2005-Oujda International Conference on Nonlinear Analysis.
Electronic Journal of Differential Equations, Conference 14, 2006, pp. 249-254.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF NON-NEGATIVE SOLUTIONS FOR NONLINEAR EQUATIONS IN THE SEMI-POSITONE CASE

NAJI YEBARI, ABDERRAHIM ZERTITI

Abstract

Using the fibring method we prove the existence of non-negative solution of the p-Laplacian boundary value problem $-\Delta_{p} u=\lambda f(u)$, for any $\lambda>0$ on any regular bounded domain of \mathbb{R}^{N}, in the special case $f(t)=t^{q}-1$.

1. Introduction and main results

In this paper we are interested in finding nonnegative solutions to the equation

$$
\begin{gather*}
-\Delta_{p} u=\lambda f(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

for some specific f in the non positone case $(f(0)<0)$, under assumptions stated below.

Here Ω is a connected and bounded subset of \mathbb{R}^{N} with boundary $\partial \Omega$ in $C^{1, \alpha}$. We set

$$
\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)
$$

When $p=2$, this type of problem in the nonpositone case can be studied via the shooting method. Existence of a radially symmetric nonnegative solution for $\lambda>0$ sufficiently small have been obtained in [1, 2] and nonexistence of such a solution for $\lambda>0$ large have been established in [1, 3], in the framework of the semi positone case and f is superlinear. Observe that, since $f(0)<0$, the constant 0 is an upper solution of 1.1 and as a consequence it is not possible, in general, to apply the usual techniques (for example: the method of upper and lower solutions, etc.) and we shall work in the framework of the so-called fibration method introduced by Pohozaev in [5], and then developed in [6, 7, 8]. We shall assume that f has the form

$$
\begin{equation*}
f(t)=t^{q}-1, \quad \text { with } q>p-1 \tag{1.2}
\end{equation*}
$$

[^0]To avoid the noncompactness problem we shall always assume that the problem is subcritical, in the sense of the critical exponent for Ω,

$$
p^{\star}= \begin{cases}\frac{N p}{N-p} & \text { if } 1<p<N \tag{1.3}\\ +\infty & \text { if } p \geq N\end{cases}
$$

Let

$$
\begin{equation*}
u=\theta v, \quad \theta=\lambda^{-\left(\frac{1}{q-p+1}\right)}, \quad \mu=\lambda^{\frac{q}{q-p+1}}>0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{gather*}
-\Delta_{p} u=u^{q}-\mu \quad \text { in } \Omega, \\
u>0 \quad \text { in } \Omega \tag{1.5}\\
u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

It can be seen that (1.1), 1.2, (1.4) and 1.5 are equivalent. Also let p and q satisfy

$$
\begin{equation*}
0<p-1<q<p^{*}-1 \tag{1.6}
\end{equation*}
$$

where p^{*} is given by 1.3 . Concerning μ, we shall assume its positivity.
By a solution of (1.5), we mean a $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ function which is a critical point of the functional

$$
E(v)=-\frac{1}{p} \int_{\Omega}|\nabla v|^{p} d x+\frac{1}{q+1} \int_{\Omega}|v|^{q+1} d x-\mu \int_{\Omega}|v(x)| d x
$$

and therefore satisfies

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi-\left(u^{q}-\mu\right) \varphi\right) d x=0
$$

for every $\varphi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.
Our main result is as follows.
Theorem 1.1. Let assumptions (1.3) and 1.6 be satisfied. Then there exists a nontrivial nonnegative solution $u \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ of problem (1.1) for any $\lambda>0$. Moreover, $u \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha>0$.

2. Proof of the main theorem

The proof is based on the fibering method and is divided into five stages.
Step 1: We introduce the Euler functional associated with 1.5 as follows

$$
E(u)=-\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{1}{q+1} \int_{\Omega}|u|^{q+1} d x-\mu \int_{\Omega}|u(x)| d x
$$

According to the fibering method, we set

$$
\begin{equation*}
u(x)=r v(x) \tag{2.1}
\end{equation*}
$$

where $r \in \mathbb{R}^{+}$and $v \in W_{0}^{1, p}(\Omega)$. Then we obtain

$$
\begin{equation*}
\widetilde{E}(r, v)=E(r, v)=-\frac{|r|^{p}}{p} \int_{\Omega}|\nabla v|^{p} d x+\frac{|r|^{q+1}}{q+1} \int_{\Omega}|v|^{q+1} d x-\mu r \int_{\Omega}|v(x)| d x \tag{2.2}
\end{equation*}
$$

We introduce the fibering functional

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{p} d x=1 \tag{2.3}
\end{equation*}
$$

Under condition (2.3) the functional \widetilde{E} takes the form

$$
\begin{equation*}
\widetilde{E}(r, v)=-\frac{r^{p}}{p}+\frac{r^{q+1}}{q+1} \int_{\Omega}|v|^{q+1} d x-\mu r \int_{\Omega}|v(x)| d x \tag{2.4}
\end{equation*}
$$

The bifurcation equation is

$$
\begin{equation*}
0=\frac{\partial \widetilde{E}}{\partial r}=-r^{p-1}+r^{q} \int_{\Omega}|v|^{q+1} d x-\mu \int_{\Omega}|v(x)| d x \tag{2.5}
\end{equation*}
$$

which gives

$$
\begin{equation*}
-r^{p}+r^{q+1} \int_{\Omega}|v|^{q+1} d x-\mu r \int_{\Omega}|v(x)| d x=0 \tag{2.6}
\end{equation*}
$$

Let set

$$
\begin{equation*}
\widetilde{E}(v)=E(r(v) v) \tag{2.7}
\end{equation*}
$$

Step 2: Let us consider the variational problem

$$
\begin{equation*}
M_{0}=\sup \left\{\widetilde{E}(v) ; v \in W_{0}^{1, p}(\Omega) / \int_{\Omega}|\nabla v|^{p} d x=1\right\} \tag{2.8}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\widetilde{E}(v)=\min _{r \geq 0} \widetilde{E}(r, v)=\min _{r \geq 0}\left\{-\frac{r^{p}}{p}+\frac{r^{q+1}}{q+1} \int_{\Omega}|v|^{q+1} d x-\mu r \int_{\Omega}|v(x)| d x\right\}<0 \tag{2.9}
\end{equation*}
$$

as a matter of fact, 2.6 gives

$$
-\frac{r^{p}(v)}{p}=-\frac{r^{q+1}(v)}{p} \int_{\Omega}|v|^{q+1} d x+\mu \frac{r(v)}{p} \int_{\Omega}|v(x)| d x
$$

On the other hand,

$$
\begin{aligned}
\widetilde{E}(v)= & E(r(v) v) \\
= & -\frac{r^{q+1}(v)}{p} \int_{\Omega}|v|^{q+1} d x+\mu \frac{r(v)}{p} \int_{\Omega}|v(x)| d x \\
& +\frac{r^{q+1}(v)}{p} \int_{\Omega}|v|^{q+1} d x-\mu r(v) \int_{\Omega}|v(x)| d x
\end{aligned}
$$

which gives

$$
\begin{equation*}
\widetilde{E}(v)=\frac{(p-q-1)}{(q+1) p} r^{q+1}(v) \int_{\Omega}|v|^{q+1} d x-\mu r(v)\left(1-\frac{1}{p}\right) \int_{\Omega}|v(x)| d x \tag{2.10}
\end{equation*}
$$

By (1.6), $\widetilde{E}(v)<0$.
Let us prove the following Lemma.
Lemma 2.1. The sequence maximizing problem 2.8 is bounded in $W_{0}^{1, p}(\Omega)$.
Proof. Let $\left(v_{n}\right)$ be a maximizing sequence for 2.8. We set

$$
\begin{equation*}
v_{n}(x)=c_{n}+\bar{v}_{n}(x) \tag{2.11}
\end{equation*}
$$

with

$$
\begin{equation*}
\int_{\Omega} \bar{v}_{n}(x) d x=0 \tag{2.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=\int_{\Omega}\left|\nabla \bar{v}_{n}\right|^{p} d x=1 \tag{2.13}
\end{equation*}
$$

and by the Sobolev embedding theorems (the Poincare-Wirtinger inequality), the sequence $\left(\bar{v}_{n}\right)$ is bounded in $W^{1, p}(\Omega)$. From the bifurcation equation 2.5), we obtain

$$
\begin{equation*}
r_{n}^{p}=r_{n}^{q+1} \int_{\Omega}\left|c_{n}+\bar{v}_{n}\right|^{q+1} d x-\mu r_{n} \int_{\Omega}\left|c_{n}+\bar{v}_{n}\right| d x \tag{2.14}
\end{equation*}
$$

Let us assume that

$$
\begin{equation*}
c_{n} \rightarrow+\infty, \quad \text { as } n \rightarrow+\infty . \tag{2.15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{\Omega}\left|1+\frac{\bar{v}_{n}}{c_{n}}\right|^{q+1} d x=\frac{1}{c_{n}^{q+1} r_{n}^{q-p+1}}+\frac{\mu}{c_{n}^{q} r_{n}^{q}} \int_{\Omega}\left|1+\frac{\bar{v}_{n}}{c_{n}}\right| d x . \tag{2.16}
\end{equation*}
$$

By embedding results, there exists $C>0$ such that

$$
\left\|\bar{v}_{n}\right\|_{W^{1, p}(\Omega)} \leq C, \quad \forall n \in \mathbb{N}
$$

Using 2.15 and since by assumption 1.6 the space $W^{1, p}(\Omega)$ is compactly embedded in $L^{q+1}(\Omega)$. We may assume that $\left(\bar{v}_{n}\right)$ converges strongly in latter space. Then from 2.16 we have

$$
\begin{equation*}
\int_{\Omega}\left|1+\frac{\bar{v}_{n}}{c_{n}}\right|^{q+1} d x \rightarrow|\Omega|>0, \quad \text { as } n \rightarrow+\infty \tag{2.17}
\end{equation*}
$$

The proof is complete.
Hence, we can assume that the sequence $\left(v_{n}\right)$ converges weakly in $W_{0}^{1, p}(\Omega)$. By assumption 1.6, it follows that $v_{n} \rightarrow \bar{v}$ in $L^{q+1}(\Omega)$. This implies that

$$
\left\|\nabla v_{0}\right\|_{p} \leq \liminf _{n \rightarrow+\infty}\left\|\nabla v_{n}\right\|_{p}
$$

Since

$$
\left\|\nabla v_{n}\right\|_{p}^{p}=\int_{\Omega}\left|\nabla v_{n}\right|^{p} d x=1
$$

we obtain

$$
\begin{equation*}
0 \leq\left\|\nabla v_{0}\right\|_{p}^{p}=\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x \leq 1 \tag{2.18}
\end{equation*}
$$

Now we shall prove the equality

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x=1 \tag{2.19}
\end{equation*}
$$

We assume the contrary; i.e, that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x<1 \tag{2.20}
\end{equation*}
$$

Note that

$$
\begin{equation*}
0<\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x \tag{2.21}
\end{equation*}
$$

Otherwise, if $\int_{\Omega}\left|\nabla v_{0}\right|^{p} d x=0, v_{0}=c_{0}$ is a constant, and from (2.8), we have for all $\epsilon>0$ there exist $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have

$$
M_{0}-\epsilon<\widetilde{E}\left(v_{n}\right)<M_{0}
$$

Let $\theta \in] 0,1[$. Then

$$
\begin{equation*}
\widetilde{E}\left(\theta v_{n}\right)-\epsilon \leq M_{0}-\epsilon<\widetilde{E}\left(v_{n}\right)<M_{0} \tag{2.22}
\end{equation*}
$$

by 2.10 . We recall that

$$
\widetilde{E}\left(v_{n}\right)=\frac{(p-q-1)}{(q+1) p} r_{n}^{q+1} \int_{\Omega}\left|v_{n}\right|^{q+1} d x-\mu r_{n}\left(\frac{p-1}{p}\right) \int_{\Omega}\left|v_{n}(x)\right| d x
$$

Using (2.22), we see that

$$
(1-\theta) \mu r_{n}\left(\frac{p-1}{p}\right) \int_{\Omega}\left|v_{n}(x)\right| d x<\epsilon \text { for all } n \geq n_{0} .
$$

Then we have

$$
r_{n} \int_{\Omega}\left|v_{n}(x)\right| d x \rightarrow r_{0} \int_{\Omega}\left|v_{0}(x)\right| d x=0
$$

as $n \rightarrow+\infty$ and $v_{0}=c_{0}=0$ which gives $\widetilde{E}\left(v_{0}\right)=0$. This contradicts $M_{0}<0$.
Due to 2.20 and (2.21), there exists $\theta>1$ (i.e., $\theta^{p}=1 / \int_{\Omega}\left|\nabla v_{0}(x)\right|^{p} d x>1$) such that $v_{*}=\theta v_{0}$ satisfies

$$
\int_{\Omega}\left|\nabla v_{*}(x)\right|^{p} d x=1
$$

and

$$
\begin{aligned}
\widetilde{E}\left(v_{*}\right) & =\widetilde{E}\left(\theta v_{0}\right)=\min _{r \geq 0}\left\{-\frac{r^{p}}{p}+\frac{r^{q+1}}{q+1} \theta^{q+1} \int_{\Omega}\left|v_{0}\right|^{q+1} d x-\mu r \theta \int_{\Omega}\left|v_{0}(x)\right| d x\right\} \\
& =\min _{\rho \geq 0}\left\{-\frac{\rho^{p}}{p \theta^{p}}+\frac{\rho^{q+1}}{q+1} \int_{\Omega}\left|v_{0}\right|^{q+1} d x-\mu \rho \int_{\Omega}\left|v_{0}(x)\right| d x\right\} \\
& >\min _{\rho \geq 0}\left\{-\frac{\rho^{p}}{p}+\frac{\rho^{q+1}}{q+1} \int_{\Omega}\left|v_{0}\right|^{q+1} d x-\mu \rho \int_{\Omega}\left|v_{0}(x)\right| d x\right\} .
\end{aligned}
$$

Thus,

$$
\widetilde{E}\left(v_{*}\right)>\widetilde{E}\left(v_{0}\right)
$$

This inequality contradicts the definition of (2.8). Thus, we have obtained a solution to the variational problem.
Step 3:

$$
\widetilde{E}\left(v_{0}\right)=\sup \left\{\widetilde{E}(v) ; v \in W_{0}^{1, p}(\Omega) / \int_{\Omega}|\nabla v|^{p} d x=1\right\}
$$

The fibering method implies $r=r_{0}=r\left(v_{0}\right)$ where $r_{0}>0$ and

$$
\begin{aligned}
& -\frac{r_{0}^{p}}{p}+\frac{r_{0}^{q+1}}{q+1} \int_{\Omega}\left|v_{0}\right|^{q+1} d x-\mu r_{0} \int_{\Omega}\left|v_{0}(x)\right| d x \\
& =\min _{r \geq 0}\left\{-\frac{r^{p}}{p}+\frac{r^{q+1}}{q+1} \int_{\Omega}|v|^{q+1} d x-\mu r \int_{\Omega}|v(x)| d x\right\}
\end{aligned}
$$

To complete the proof, we must show that the equation 1.5 is verified. We can assume that v_{0} is nonnegative by replacing v_{n} by $\left|v_{n}\right|$. Moreover, there exists a Lagrange multiplier σ such that

$$
\begin{equation*}
\widetilde{E}^{\prime}\left(v_{0}\right) \cdot h=\sigma\left(\int_{\Omega}|\nabla(.)|^{p} d x\right)^{\prime}\left(v_{0}\right) \cdot h \quad \forall h \in W_{0}^{1, p}(\Omega) . \tag{2.23}
\end{equation*}
$$

From the above equation, and by taking v_{0} as test function, we have

$$
r_{0}\left\{\int_{\Omega}\left(\left(r_{0} v_{0}\right)^{q}-\mu\right) v_{0} d x\right\}=p \sigma \int_{\Omega}\left|\nabla\left(v_{0}\right)\right|^{p} d x=p \sigma .
$$

By (2.6) we obtain $\sigma=\frac{r_{0}^{p}}{p}>0$. Then we can write

$$
\widetilde{E}^{\prime}\left(v_{0}\right)=p \sigma\left(-\Delta_{p} v_{0}\right)
$$

which is equivalent to

$$
-\Delta_{p}\left(r_{0} v_{0}\right)=\left(r_{0} v_{0}\right)^{q}-\mu
$$

Then if we set $u=r_{0} v_{0} \geq 0$, we can see that u is a solution of problem 1.5.
Step 4: For $u \geq 0$, we have $\widetilde{E}\left(v_{0}\right)<0$, thus the solution $u \geq 0$ is non trivial.
Step 5: We have obtained the nonnegative nontrivial solution u to problem (1.5). A standard bootstrap argument (see Drabek [4]) shows that $u \in L^{\infty}(\Omega)$. Then the asserted regularity of $u \in C_{\text {Loc }}^{1, \alpha}(\Omega)$ follows by Tolksdorf 9]. Thus the theorem is proved.

References

[1] D. Arcoya and A. Zertiti, Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in a annulus, Rendiconti di Matematica, Serie VII, Vol. 14, Roma (1994), 625-646.
[2] K. J. Brown, A. Castro and R. Shivaji, Nonexistence of radially symmetric solutions for a class of semipositone problems, Differential and Integral Eqns., 2(4) (1989) pp. 541-545.
[3] A. Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edin., 108(A)(1988), pp. 291-302.
[4] P. Drabek, Strongly nonlinear degenerate and singular elliptic problems, in Nonlinear Partial Differential Equations (Fes, 1994), Pitman Res. Notes Maths. Ser.343, Longman, Harlow, UK, 1996, pp. 112-146.
[5] S. I. Pohozaev, On eigenfunctions of quasilinear elliptic problems, Mat. Sb. 82, 192-212 (1970).
[6] S. I. Pohozaev, On one approach to nonlinear equations, Dokl. Akad. Nauk. 247, 1327-1331(in Russian)(1979).
[7] S. I. Pohozaev, On a constructive method in the calculus of variations, Dokl. AKad. Nauk. 288, 1330-1333 (in Russian)(1988).
[8] S. I. Pohozaev, On fibering method for the solution of nonlinear boundary value problems, Trudy Mat.Inst. Steklov 192, 140-163 (1997).
[9] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), pp. 126-150.

Naji Yebari
Département de Mathématiques, Université Abdelmalek Essaadi, B. P. 2121, Tetouan, Maroc

E-mail address: nyebari@hotmail.com, nyebari@fst.ac.ma
Abderrahim Zertiti
Département de Mathématiques, Université Abdelmalek Essaadi, B. P. 2121, Tetouan, Maroc

E-mail address: zertiti@fst.ac.ma

[^0]: 2000 Mathematics Subject Classification. 35J65, 35J25.
 Key words and phrases. Superlinear semi-positone problems; variational methods; fibring method.
 (C) 2006 Texas State University - San Marcos.

 Published September 20, 2006.

