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PERIODIC SOLUTIONS FOR SMALL AND LARGE DELAYS IN
A TUMOR-IMMUNE SYSTEM MODEL

RADOUANE YAFIA

Abstract. In this paper we study the Hopf bifurcation for the tumor-immune

system model with one delay. This model is governed by a system of two

differential equations with one delay. We show that the system may have
periodic solutions for small and large delays for some critical value of the

delay parameter via Hopf bifurcation theorem bifurcating from the non trivial
steady state.

1. Introduction

In this paper, we consider a model that provides a description of tumor cells
in competition with the immune system. This description is described by many
authors, using ordinary and delayed differential equations to model the competition
between immune system and tumor. In particular [26, 31, 32] other similar models
can be found in the literature, see, [23, 35, 39] provide a description of the modelling,
analysis and control of tumor immune system interaction.

Other authors use kinetic equations to model the competition between immune
system and tumor. Although they give a complex description in comparison with
other simplest models, they are, for example, needed to model the differences of
virulence between viruses, see, [1, 2, 5, 6, 7, 15]. Several other fields of biology use
kinetic equations, for instance [19] and [20] give a kinetic approach to describe pop-
ulation dynamics, [2] deals with the development of suitable general mathematical
structures including a large variety of Boltzmann type models.

The reader interested in a more complete bibliography about the evolution of a
cell, and the pertinent role that have cellular phenomena to direct the body towards
the recovery or towards the illness, is addressed to [22, 27]. A detailed description
of virus, antivirus, body dynamics can be found in the following references [10, 21,
34, 36]. The mathematical model with which we are dealing, was proposed in a
recent paper by M. Galach [26]. In this paper the author developed a new simple
model with one delay of tumor immune system competition, this idea is inspired
from the paper of Kuznetsov and Taylor (1994) [32] and he recall some numerical
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results of Kuznetsov and Taylor in order to compare them with those obtained in
his paper, see, [26].

2. Mathematical model

The mathematical model describing the tumor immune system competition is
given by a system of two differential equations with one delay, see Galach [26],

dx

dt
= σ + ωx(t− τ)y(t− τ)− δx

dy

dt
= αy(1− βy)− xy

(2.1)

where the parameter ω describes the immune response to the appearance of the
tumor cells and the constant τ is the time delay which the immune system needs
to develop a suitable response after the recognition of non-self cells. Time delays
in connection with the tumor growth also appear in Bodnar and Foryś [12] and
[13], Byrne [14], Foryś and Kolev [24] and Foryś and Maciniak-Czochra [25]. For
the meaning of the parameters α, β, δ and σ, see Kuznetsov and Taylor [32] and
Kirschner and Panetta [31].

For τ = 0 system (2.1) becomes a system of ordinary differential equations:
dx

dt
= σ + ωxy − δx

dy

dt
= αy(1− βy)− xy

(2.2)

In [26], the author study the existence, uniqueness and nonnegativity of solutions
and he show the nonexistence of nonnegative periodic solution of system (2.2),
using the Dulac-Bendixon criteria, see [37]. The possible nonnegative steady states
of system (2.2) and their stability are summarized in the Table 1; see also [26],

Table 1. Nonnegative steady states of system (2.2) and their stability

Region Conditions P0 P1 P2

1 ω > 0, αδ < σ stable
2 ω > 0, αδ > σ unstable stable
3 ω < 0, αδ > σ,

α(βδ − ω)2 + 4βωσ > 0
unstable stable

4 ω < 0, αδ < σ, ω + βδ < 0,
α(βδ − ω)2 + 4βωσ > 0

stable unstable stable

5 ω < 0, α(βδ−ω)2 + 4βωσ > 0 stable

For τ > 0, the existence and uniqueness of solutions of system (2.1) for every
t > 0 are established in [26], using the results presented in Hale [29]. Based on the
results of Bodnar [11], in [26] the author showed that: (1) If ω ≥ 0, these solutions
are nonnegative for any nonnegative initial conditions (biologically realistic case).
(2) If ω < 0, there exist nonnegative initial condition such that the solution becomes
negative in a finite time interval.

Our goal in this paper is to consider the case (1) when ω > 0, which is the most
biologically meaningful one. We study the asymptotic behavior of the possible
steady states P0 and P2 with respect to the delay τ . We establish that, the Hopf
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bifurcation may occur by using the delay as a parameter of bifurcation. We prove
this result for small and large delays.

This paper is organized as follows. In section 3, we recall some results about the
absolute and conditional stability of delay equations and the zeros of second order
transcendental polynomials. In section 4, we investigate the results presented in
section 3 to prove the stability of the possible steady states (trivial and non-trivial)
of the delayed system (2.1). The main result of this paper is given in section 5 and
section 6. Based on the Hopf bifurcation theorem, we show the occurrence of Hopf
bifurcation for small and large delays.

3. Stability of delay equations and zeros of second order
transcendental polynomials

In this section we recall some results on the stability of delay equations and on
the zero of second order transcendental polynomials.

3.1. Absolute and conditional stability. Consider the following general non-
linear delay differential system

dx

dt
= f(x(t), x(t− τ)), (3.1)

where x ∈ Rn, τ is constant, f : Rn×Cn → Rn is smooth enough to guarantee the
existence and uniqueness of solutions of (3.1) under the initial condition

x(θ) = ϕ(θ), θ ∈ [−τ, 0], (3.2)

where C = C([−τ, 0], Rn). Suppose f(x∗, x∗) = 0, that is x = x∗ is a steady state
of system (3.1).

Definition 3.1. The steady state x = x∗ of system (3.1) is called absolutely stable
(i.e., asymptotically stable independent of the delay τ) if it is asymptotically stable
for all delays τ > 0. x = x∗ is called conditionally stable (i.e., asymptotically stable
depending of the delay τ) if it is asymptotically stable for τ in some interval, but
not necessarily for all delays τ > 0.

The linearized system of (3.1) at x = x∗ has the form

dX

dt
= A0X + A1X(t− τ), (3.3)

where X ∈ Rn, Ai (i = 0, 1) is an n × n constant matrix. Then the characteristic
equation associated with system (3.3) takes the form

det[λI −A0 −A1e
−λτ ]. (3.4)

The location of the roots of some transcendental equation (3.4) in it is general
form has been studied by many authors, see Baptistini and Táboas [3], Bellman
and Cooke [4], Boese [8], Brauer [9], Cooke and van den Driessche [18], Cooke and
Grossman [17], Huang [30], Mahaffy [33], Ruan and Wei [38] an dthe references
therein. The following result, which was proved by Chin [16], gives necessary and
sufficient conditions for the absolute stability of system (3.3).

Lemma 3.1. The system (3.3) is absolutely stable if and only if
(i) Re λI −A0 −A1) < 0
(ii) det[iζ −A0 −A1e

−iζτ ] 6= 0 for all ζ > 0.
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3.2. A second degree transcendental polynomial. In this section, we state
some results on the second degree transcendental polynomial (see Ruan and Wei
[38]). For most system with discrete delay, the characteristic equation of the lin-
earized system at a steady state is a second degree transcendental polynomial equa-
tion of the following form:

λ2 + pλ + r + (sλ + q)e−λτ = 0 (3.5)

where p, r, q and s are real numbers. It is known that the steady state is asymp-
totically stable if all roots of the characteristic equation (3.5) have negative real
parts.

Let define the following hypotheses:

(H1) p + s > 0.
(H2) q + r > 0.
(H3) (s2 − p2 + 2r < 0 and r2 − q2 > 0) or (s2 − p2 + 2r)2 < 4(r2 − q2).
(H4) r2 − q2 < 0 or (s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 = 4(r2 − q2)).
(H5) r2 − q2 > 0, s2 − p2 + 2r > 0 and (s2 − p2 + 2r)2 > 4(r2 − q2).

Theorem 3.1 ([38]). Let τ±j (j = 0, 1, 2, . . . ) defined by

τ±j =
1
ζ±

arccos
{q(ζ2

± − r)− psζ2
±

s2ζ2
± + q2

+
2jπ

ζ±

}
, j = 0, 1, 2, . . .

where ζ± is given by

ζ± =
1
2
(s2 − p2 + 2r)± 1

2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]

1
2 .

(i) If (H1)-(H3) hold, then all roots of equation (3.5) have negative real parts for
all τ ≥ 0.
(ii) If (H1), (H2) and (H4) hold, then when τ ∈ [0, τ+

0 ) all roots of equation (3.5)
have negative real parts, when τ = τ+

0 equation (3.5) has a pair of purely imaginary
roots ±iζ±, and when τ > τ+

0 equation (3.5) has at least one root with positive real
part.
(iii) If (H1), (H2) and (H5) hold, then there is a positive integer k such that there
are k switches from stability to instability to stability; that is, when τ ∈ [0, τ+

0 ),
(τ−0 , τ+

0 ), . . . , (τ−k−1, τ
+
k ), all roots of equation (3.5) have negative real parts, and

when τ ∈ (τ+
0 , τ−0 ), (τ+

1 , τ−1 ), . . . , (τ+
k−1, τ

−
k−1), and τ > τ+

k , equation (3.5) has at
least one root with positive real part.

Remark 3.1. Theorem 3.1 was obtained by Cooke and Grossman [17] in analyzing
a general second order equation with delayed friction and delayed restoring force.
for other related work, see, Baptistini and Táboas [3], Bellman and Cooke [4], Boese
[8], Brauer [9], Cooke and van den Driessche [18], Cooke and Grossman [17], Huang
[30], Mahaffy [33], Ruan and Wei [38], etc.

4. Steady states and stability for positive delays

Consider the system (2.1), and suppose that ω > 0. From the table 1 (see,
section 2), we distingue between two cases: αδ < σ and αδ > σ.
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Case 1: ω > 0 and αδ < σ. The system (2.1) has a unique positive equilibrium
P0 given by P0 = (σ

δ , 0) and the linearized system around P0 takes the form

dx

dt
= ω

σ

δ
y(t− τ)− δx

dy

dt
= (α− σ

δ
)y

(4.1)

which leads to the characteristic equation

W (λ) = (λ +
σ

δ
− α)(λ + δ). (4.2)

Then we have the following result.

Proposition 4.1. Under the hypotheses ω > 0 and αδ < σ, the equilibrium point
P0 is absolutely stable.

Proof. From the characteristic equation (4.2) and lemma 3.1, it is easy to obtain
the result (see, [28, 29]). �

Case 2: ω > 0 and αδ > σ. In this case, system (2.1) has two equilibrium
points (see, Table 1) P0 = (σ

δ , 0) and P2 = (x2, y2) where

x2 =
−α(βδ − ω) +

√
∆

2ω
, y2 =

α(βδ + ω)−
√

∆
2αβω

with ∆ = α2(βδ−ω)2 +4αβσω. From the characteristic equation (4.2), we deduce
the following result.

Proposition 4.2. Under the hypotheses ω > 0 and αδ > σ, the equilibrium point
P0 is unstable for all positive time delay.

Proof. For the proof of this proposition, from the characteristic equation (4.2). It
is obvious to check the result. �

In the next, we shall study the stability of the non-trivial equilibrium point P2.
Let u = x − x2 and v = y − y2, by linearizing system (2.1) around the non-trivial
equilibrium point P2, we obtain the linear system

du

dt
= ωx2v(t− τ)− ωy2u(t− τ)− δu

dv

dt
= −y2u + (α− 2αβy2 − x2)v

(4.3)

The characteristic equation of equation (4.3) has the form

W (λ, τ) = λ2 + pλ + r + (sλ + q)e−λτ = 0, (4.4)

which is the same equation presented in section 3.2. Where p = δ + αβy2 > 0,
r = δαβy2 > 0, s = −ωy2 < 0 and q = αωy2(1 − 2βy2) > 0. The stability of the
equilibrium point P2 is a result of the localization of the roots of the equation

W (λ, τ) = 0.

Then we have the following theorem.

Theorem 4.1. Assume 0 < ω
β < α, αδ > σ, α > 0 and β > 0. Then P2 is

conditionally stable.
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Proof. From the expressions of p, q, s and r and the paper [26], we have p +
s > 0 and q + r > 0. Therefore, the hypotheses (H1), (H2) are satisfied and
the steady state P2 is asymptotically stable (see section 3.2) for τ = 0. Since
r2 − q2 = α2y2

2(δ2β2 − ω2(1− 2βy2)2), the sign of r2 − q2 is deduced from the sign
of (δβ − ω2(1− 2βy2)) = −2αω −

√
∆ which is negative.

Therefore, r2 − q2 < 0
Now, we compute s2 − p2 + 2r. From the expressions of p, s and r, we have

s2 − p2 + 2r = (ω − αβ)(ω + αβ)y2 − δ2.

As ω
β < α, we have

s2 − p2 + 2r < 0

and the hypothesis (H4) of section 3.2 is satisfied. From theorem 3.1 (ii), the
equilibrium point P2 is conditionally stable and there exist τl such that: P2 is
asymptotically stable for τ ∈ [0, τl) and unstable for τ > τl. For τ = τl the
characteristic equation (4.4) has a pair of purely imaginary roots ±iζ, where

τl =
1
ζl

arccos
{q(ζ2

l − r)− psζ2
l

s2ζ2
l + q2

}
, (4.5)

ζl =
1
2
(s2 − p2 + 2r) +

1
2
[(s2 − p2 + 2r)2 − 4(r2 − q2)]1/2. (4.6)

�

In the next sections, we will study the occurrence of Hopf bifurcation for smaller
and larger delays.

Notation: The index s is designed for small time delays and the index l is
designed for large time delays.

Let z(t) = (u(t), v(t)) = (x(t), y(t)) − (x2, y2), then the system (2.1) is written
as a functional differential equation (FDE) in C := C([−τ, 0], R2):

dz(t)
dt

= L(τ)zt + f(zt, τ) (4.7)

where L(τ) : C → R2 is a linear operator and f : C×R → R2 are given respectively
by

L(τ)ϕ =
(

ωy2ϕ1(−τ) + ωx2ϕ2(−τ)− δϕ1(0)
−y2ϕ1(0) + (α− 2αβy2 − x2)ϕ2(0)

)
and

f(ϕ, τ) =
(

σ + ωϕ1(−τ)ϕ2(−τ) + ωx2y2 − δx2

−αβϕ2
2(0) + αy2 − αβy2

2 − ϕ1(0)ϕ2(0)− x2y2

)
for ϕ = (ϕ1, ϕ2) ∈ C.

5. Hopf bifurcation occurrence for small delays

For small delays, let e−λτ ' 1−λτ , then the characteristic equation (4.4) becomes

W0(λ, τ) = (1− sτ)λ2 + (p + s− qτ)λ + r + q = 0. (5.1)

Since the equilibrium point P2 is asymptotically stable for τ = 0, by Rouche’s
theorem, there exist τs such that P2 asymptotically stable for τ < τs and unstable
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for τ > τs, where τs is the value for which the characteristic equation (5.1) has a
pair of purely imaginary roots. Let λ = iζ, then W0(iζ, τ) = 0 if and only if

(1− sτ)ζ2 − q − r = 0,

p + s− qτ = 0 .
(5.2)

Then, from the second equation of (5.2), we have τs = p+s
q and ζs =

√
q(q+r)

q−s(p+s) .
We deduce the following result of stability of the non-trivial equilibrium point

P2 for small delays.

Theorem 5.1. Assume 0 < ω/β < α, αδ > σ, α > 0 and β > 0. Then, there exists
τs such that: P2 is asymptotically stable for τ ∈ [0, τs) and unstable for τ > τs. For
τ = τs the characteristic equation (5.1) has a pair of purely imaginary roots ±iζs,

where τs = p+s
q and ζs =

√
q(q+r)

q−s(p+s) .

Proof. Since q−s(p+s) = q+ωδy2+ωy2
2(αβ−ω) and q > 0 and from the hypothesis

αβ > ω, we have p + s > 0 and q − s(p + s) > 0. Then the quantities of τs = p+s
q

and ζs =
√

q(q+r)
q−s(p+s) are well defined. �

Now, we apply the Hopf bifurcation theorem, see [28], to show the existence of a
non-trivial periodic solutions of system (4.7) bifurcating from the non trivial steady
state P2. We use the delay as a parameter of bifurcation. Therefore, the periodicity
is a result of changing the type of stability, from stationary solution to limit cycle.

Next we state the main result of this paper for small delays.

Theorem 5.2. Assume 0 < ω/β < α, αδ > σ, α > 0 and β > 0. There exists
εs > 0 such that, for each 0 ≤ ε < εs, equation (4.7) has a family of periodic
solutions ps(ε) with period Ts = Ts(ε), for the parameter values τ = τ(ε) such that

ps(0) = P2, Ts(0) = 2π
ζs

and τ(0) = τs, where τs = p+s
q and ζs =

√
q(q+r)

q−s(p+s) are
given in equation (5.2).

Proof. We apply the Hopf bifurcation theorem introduced in [28]. From the ex-
pression of f in (4.7), we have

f(0, τ) = 0 and
∂f(0, τ)

∂ϕ
= 0, for all τ > 0

From equation (5.2) and theorem 5.1, the characteristic equation (5.1) has a pair
of simple imaginary roots λs = iζs and λs = −iζs at τ = τs.

Next, we need to verify the transversality condition. From equation (5.1),
W0(λs, τs) = 0 and ∂

∂λW0(λs, τs) = 2λs(1 − sτs) 6= 0. According to the implicit
function theorem, there exists a complex function λ = λ(τ) defined in a neighbor-
hood of τs, such that λ(τs) = λs and W0(λ(τ), τ) = 0 and

λ′(τ) = −∂W0(λ, τ)/∂τ

∂W0(λ, τ)/∂λ
, (5.3)

for τ in a neighborhood of τs. Letting, λ(τ) = p(τ) + iq(τ), from (5.3) we have

p′(τ)/τ=τs
=

q

2(1− sτs)
.

From the hypothesis 0 < ω/β < α, we conclude that

p′(τ)/τ=τs
> 0,
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which completes the proof. �

6. Hopf bifurcation occurrence for large delays

For large delays τ , let λ = κ + iζ. According to the Hopf bifurcation theorem
[28], we come to the main result of this paper for large time delays.

Theorem 6.1. Assume 0 < ω/β < α, αδ > σ, α > 0, β > 0 and δ close to
0. There exists ε1 > 0 such that, for each 0 ≤ ε < ε1, equation (4.7) has a
family of periodic solutions pl(ε) with period Tl = Tl(ε), for the parameter values
τ = τ(ε) such that pl(0) = P2, Tl(0) = 2π

ζl
and τ(0) = τl, where τl and ζl are given

respectively in equations (4.5) and (4.6).

Proof. As in the previous section, we apply the Hopf bifurcation theorem introduced
in [28]. From the expression of f in (4.7), we have,

f(0, τ) = 0 and
∂f(0, τ)

∂ϕ
= 0, for all τ > 0

From equation (4.4) and theorem 4.1, the characteristic equation (4.4) has a pair
of simple imaginary roots λl = iζl and λl = −iζl at τ = τl. From equation (4.4),
W (λl, τl) = 0 and ∂

∂λW (λl, τl) = 2iζl + p + (s− τ(isζl + q))e−iζlτl 6= 0. According
to the implicit function theorem, there exists a complex function λ = λ(τ) defined
in a neighborhood of τl, such that λ(τl) = λl and W (λ(τ), τ) = 0 and

λ′(τ) = −∂W (λ, τ)/∂τ

∂W (λ, τ)/∂λ
, (6.1)

for τ in a neighborhood of τl. Then

λ′(τ) = −λ
sλ3 + (s2p + q)λ2 + (sr + pq)λ + qr

τsλ3 + (s + τ(sp + q))λ2 + (2q + τ(sr + pq))λ + pq − sr + qr
(6.2)

From equation (6.2) we have

κ′(τ)
∣∣
τ=τl

=

ζ2
l

s2ζ4
l + (sqr(τ − 1) + 2q2)ζ2

l + sr2(q − sr) + pq2(p + r)− qr(2q + τ(sr + pq))
A2 + B2

,

(6.3)
where

A = −(s + τ(sp + q))ζ2
l + pq − sr + qr,

B = −τsζ2
l + (2q + τ(sr + pq))ζl.

From the expression of r, when δ is close to 0, then r is very small. From equation
(6.3), we conclude that,

κ′(τ)/τ=τl
> 0

Therefore, the transversality condition is verified, which completes the proof. �
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