2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 231-240.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE AND UNIQUENESS OF A POSITIVE SOLUTION FOR A NON HOMOGENEOUS PROBLEM OF FOURTH ORDER WITH WEIGHTS

MOHAMED TALBI, NAJIB TSOULI

Abstract

In this work we study the existence of a positive solutions to the non homogeneous equation $$
\Delta\left(|\Delta u|^{p-2} \Delta u\right)=m|u|^{q-2} u
$$

with Navier boundary conditions, where $1<p, q<p_{2}^{*}$ and $m \in L^{\infty}(\Omega) \backslash\{0\}$, $m \geq 0$. In the case $p>q$ and $m \in \mathcal{C}(\bar{\Omega})$, we prove the uniqueness of this solution.

1. Introduction

We consider the following problem with Navier boundary conditions

$$
\begin{gather*}
\Delta_{p}^{2} u=m|u|^{q-2} u \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.1}\\
u=\Delta u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Here Ω is a smooth domain in $\mathbb{R}^{N}(N \geq 1), \Delta_{p}^{2}$ is the p-biharmonic operator defined by $\Delta_{p}^{2} u=\Delta\left(|\Delta u|^{p-2} \Delta u\right), m \in L^{\infty}(\Omega) \backslash\{0\}, m \geq 0$ and $\left.p, q \in\right] 1, p_{2}^{*}[, p \neq q$ where

$$
p_{2}^{*}= \begin{cases}\frac{N p}{N-2 p} & \text { if } p<N / 2 \\ +\infty & \text { if } p \geq N / 2\end{cases}
$$

In [9], we proved that the problem (1.1), without the second condition, has an infinity of solutions in the case $p>q$ by using the fundamental multiplicity theorem, but for $p<q$ we have applied the mountain-pass lemma to prove the existence of nontrivial solution. Finally we have studied the regularity of these solutions. In this work we are interested by the existence of a positive solution then in the case $p>q$ we prove the uniqueness of this solution. Notice that our approach does not use the fundamental multiplicity theorem and the mountain-pass lemma. We can refer the reader to [6] for the existence of a positive solution and to [8] for the uniqueness.

[^0]Similar results as ours, but with p-Laplacian operator, were studied by authors [8, 2].

2. Preliminaries

In this paper, we consider the transformation of Poisson problem used by Drábek and Ôtani [3]. We recall some properties of the Dirichlet problem for the Poisson equation

$$
\begin{gather*}
-\Delta u=f \quad \text { in } \Omega \\
u=0 \tag{2.1}
\end{gather*} \text { on } \partial \Omega .
$$

It is well known that (2.1) is uniquely solvable in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ for all $f \in$ $L^{p}(\Omega)$ and for any $\left.p \in\right] 1,+\infty[$.

We denote by: $X=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$, $\|u\|_{p}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p}$ the norm in $L^{p}(\Omega)$, $\|u\|_{2, p}=\left(\|\Delta u\|_{p}^{p}+\|u\|_{p}^{p}\right)^{1 / p}$ the norm in X, $\|u\|_{\infty}$ the norm in $L^{\infty}(\Omega)$,
and $\langle\cdot, \cdot\rangle$ is the duality bracket between $L^{p}(\Omega)$ and $L^{p^{\prime}}(\Omega)$, where $p^{\prime}=p /(p-1)$. Denote by Λ the inverse operator of $-\Delta: X \rightarrow L^{p}(\Omega)$. The following lemma gives us some properties of the operator Λ (c.f. [3, 7]).

Lemma 2.1. (i) (Continuity): There exists a constant $c_{p}>0$ such that

$$
\|\Lambda f\|_{2, p} \leq c_{p}\|f\|_{p}
$$

holds for all $p \in] 1,+\infty\left[\right.$ and $f \in L^{p}(\Omega)$.
(ii) (Continuity) Given $k \in \mathbb{N}^{*}$, there exists a constant $c_{p, k}>0$ such that

$$
\|\Lambda f\|_{W^{k+2, p}} \leq c_{p, k}\|f\|_{W^{k, p}}
$$

holds for all $p \in] 1,+\infty\left[\right.$ and $f \in W^{k, p}(\Omega)$.
(iii) (Symmetry) The equality

$$
\int_{\Omega} \Lambda u \cdot v d x=\int_{\Omega} u \cdot \Lambda v d x
$$

holds for all $u \in L^{p}(\Omega)$ and $v \in L^{p^{\prime}}(\Omega)$ with $\left.p \in\right] 1,+\infty[$.
(iv) (Regularity) Given $f \in L^{\infty}(\Omega)$, we have $\Lambda f \in C^{1, \alpha}(\bar{\Omega})$ for all $\left.\alpha \in\right] 0,1[$; moreover, there exists $c_{\alpha}>0$ such that

$$
\|\Lambda f\|_{C^{1, \alpha}} \leq c_{\alpha}\|f\|_{\infty}
$$

(v) (Regularity and Hopf-type maximum principle) Let $f \in C(\bar{\Omega})$ and $f \geq 0$ then $w=\Lambda f \in C^{1, \alpha}(\bar{\Omega})$, for all $\left.\alpha \in\right] 0,1\left[\right.$ and w satisfies: $w>0$ in $\Omega, \frac{\partial w}{\partial n}<$ 0 on $\partial \Omega$.
(vi) (Order preserving property) Given $f, g \in L^{p}(\Omega)$ if $f \leq g$ in Ω, then $\Lambda f<$ Λg in Ω.

Note that for all $u \in X$ and all $v \in L^{p}(\Omega)$, we have $v=-\Delta u$ if and only if $u=\Lambda v$.

Let us denote N_{p} the Nemytskii operator defined by

$$
N_{p}(v)(x)= \begin{cases}|v(x)|^{p-2} v(x) & \text { if } v(x) \neq 0 \\ 0 & \text { if } v(x)=0\end{cases}
$$

Then for all $v \in L^{p}(\Omega)$ and all $w \in L^{p^{\prime}}(\Omega)$, we have $N_{p}(v)=w$ if and only if $v=N_{p^{\prime}}(w)$.

For $v=-\Delta u$ which means that $u=\Lambda v$. As $X \hookrightarrow L^{q}(\Omega)$, then $\Lambda v \in L^{q}(\Omega) \forall v \in$ $L^{p}(\Omega)$. We define the functionals $F, G: L^{p}(\Omega) \rightarrow \mathbb{R}$ as follows:

$$
F(v)=\frac{1}{p}\|v\|_{p}^{p} \quad \text { and } \quad G(v)=\frac{1}{q} \int_{\Omega} m|\Lambda v|^{q} d x
$$

Then it is clear that F and G are well defined on $L^{p}(\Omega)$, and are of class \mathcal{C}^{1} on $L^{p}(\Omega)$ and for all $v \in L^{p}(\Omega)$ we have $F^{\prime}(v)=N_{p}(v)$ and $G^{\prime}(v)=\Lambda\left(m N_{q}(\Lambda v)\right)$ in $L^{p^{\prime}}(\Omega)$.

The operator Λ enables us to transform problem 1.1 to another problem which we shall study in the space $L^{p}(\Omega)$.

Definition 1. We say that $u \in X \backslash\{0\}$ is a solution of problem 1.1), if $v=-\Delta u$ is a solution of the problem: Find $v \in L^{p}(\Omega) \backslash\{0\}, v>0$, such that

$$
\begin{equation*}
N_{p}(v)=\Lambda\left(m N_{q}(\Lambda v)\right) \quad \text { in } L^{p^{\prime}}(\Omega) . \tag{2.2}
\end{equation*}
$$

3. Existence of a positive solution

For solutions of 2.2 we understand critical points of the associated EulerLagrange functional $\bar{E} \in \mathcal{C}^{1}\left(L^{p}(\Omega)\right)$, which are given by

$$
E(v)=F(v)-G(v) .
$$

As in [4, 10], we introduce the modified Euler-Lagrange functional defined on $\mathbb{R} \times$ $L^{p}(\Omega)$ by

$$
A(t, v)=E(t v)
$$

If v is an arbitrary element of $L^{p}(\Omega), \partial_{t} A(., v)$ (resp. $\partial_{t t} A(., v)$) are the first (resp. second) derivative of the real valued function: $t \mapsto A(t, v)$. Since the functional A is even in t and that we are interested by the positive solutions, we limit our study for $t>0$.

Theorem 3.1. Problem 1.1 has a positive solution.
To prove theorem 3.1. we need the following preliminary results.
Case $p>q$: Let v be an arbitrary element of $L^{p}(\Omega) \backslash\{0\}$. It is clair that the real valued function $t \mapsto A(t, v)$ is decreasing on $] 0, t(v)[$, increasing on $] t(v),+\infty[$ and attains its unique minimum for $t=t(v)$, where

$$
\begin{equation*}
t(v)=\left(\frac{q G(v)}{p F(v)}\right)^{\frac{1}{p-q}} . \tag{3.1}
\end{equation*}
$$

On the other hand, a direct computation gives

$$
A(t(v), v)=\left(\frac{1}{p}-\frac{1}{q}\right) \frac{(q G(v))^{\frac{p}{p-q}}}{(p F(v))^{\frac{q}{p-q}}}<0 .
$$

Furthermore we have proved in [9] that E is bounded bellow and coercive. We deduce that A is also bounded bellow and if

$$
\begin{equation*}
\alpha=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} A(t(v), v), \tag{3.2}
\end{equation*}
$$

we get $-\infty<\alpha<0$. Let $\left(v_{n}\right) \subset L^{p}(\Omega) \backslash\{0\}$ be a minimizing sequence of (3.2). Put $V_{n}=t\left(v_{n}\right) v_{n}$. Since E is coercive the sequence $\left(V_{n}\right)$ is bounded.

Lemma 3.2. The sequence $\left(V_{n}\right)$ satisfies

$$
\liminf _{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}>0
$$

Proof. Suppose that there is a subsequence of $\left(V_{n}\right)$, still denoted by $\left(V_{n}\right)$ such that $\lim _{n \rightarrow+\infty}\left\|V_{n}\right\|=0$. It follows that $\lim _{n \rightarrow+\infty} E\left(V_{n}\right)=0$; i.e. $\alpha=0$, which is impossible since $A\left(t\left(v_{n}\right), v_{n}\right)<0$.

Lemma 3.3. If \mathbb{S} is the unit sphere of $L^{p}(\Omega)$, we have

$$
\alpha=\inf _{v \in \mathbb{S}, v \geq 0} A(t(v), v)
$$

Proof. For every $v \in L^{p}(\Omega)$, we have $|\Lambda v| \leq \Lambda|v|$ and since $p>q$, we get

$$
A(t(v), v) \geq\left(\frac{1}{p}-\frac{1}{q}\right) \frac{(q G(|v|))^{\frac{p}{p-q}}}{(p F(|v|))^{\frac{q}{p-q}}}=A(t(|v|),|v|)
$$

On the other hand the relation (3.1) implies that $\forall r>0$ and $\forall v \in L^{p}(\Omega) \backslash\{0\}$, $t(v)=\frac{1}{r} t\left(\frac{v}{r}\right)$. We deduce that

$$
\begin{equation*}
\alpha=\inf _{v \in \mathbb{S}, v \geq 0} A(t(v), v) \tag{3.3}
\end{equation*}
$$

where \mathbb{S} is the unit sphere of $L^{p}(\Omega)$.
Note that the minimizing sequences considered up to here are in \mathbb{S} and are nonnegative.

Lemma 3.4. Let $\left(v_{n}\right) \subset \mathbb{S}$ be a minimizing sequence of (3.3), then $\left(V_{n}\right):=$ $\left(t\left(v_{n}\right) v_{n}\right)$ is Palais-Smale sequence for the functional E.
Proof. We have $E\left(V_{n}\right) \rightarrow \alpha$. We show that

$$
E^{\prime}\left(V_{n}\right) \rightarrow 0 \quad \text { in } L^{p^{\prime}}(\Omega)
$$

Note that for every $v \in L^{p}(\Omega) \backslash\{0\}$, we have $\partial_{t} A(t(v), v)=0$ and $\partial_{t t} A(t(v), v) \neq 0$. The implicit function theorem implies that $v \rightarrow t(v)$ is \mathcal{C}^{1} since A is. Let us introduce the \mathcal{C}^{1} functional B defined on \mathbb{S} by

$$
B(v)=A(t(v), v)=E(t(v) v)
$$

Then

$$
\alpha=\inf _{v \in \mathbb{S}, v \geq 0} B(v) \quad \text { and } \quad \lim _{n \rightarrow+\infty} B\left(v_{n}\right)=\alpha
$$

Using the Ekeland variational principle on the complete manifold ($\mathbb{S},\|\cdot\|_{p}$) to the functional B, we conclude that

$$
\left|B^{\prime}(v)(\varphi)\right| \leq \frac{1}{n}\|\varphi\|_{p}, \quad \text { for every } \varphi \in T_{u_{n}} \mathbb{S}
$$

where $T_{v_{n}} \mathbb{S}$ is the tangent space to \mathbb{S} at the point v_{n}. Moreover, for every $\varphi \in T_{v_{n}} \mathbb{S}$, one has

$$
\begin{aligned}
B^{\prime}\left(v_{n}\right)(\varphi) & =\partial_{t} A\left(t\left(v_{n}\right), v_{n}\right) t^{\prime}\left(v_{n}\right)(\varphi)+\partial_{v} A(t(v), v)(\varphi) \\
& =\partial_{v} A(t(v), v)(\varphi)
\end{aligned}
$$

since $\partial_{t} A(t(v), v)=0$, where $t^{\prime}(v)$ denotes the derivative of $v \mapsto t(v)$ at the point v. Furthermore, let $P: L^{p}(\Omega) \backslash\{0\} \rightarrow \mathbb{R} \times \mathbb{S}$,

$$
v \mapsto\left(P_{1}(v), P_{2}(v)\right)=\left(\|v\|_{p}, \frac{v}{\|v\|_{p}}\right)
$$

Applying Hölder's inequality, for every $(v, \varphi) \in L^{p}(\Omega) \backslash\{0\} \times L^{p}(\Omega)$ we have

$$
\left\|P_{2}^{\prime}(v)(\varphi)\right\|_{p} \leq 2 \frac{\|\varphi\|_{p}}{\|v\|_{p}}
$$

From lemma 3.2 and by the fact that $\left\|V_{n}\right\|_{p}=t\left(v_{n}\right)$, there is a positive constant C such that

$$
t\left(v_{n}\right) \geq C, \quad \forall n \in \mathbb{N}
$$

Then for every $\varphi \in L^{p}(\Omega)$ we get

$$
\begin{aligned}
\left|E^{\prime}\left(V_{n}\right)(\varphi)\right| & =\left|\partial_{t} A\left(P_{1}\left(V_{n}\right), P_{2}\left(V_{n}\right)\right) P_{1}^{\prime}\left(V_{n}\right)(\varphi)+\partial_{v} A\left(P_{1}\left(V_{n}\right), P_{2}\left(V_{n}\right)\right) P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right| \\
& =\left|\partial_{v} A\left(t\left(v_{n}\right), v_{n}\right) P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right| \\
& =\left|B^{\prime}\left(v_{n}\right) P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right| \\
& \leq \frac{1}{n}\left\|P_{2}^{\prime}\left(V_{n}\right)(\varphi)\right\|_{p} \\
& \leq \frac{2}{n} \frac{\|\varphi\|_{p}}{C}
\end{aligned}
$$

We easily conclude that $\lim _{n \rightarrow+\infty} E^{\prime}\left(V_{n}\right)=0$ in $L^{p^{\prime}}(\Omega)$.
Case $p<q$: If v is an arbitrary element of $L^{p}(\Omega) \backslash\{0\}$, the real valued function $t \mapsto A(t, v)$ is increasing on $] 0, t(v)[$, decreasing on $] t(v),+\infty[$ and attains its unique maximum for $t=t(v)$, where

$$
\begin{equation*}
t(v)=\left(\frac{p F(v)}{q G(v)}\right)^{\frac{1}{q-p}} \tag{3.4}
\end{equation*}
$$

Lemma 3.5. If $p<q$, there exists a positive constant $c(p, q, \Omega, m)$ which depends uniquely of p, q, Ω and m such that $A(t(v), v) \geq c(p, q, \Omega, m)$.
Proof. A direct computation gives

$$
A(t(v), v)=\left(\frac{1}{p}-\frac{1}{q}\right) \frac{(p F(v))^{\frac{q}{q-p}}}{(q G(v))^{\frac{p}{q-p}}}
$$

Hence

$$
A(t(v), v) \geq\left(\frac{1}{p}-\frac{1}{q}\right) \frac{1}{\|m\|_{\infty}^{\frac{p}{q-p}}}\left(\frac{\|v\|_{p}}{\|\Lambda v\|_{q}}\right)^{\frac{p q}{q-p}}
$$

The assertion (i) of Lemma 2.1 and the fact that $X \hookrightarrow L^{q}(\Omega)$ imply that there exists positive constants c_{q} and c such that

$$
A(t(v), v) \geq\left(\frac{1}{p}-\frac{1}{q}\right) \frac{1}{\left(c_{q} c\right)^{\frac{p q}{q-p}}\|m\|_{\infty}^{\frac{p}{q-p}}}\left(\frac{\|v\|_{p}}{\|v\|_{p}+\|\Lambda v\|_{p}}\right)^{\frac{p q}{q-p}}
$$

Finally the assertion (i) of lemma 2.1 implies that there exits a positive constant c_{p} such that

$$
A(t(v), v) \geq\left(\frac{1}{p}-\frac{1}{q}\right) \frac{1}{\left(c_{q} c_{p} c\right)^{\frac{p q}{q-p}}\|m\|_{\infty}^{\frac{p}{q-p}}}
$$

We take $\left.c_{(} p, q, \Omega, m\right)=\left(\frac{1}{p}-\frac{1}{q}\right) \frac{1}{\left(c_{q} c_{p} c\right)^{\frac{p q}{q-p}}\|m\|_{\infty}^{\frac{p}{q-p}}}$.
Put

$$
\alpha=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} A(t(v), v) .
$$

Then Lemma 3.5implies $\alpha>0$.

Lemma 3.6. If \mathbb{S} is the unit sphere of $L^{p}(\Omega)$, we have

$$
\alpha=\inf _{v \in \mathbb{S}, v \geq 0} A(t(v), v)
$$

Proof. For every $v \in L^{p}(\Omega) \backslash\{0\}$, we have

$$
A(t(v), v)=\left(\frac{1}{p}-\frac{1}{q}\right) \frac{(p F(v))^{\frac{q}{q-p}}}{(q G(v))^{\frac{p}{q-p}}}
$$

Since $|\Lambda v| \leq \Lambda|v|$, we get

$$
A(t(v), v) \geq\left(\frac{1}{p}-\frac{1}{q}\right) \frac{p F(|v|)^{\frac{q}{q-p}}}{q G(|v|)^{\frac{p}{q-p}}}=A(t(|v|),|v|)
$$

On the other hand, the relation 3.4 implies that for every $r>0$ and for every $v \in L^{p}(\Omega) \backslash\{0\}, t(v)=\frac{1}{r} t\left(\frac{v}{r}\right)$. Hence

$$
\begin{equation*}
\alpha=\inf _{v \in \mathbb{S}, v \geq 0} A(t(v), v) \tag{3.5}
\end{equation*}
$$

Let $\left(v_{n}\right)$ be a minimizing sequence of (3.5), as in the case $p>q$, we put

$$
V_{n}=t\left(v_{n}\right) v_{n}
$$

The proof of the following lemmas can be done like in the previous case.
Lemma 3.7. $\lim \inf _{n \rightarrow+\infty}\left\|V_{n}\right\|_{p}>0$.
Lemma 3.8. Let $\left(v_{n}\right) \subset \mathbb{S}$ be a minimizing sequence of (3.3). Then $\left(V_{n}\right):=$ $\left(t\left(v_{n}\right) v_{n}\right)$ is Palais-Smale sequence for the functional E.

Proof of theorem 3.1. In our paper [9] we showed that E verifies the Palais-Smale condition. Then by lemma 3.4 and lemma 3.8 , we deduce that there is a subsequence of $\left(V_{n}\right)$, still noted by $\left(V_{n}\right)$ such that $V_{n} \rightarrow V, V \in L^{p}(\Omega) \backslash\{0\}$ and $V \geq 0$. Moreover, since $E^{\prime}\left(V_{n}\right) \rightarrow 0$, then $E^{\prime}(V)=0$. i.e. V is a nonnegative solution of problem (2.2). Hence

$$
\begin{equation*}
N_{p}(V)=\Lambda\left(m N_{q}(\Lambda V)\right) \tag{3.6}
\end{equation*}
$$

The assertion (vi) of lemma 2.1, the relation (3.6) and the fact that $m \in L^{p}(\Omega) \backslash\{0\}$, $m \geq 0$ enable us to claim that $N_{p}(V)>0$ and $V>0$. Furthermore $U=\Lambda V$ is a positive solution of problem 1.1.

4. Uniqueness of the positive solution

Theorem 4.1. If $m \in \mathcal{C}(\bar{\Omega}), m \geq 0$ and $p>q$, then 1.1) has a unique nonnegative solution.

Problem 2.2 is equivalent to the problem: Find $v \in L^{p}(\Omega) \backslash\{0\}, v>0$ such that

$$
\begin{equation*}
N_{p}(v)=\left\|m^{1 / q} \Lambda v\right\|_{q}^{q-p}\left\|m^{1 / q} \Lambda v\right\|_{q}^{p-q} \Lambda\left(m N_{q}(\Lambda v)\right) \quad \text { in } L^{p^{\prime}}(\Omega) \tag{4.1}
\end{equation*}
$$

To prove that problem 2.2 has a unique nonnegative solution, we will study the principal positive eigenvalue of the eigenvalue problem: Find $v \in L^{p}(\Omega) \backslash\{0\} \times \mathbb{R}_{+}^{*}$ such that

$$
\begin{equation*}
N_{p}(v)=\lambda\left\|m^{1 / q} \Lambda v\right\|_{q}^{p-q} \Lambda\left(m N_{q}(\Lambda v)\right) \quad \text { in } \quad L^{p^{\prime}}(\Omega) \tag{4.2}
\end{equation*}
$$

Consider the functionals f and g defined on $L^{p}(\Omega)$ by

$$
f(v)=\frac{1}{p}\|v\|_{p} \quad \text { and } \quad g(v)=\frac{1}{p}\left(\int_{\Omega} m|\Lambda v|^{q} d x\right)^{\frac{p}{q}}
$$

Hence problem 4.2 is equivalent to the problem: Find $(v, \lambda) \in L^{p}(\Omega) \backslash\{0\} \times \mathbb{R}_{+}^{*}$ such that

$$
\begin{equation*}
f^{\prime}(v)=\lambda g^{\prime}(v) \quad \text { in } L^{p^{\prime}}(\Omega) \tag{4.3}
\end{equation*}
$$

Define

$$
\lambda_{1}=\inf _{v \in M} f(v)
$$

where $M=\left\{v \in L^{p}(\Omega) / g(v)=1\right\}$. We need the preliminary results.
Lemma 4.2. (i) λ_{1} is the first positive eigenvalue of problem 4.2.). Moreover v_{1} is an eigenfunction associated with λ_{1} if and only if

$$
f\left(v_{1}\right)-\lambda_{1} g\left(v_{1}\right)=0=\inf _{v \in L^{p}(\Omega) \backslash\{0\}} f(v)-\lambda_{1} g(v)
$$

(ii) Every eigenfunction associated with λ_{1} is positive or negative.

Proof. (i) The functional f is weakly semi-continuous below and coercive on M. Since g is weakly continuous, then M is weakly closed. Hence there is $v_{1} \in M$ such that $f\left(v_{1}\right)=\lambda_{1}=\lambda_{1} g\left(v_{1}\right)$.

The p-homogeneity of f and g implies that λ_{1} is an eigenvalue of problem 4.2 if and only if

$$
\forall v \in L^{p}(\Omega) \backslash\{0\}, \quad \lambda_{1} \leq \frac{f(v)}{|g(v)|}
$$

if and only if for all $v \in L^{p}(\Omega) \backslash\{0\}$,

$$
f(v)-\lambda_{1} g(v) \geq f(v)-\lambda_{1}|g(v)| \geq 0=f\left(v_{1}\right)-\lambda_{1} g\left(v_{1}\right)
$$

Now we show that λ_{1} is the first positive eigenvalue: Suppose on the contrary that there exits $\lambda \in] 0, \lambda_{1}\left[\right.$ and $v \in L^{p}(\Omega) \backslash\{0\}$ such that $f(v)-\lambda g(v)=0$. Then we get

$$
0=f\left(v_{1}\right)-\lambda_{1} g\left(v_{1}\right) \leq f(v)-\lambda_{1} g(v)<f(v)-\lambda g(v)=0
$$

which is a contradiction.
(ii) Let v be an eigenfunction associated with λ_{1}. From the assertion (i) and by the fact that $|\Lambda v| \leq \Lambda|v|$, we get

$$
0=f(v)-\lambda_{1} g(v) \leq f(|v|)-\lambda_{1} g(|v|) \leq f(v)-\lambda_{1} g(v)=0
$$

Therefore, $|v|$ an is eigenfunction associated with λ_{1}. From the assertion in lemma 2.1(vi) and by the fact that

$$
N_{p}(|v|)=\lambda_{1} \Lambda\left(m N_{q}(|v|)\right.
$$

we deduce that $|v|>0$ in Ω. Hence v is positive or negative in Ω.
Lemma 4.3. If v and w are positive eigenfunctions of 2.2 associated with λ_{1}, then the functions max and min defined in Ω by $\max (x)=\max (v(x), w(x))$ and $\min (x)=\min (u(x), w(x))$ are also solutions of (2.2) associated with λ_{1}.

To prove lemma 4.3 we need the following results.
Lemma 4.4. Let a, b, c and p be reals such that $a \geq 0, b \geq 0$ and $p>1$. If $c \geq \max \{b-a, 0\}$, then

$$
|a+c|^{p}+|b-c|^{p} \geq a^{p}+b^{p} .
$$

For the proof of the above lemma see for example [3].
Lemma 4.5. Let a, b, c and d be in \mathbb{R}_{+}such that $a \geq \max (c, d)$. If $a+b \geq c+d$, then for every $p \in\left[1,+\infty\left[, a^{p}+b^{p} \geq c^{p}+d^{p}\right.\right.$.
Proof. If $b \geq \min (c, d)$ or $a \geq c+d$ it is evident. Else, set $\alpha=a-d$ and $\beta=c-b$. We can suppose that $d \leq c$. Since $a<c+d$ and $a+b \geq c+d$ we deduce that $\alpha<c$ and $\beta \leq \alpha$. Then

$$
a^{p}+b^{p}=|d+\alpha|^{p}+|c-\beta|^{p} \geq|d+\alpha|^{p}+|c-\alpha|^{p}
$$

As $\alpha \geq c-d$, then from lemma 4.4 we conclude that $a^{p}+b^{p} \geq c^{p}+d^{p}$.
Proof of lemma 4.3. If u and v are two positive eigenfunctions associated with λ_{1}, we claim that

$$
\begin{align*}
& \left(\int_{\Omega} m|\Lambda \max (u, v)|^{q} d x\right)^{\frac{p}{q}}+\left(\int_{\Omega} m|\Lambda \min (u, v)|^{q} d x\right)^{\frac{p}{q}} \tag{4.4}\\
& \geq\left(\int_{\Omega} m|\Lambda u|^{q} d x\right)^{\frac{p}{q}}+\left(\int_{\Omega} m|\Lambda v|^{q} d x\right)^{\frac{p}{q}}
\end{align*}
$$

Indeed, we have

$$
\max (u, v)=u+\frac{v-u+|v-u|}{2}
$$

Then the fact that for every $w \in L^{p}(\Omega), \Lambda|w| \geq|\Lambda w|$ enables us to deduce that

$$
\Lambda \max (u, v) \geq \Lambda u+\frac{\Lambda v-\Lambda u+|\Lambda v-\Lambda u|}{2}=\max (\Lambda u, \Lambda v)
$$

Hence

$$
\begin{aligned}
\left.\int_{\Omega} m|\Lambda \max (u, v)|^{q} d x\right) & \geq \int_{\Omega} m|\max (\Lambda u, \Lambda v)|^{q} d x \\
& \geq \max \left(\int_{\Omega} m|\Lambda u|^{q} d x, \int_{\Omega} m|\Lambda v|^{q} d x\right)
\end{aligned}
$$

Therefore, from lemma 4.5 we conclude inequality 4.4. If we put

$$
\phi(w)=f(w)-\lambda_{1} g(w) \quad \forall w \in L^{p}(\Omega)
$$

from (4.4) and from lemma 4.2, we deduce that

$$
0 \leq \phi(\max (u, v))+\phi(\min (u, v) \leq \phi(u)+\phi(v)=0
$$

and $\phi(\max (u, v))=\phi(\min (u, v))=0$. Thus, $\min (u, v)$ and $\max (u, v)$ are eigenfunctions associated with λ_{1}.

Lemma 4.6. Every eigenfunction of problem 2.2 is in $\mathcal{C}(\bar{\Omega})$.
Proof. If v is an eigenfunction of problem (2.2) associated with a positive eigenvalue λ, then

$$
\begin{equation*}
v=\lambda^{1 /(p-1)} N_{p^{\prime}}\left(\left\|m^{1 / q} \Lambda w\right\|_{q}^{p-q} \Lambda\left(m N_{q}(\Lambda v)\right)\right) \tag{4.5}
\end{equation*}
$$

Since $|\Lambda v| \leq \Lambda|v|$, we get

$$
\begin{equation*}
|v| \leq \lambda^{1 /(p-1)}\|m\|_{\infty}^{\frac{1}{p-1}}\left\|m^{1 / q} \Lambda w\right\|_{q}^{\frac{p-q}{p-1}} N_{p^{\prime}}\left(\Lambda N_{q}(|\Lambda v|)\right) \tag{4.6}
\end{equation*}
$$

We showed in our paper [9] that $N_{p^{\prime}}\left(\Lambda N_{q}(|\Lambda v|)\right) \in \mathcal{C}(\bar{\Omega})$. Hence from 4.6 we deduce that $v \in L^{\infty}(\Omega)$ and from (4.5) and the assertion in lemma 2.1(iv) it follows that $v \in \mathcal{C}(\bar{\Omega})$.

Proposition 4.7. The eigenvalue λ_{1} is simple and every positive eigenfunction is associated with λ_{1}.

Proof. Let v and w be two positive eigenfunctions associated with λ_{1}. For $x_{0} \in \Omega$ set $k=v\left(x_{0}\right) / w\left(x_{0}\right)$ and $\max _{k}(x)=\max (v(x), k w(x))$. Lemma 4.3 enables us to claim that $\max _{k}$ is a solution of problem (2.2) associated with λ_{1}. Since

$$
\begin{aligned}
N_{p}(v) & =\lambda_{1} \Lambda\left(m N_{p}(\Lambda v)\right), \\
N_{p}(w) & =\lambda_{1} \Lambda\left(m N_{p}(\Lambda w)\right), \\
N_{p}\left(\max _{k}\right) & =\lambda_{1} \Lambda\left(m N_{p}\left(\Lambda \max _{k}\right)\right),
\end{aligned}
$$

Lemma 4.6 and lemma 2.1 imply that $N_{p}(v), N_{p}(w), N_{p}\left(\max _{k}\right) \in \mathcal{C}^{1, \alpha}(\bar{\Omega})$ and $N_{p}(v), N_{p}(w)$ are positive in Ω. Then

$$
N_{p}(v) / N_{p}(w) \in \mathcal{C}^{1}(\Omega)
$$

For any unit vector e, we have

$$
N_{p}(v)\left(x_{0}+t e\right)-N_{p}(v)\left(x_{0}\right) \leq N_{p}\left(\max _{k}\right)\left(x_{0}+t e\right)-N_{p}\left(\max _{k}\right)\left(x_{0}\right)
$$

and

$$
N_{p}(k w)\left(x_{0}+t e\right)-N_{p}(k w)\left(x_{0}\right) \leq N_{p}\left(\max _{k}\right)\left(x_{0}+t e\right)-N_{p}\left(\max _{k}\right)\left(x_{0}\right) .
$$

Dividing these inequalities by $t>0$ and $t<0$ and letting t tend to $0^{ \pm}$, we get

$$
\nabla N_{p}(v)\left(x_{0}\right)=\nabla N_{p}\left(\max _{k}\right)\left(x_{0}\right)=k^{p-1} \nabla N_{p}(w)\left(x_{0}\right)
$$

Thus

$$
\begin{aligned}
\nabla\left(\frac{N_{p}(v)}{N_{p}(w)}\right)\left(x_{0}\right) & =\nabla\left(\frac{N_{p}(v)}{N_{p}(w)}\right)\left(x_{0}\right) \\
& =\frac{\left(\nabla\left(N_{p}(v)\right)\left(x_{0}\right) N_{p}(w)\left(x_{0}\right)-N_{p}(v)\left(x_{0}\right) \nabla\left(N_{p}(w)\right)\left(x_{0}\right)\right)}{\left(N_{p}(w)\left(x_{0}\right)\right)^{2}}=0 .
\end{aligned}
$$

Hence

$$
N_{p}\left(\frac{v}{w}\right)=\frac{N_{p}(v)}{N_{p}(w)}=\mathrm{const}=k^{p-1} \quad \text { in } \Omega
$$

and

$$
\frac{v}{w}=k \quad \text { in } \Omega .
$$

Now we show that every positive eigenfunction is associated with λ_{1} : Let $\lambda>\lambda_{1}$, suppose that problem (2.2) has a positive eigenfunction w associated with λ and let v be a positive solution of problem $\sqrt{2.2}$ associated with λ_{1}, we have

$$
N_{p}(v)=\lambda_{1} \Lambda\left(m N_{p}(\Lambda v)\right) \quad \text { and } \quad N_{p}(w)=\lambda \Lambda\left(m N_{p}(\Lambda w)\right)
$$

Then from the assertion in lemma $2.1(\mathrm{v})$ we deduce that $N_{p}(v)$ and $N_{p}(w)$ are in $\mathcal{C}^{1, \alpha}(\bar{\Omega})$, and

$$
\partial\left(N_{p}(v)\right) / \partial n<0, \quad \partial\left(N_{p}(w)\right) / \partial n<0 \quad \text { on } \partial \Omega .
$$

It follows that $N_{p}(v) / N_{p}(w)$ is in $\mathcal{C}(\bar{\Omega})$. Set

$$
a=\max _{x \in \bar{\Omega}} N_{p}(v)(x) / N_{p}(w)(x) .
$$

We deduce that $N_{p}(v) \leq a N_{p}(w)$. The monotonicity of $N_{p^{\prime}}$ implies

$$
v \leq a^{\frac{1}{p-1}} w
$$

Since problem (2.2) is homogeneous, $a^{\frac{1}{p-1}} w$ is also a solution of problem $\sqrt[2.2]{2}$, we may assume without loss of generality that $v \leq w$. Then, from the assertion of lemma 2.1(vi) and by the monotonicity of N_{q}, we get

$$
\begin{aligned}
N_{p}(v) & =\lambda_{1}\left\|m^{1 / q} \Lambda v\right\|_{q}^{p-q} \Lambda\left(m N_{q}(\Lambda v)\right) \\
& \leq\left\|m^{1 / q} \Lambda w\right\|_{q}^{p-q} \lambda_{1} \Lambda\left(m N_{q}(\Lambda w)\right) \\
& =\lambda\left\|m^{1 / q} \Lambda c w\right\|_{q}^{p-q} \Lambda\left(m N_{q}(\Lambda c w)\right) \\
& =N_{p}(c w)
\end{aligned}
$$

where

$$
c=\left(\lambda_{1} / \lambda\right)^{1 /(p-1)}<1
$$

Hence it follows by the monotonicity of $N_{p^{\prime}}$ that $v<c w$. Repeating this argument n times, we obtain $0 \leq v \leq c^{n} w$. Therefore by letting n tend to infinity, we deduce that $v \equiv 0$. This is a contradiction.

Proof of theorem 4.1. Let v and w be two positive solutions of problem 4.1). Then v and w are eigenfunctions associated with the eigenvalues $\left\|m^{1 / q} \Lambda v\right\|_{q}^{q-p}$ and $\left\|m^{1 / q} \Lambda w\right\|_{q}^{q-p}$ respectively. From proposition 4.7 we deduce that

$$
\left\|m^{1 / q} \Lambda v\right\|_{q}^{q-p}=\left\|m^{1 / q} \Lambda w\right\|_{q}^{q-p}=\lambda_{1}
$$

and there is $k>0$ such that $w=k v$. It follows that $v=w$.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975).
[2] J. I. Diaz, J. E. Saa; Existence et Unicité de Solutions Positives pour Certaines Equations Elliptiques Quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 521-524.
[3] P. Dràbek, M. Ôtani; Global Bifurcation Result for the p-Biharmonic Operator, Electronic Journal Differential Equations 2001 (2001), No 48, pp. 1-19.
[4] P. Dràbek, S. Pohozaev; Positive Solutions for the p-Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 703-726.
[5] I. Ekeland, On the Variational Principle, J. Math. Anal. Appl. 47 (1974) 324-353.
[6] A. El Hamidi, Multiple Solutions with Changing Sign Energy to a Nonlinear Elliptic Equations, Comm. Pure Appl. Anal. 3 (2004) 253-265.
[7] D. Gilbar, N. S. Trudinger; Elliptic Partial Differential Equations of Second Order, Second ed., Springer New York Tokyo (1983).
[8] T. Idogawa, M. Ôtani; The First Eigenvalues of Some Abstract Elliptic Operator, Funkcialaj Ekvacioj 38 (1995), 1-9.
[9] Z. Elalli, M. Talbi, N. Tsouli; Existence of Solutions for a Nonlinear Elliptic Problem of Fourth Order with Weight, Mediterr. j. math. 3 (2006), 87-96.
[10] M. Willem; Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhuser Boston, Inc., Boston, MA, (1996).

Mohamed Talbi
Département de Mathématiques et Informatique Faculté des Sciences, Université Mohamed 1, Oujda, Maroc

E-mail address: talbimd@yahoo.fr
Najib Tsouli
Département de Mathématiques et Informatique Faculté des Sciences, Université Mohamed 1, Oujda, Maroc

E-mail address: tsouli@sciences.univ-oujda.ac.ma

[^0]: 2000 Mathematics Subject Classification. 35J60, 35J30, 35J65.
 Key words and phrases. Ekeland's principle; p-biharmonic operator; Palais-Smale condition. © 2006 Texas State University - San Marcos.
 Published September 20, 2006.

