2005-Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, 2006, pp. 227–229. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

UNIFORMLY ERGODIC THEOREM FOR COMMUTING MULTIOPERATORS

SAMIR LAHRECH, ABDERRAHIM MBARKI, ABDELMALEK OUAHAB, SAID RAIS

ABSTRACT. In this paper, we established some uniformly Ergodic theorems by using multioperators satisfying the E-k condition introduce in [3]. One consequence, is that if I-T is quasi-Fredholm and satisfies E-k condition then T is uniformly ergodic. Also we give some conditions for uniform ergodicity of a commuting multioperators satisfies condition E-k. These results are of interest in view of analogous results for unvalued operators (see, for example [2]) also in view of the recent developments in the ergodic theory and its applications.

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, X is a complex Banach space, and L(X) is the algebra of linear continuous operators acting in X. If there is an integer n for which $T^{n+1}X = T^nX$, then we say that T has finite descent and the smallest integer d(T)for which equality occurs is called the descent of T. If there is exists an integer m for which $kerT^{m+1} = kerT^m$, then T is said to have finite ascent and the smallest integer a(T) for this equality occurs is called ascent of T. If both a(T) and d(T)are finite, then they are equal [1, 38.3]. We say that T is chain-finite and that its chain length is this common minimal value. Moreover [1, 38.4], in this case there is a decomposition of the vector space

$$X = T^{d(T)}X \oplus \ker T^{d(T)}.$$

We now focus on the topological situation: For every $T \in L(X)$ we set

$$M_i(T) = i^{-1}(I + T + T^2 + \dots + T^{i-1}), \quad i = 1, 2, 3, \dots,$$
(1.1)

i.e. the averages associated with T, where $I = id_X$ is the identity of X. If $T = (T_1, T_2, \ldots, T_n) \in L(X)^n$ is commuting multioperator (briefly, c.m.), we also set

$$M_{v}(T) = M_{v_{1}}(T_{1})M_{v_{2}}(T_{2})\dots M_{v_{n}}(T_{n}), \quad v \in \mathbb{Z}^{n}_{+}, v \ge e,$$
(1.2)

where Z_{+}^{n} is the family of multi-indices of length n (i.e. n-tuples of nonnegative integers) and $e := (1, 1, ..., 1) \in Z_{+}^{n}$. In other words, (1.2) defines the averages associated with T.

²⁰⁰⁰ Mathematics Subject Classification. 47A35, 47A13.

Key words and phrases. Average; E-k condition; finite descent; uniform ergodicity.

 $[\]odot 2006$ Texas State University - San Marcos.

Published September 20, 2006.

Definition 1.1. A commuting multioperator $T \in L(X)^n$ is said to be uniformly ergodic if the limit

$$\lim_{v} M_v(T) \tag{1.3}$$

exists in the uniform topology of L(X).

Remark 1.2. (a) If n = 1, then (1.3) is automatically fulfilled, and therefore the above definition extends the usual concept of uniformly ergodic operator (see, for example [2]).

(b) If $T = (I, ..., T_j, I, ..., I) \in L(X)^n$, then T is uniformly ergodic if and only the $\lim_{v_j} M_{v_j}(T_j)$ exists in the uniform topology of L(X).

Definition 1.3 ([3]). Let $k = (k_1, \ldots, k_n) \in Z^n_+$ and $T \in L(X)^n$ be a c.m. We say that T satisfies condition E-k if $\lim_{v \to \infty} (I - T_j)^{k_j} M_v(T) = 0$ for each $j \in \{1, \ldots, n\}$.

It is clear that condition E-k implies condition E-n for any $n \ge k$ Thus we see that the example $T = (T_1, I, \dots, I) \in \mathbb{Z}_+^n$ with

$$T_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

This shows that E-2e is strictly weaker than E-e.

Theorem 1.4. Let $k \in \mathbb{Z}_{+}^{n}$. Suppose $T \in L(X)^{n}$ satisfies condition E-k and $\sum_{j=1}^{n} (I - T_{j})^{k_{j}} X$, $\sum_{j=1}^{n} (I^{*} - T_{j}^{*})^{k_{j}} X^{*}$ are closed in X and X^{*} respectively. If $\left[\sum_{j=1}^{n} (I - T_{j})^{k_{j}} X\right] \cap \left[\bigcap_{j=1}^{n} \ker(I - T_{j})^{k_{j}}\right] = \{0\}$. Then T is uniformly ergodic

Proof. Arguing exactly as in [5, Theorem 1], with δ_T and γ_T given by

$$\bigoplus_{j=1}^n x_j \to \delta_T(\bigoplus_{j=1}^n x_j) = \sum_{j=1}^n (I - T_j)^{k_j} x_j \text{ and } x \to \gamma_T(x) = \bigoplus_{j=1}^n (I - T_j)^{k_j} x.$$

Theorem 1.5. Let $T \in L(X)$ satisfy condition *E*-*r*, and one of the following nine conditions:

- (a) I T has chain length at most r
- (b) 1 is a pole of the resolvent of order at most r
- (c) I T is quasi-Fredholm operator
- (d) $(I-T)^r X$ is closed and ker $(I-T)^r$ has a closed T-invariant complement
- (e) $(I-T)^r X \bigoplus \ker(I-T)^r = (I-T)^r X + \ker(I-T)^r$
- (f) $(I-T)^m X$ is closed for all $m \ge r$
- (g) $(I-T)^r X$ is closed
- (h) $(I-T)^m X$ is closed for some $m \ge r$
- (i) I T has finite descent.

Then T is uniformly ergodic.

Proof. Firstly, from [3, Theorem 6], the above statements (a)–(i) are equivalent. Then, take $G = (T, I, ..., I) \in L(X)^n$ and $k = (r, 1, ..., 1) \in Z_+^n$; Therefore, we have $\sum_{j=1}^n (I - G_j)^{k_j} X = (I - T)^r X$ is closed, it follows that $\sum_{j=1}^n (I^* - G_j^*)^{k_j} X^* = (I^* - T^*)^r X^*$ is closed, which implies since $(I - T)^r X \cap \ker(I - T)^r = \{0\}$, that G is uniformly ergodic in $L(X)^n$. From Theorem 1.4 this means that T is uniformly ergodic in L(X) EJDE/CONF/14

Theorem 1.6. Let $k \in \mathbb{Z}_+^n$. If $T \in L(X)^n$ A c.m. satisfies condition E-k, such that $\sum_{j=1}^{n} (I-T_j) \text{ has chain length at most } 1 \text{ and } \ker(\sum_{j=1}^{n} (I-T_j)) = \bigcap_{j=1}^{n} \ker(I-T_j).$ Then T is uniformly.

Proof. There are two cases **Case 1:** $d\left(\sum_{j=1}^{n}(I-T_{j})\right) = 0$. Then $\sum_{j=1}^{n}(I-T_{j})$ is bijective then $X = \sum_{j=1}^{n}(I-T_{j})X \oplus \ker(\sum_{j=1}^{n}(I-T_{j}))$, which implies, since $\bigcap_{j=1}^{n}\ker(I-T_{j}) \subset \ker(\sum_{j=1}^{n}(I-T_{j})) = \{0\}$ that $X = \sum_{j=1}^{n}(I-T_{j})X \bigoplus \bigcap_{j=1}^{n}\ker(I-T_{j})$, from the [3, Theorem 10] we obtain T is uniformly ergodic.

Case 2: $d((\sum_{j=1}^{n}(I-T_j))) = 1$. Then $(\sum_{j=1}^{n}(I-T_j))X = (\sum_{j=1}^{n}(I-T_j))^2 X$, so $(\sum_{j=1}^{n}(I-T_j))X = (\sum_{j=1}^{n}(I-T_j))^{nr}(\sum_{j=1}^{n}(I-T_j))X$, with $r = \max_{1 \le j \le n} k_j$. so $(\sum_{j=1}^{n}(I-T_j))^{nr}$ is a bijection of $(\sum_{j=1}^{n}(I-T_j))X$ onto itself. Which implies, since T satisfies condition E-k, that $M_v(T)|(\sum_{j=1}^{n}(I-T_j))X \to 0$ and since $M_v(T)|\cap_{j=1}^{n} \ker(I-T_j) = I|\cap_{j=1}^{n} \ker(I-T_j)$, it follows that T is uniformly ergodic.

References

- [1] Heuser H. G., Functional analysis, Wiley, Chichester, 1982.
- [2] Krengel U., Ergodic theorems, De Gruyter, Berlin and New York, 1985.
- [3] Lahrech S., A. Azizi, A. Mbarki, A. Ouahab; Uniformly Ergodic theorem and finite chain length for multioperators International Journal of Pure and Applied Mathematics, 22, No. 2 (2005), 167-172.
- [4] Laursen K. B. and Mbekhta M.; Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448.
- Mbekhta M. and Vasilescu F.-H., Uniformly ergodic multioperators, Trans. Amer. Math. Soc. [5]**347**, (1995), 1847-1854.

SAMIR LAHRECH

Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco E-mail address: lahrech@sciences.univ-oujda.ac.ma

Abderrahim Mbarki

CURRENT ADDRESS: NATIONAL SCHOOL OF APPLIED SCIENCES, P.O. BOX 669, OUJDA UNIVERSITY, Morocco

E-mail address: ambarki@ensa.univ-oujda.ac.ma

Abdelmalek Ouahab

Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco E-mail address: ouahab@sciences.univ-oujda.ac.ma

SAID RAIS

Département de Mathématiques, Université Oujda, 60000 Oujda, Morocco E-mail address: said_rais@yahoo.fr