)=\{0\}$ that $X=\sum_{j=1}^{n}\left(I-T_{j}\right) X \bigoplus \cap_{j=1}^{n} \operatorname{ker}\left(I-T_{j}\right)$, from the [3, Theorem 10] we obtain $T$ is uniformly ergodic.
Case 2: $d\left(\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)\right)=1$. Then $\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right) X=\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)^{2} X$, so $\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right) X=\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)^{n r}\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right) X$, with $r=\max _{1 \leq j \leq n} k_{j}$. so $\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right)^{n r}$ is a bijection of $\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right) X$ onto itself. Which implies, since $T$ satisfies condition E-k, that $M_{v}(T) \mid\left(\sum_{j=1}^{n}\left(I-T_{j}\right)\right) X \rightarrow 0$ and since $M_{v}(T) \mid \cap_{j=1}^{n}$ $\operatorname{ker}\left(I-T_{j}\right)=I \mid \cap_{j=1}^{n} \operatorname{ker}\left(I-T_{j}\right)$, it follows that $T$ is uniformly ergodic.

## References

[1] Heuser H. G., Functional analysis, Wiley, Chichester, 1982.
[2] Krengel U., Ergodic theorems, De Gruyter, Berlin and New York, 1985.
[3] Lahrech S., A. Azizi, A. Mbarki, A. Ouahab; Uniformly Ergodic theorem and finite chain length for multioperators International Journal of Pure and Applied Mathematics, 22, No. 2 (2005), 167-172.
[4] Laursen K. B. and Mbekhta M.; Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448.
[5] Mbekhta M. and Vasilescu F.-H., Uniformly ergodic multioperators, Trans. Amer. Math. Soc. 347, (1995), 1847-1854.

Samir Lahrech
Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco
E-mail address: lahrech@sciences.univ-oujda.ac.ma
Abderrahim Mbarki
Current address: National school of Applied Sciences, P.O. Box 669, Oujda University, Morocco

E-mail address: ambarki@ensa.univ-oujda.ac.ma
Abdelmalek Ouahab
Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco
E-mail address: ouahab@sciences.univ-oujda.ac.ma
Said Rais
Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco
E-mail address: said_rais@yahoo.fr

