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EXISTENCE OF NON-NEGATIVE SOLUTIONS FOR
NONLINEAR EQUATIONS IN THE SEMI-POSITONE CASE

NAJI YEBARI, ABDERRAHIM ZERTITI

Abstract. Using the fibring method we prove the existence of non-negative

solution of the p-Laplacian boundary value problem −∆pu = λf(u), for any

λ > 0 on any regular bounded domain of RN , in the special case f(t) = tq−1.

1. Introduction and main results

In this paper we are interested in finding nonnegative solutions to the equation

−∆pu = λf(u) in Ω,

u = 0 on ∂Ω,
(1.1)

for some specific f in the non positone case (f(0) < 0), under assumptions stated
below.

Here Ω is a connected and bounded subset of RN with boundary ∂Ω in C1,α.
We set

∆pu = div(|∇u|p−2∇u).

When p = 2, this type of problem in the nonpositone case can be studied via the
shooting method. Existence of a radially symmetric nonnegative solution for λ > 0
sufficiently small have been obtained in [1, 2] and nonexistence of such a solution
for λ > 0 large have been established in [1, 3], in the framework of the semi positone
case and f is superlinear. Observe that, since f(0) < 0, the constant 0 is an upper
solution of (1.1) and as a consequence it is not possible, in general, to apply the
usual techniques (for example: the method of upper and lower solutions, etc.) and
we shall work in the framework of the so-called fibration method introduced by
Pohozaev in [5], and then developed in [6, 7, 8]. We shall assume that f has the
form

f(t) = tq − 1, with q > p− 1 (1.2)
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To avoid the noncompactness problem we shall always assume that the problem is
subcritical, in the sense of the critical exponent for Ω,

p? =

{
Np

N−p if 1 < p < N,

+∞ if p ≥ N.
(1.3)

Let
u = θv, θ = λ−( 1

q−p+1 ), µ = λ
q

q−p+1 > 0 . (1.4)

and
−∆pu = uq − µ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω
(1.5)

It can be seen that (1.1), (1.2), (1.4) and (1.5) are equivalent. Also let p and q
satisfy

0 < p− 1 < q < p∗ − 1 (1.6)

where p∗ is given by (1.3). Concerning µ, we shall assume its positivity.
By a solution of (1.5), we mean a W 1,p

0 (Ω) ∩ L∞(Ω) function which is a critical
point of the functional

E(v) = −1
p

∫
Ω

|∇v|pdx +
1

q + 1

∫
Ω

|v|q+1dx− µ

∫
Ω

|v(x)|dx

and therefore satisfies∫
Ω

(|∇u|p−2∇u.∇ϕ− (uq − µ)ϕ)dx = 0

for every ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Our main result is as follows.

Theorem 1.1. Let assumptions (1.3) and (1.6) be satisfied. Then there exists
a nontrivial nonnegative solution u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) of problem (1.1) for any
λ > 0. Moreover, u ∈ C1,α(Ω) for some α > 0.

2. Proof of the main theorem

The proof is based on the fibering method and is divided into five stages.
Step 1: We introduce the Euler functional associated with (1.5) as follows

E(u) = −1
p

∫
Ω

|∇u|pdx +
1

q + 1

∫
Ω

|u|q+1dx− µ

∫
Ω

|u(x)|dx

According to the fibering method, we set

u(x) = rv(x), (2.1)

where r ∈ R+ and v ∈ W 1,p
0 (Ω). Then we obtain

Ẽ(r, v) = E(r, v) = −|r|
p

p

∫
Ω

|∇v|pdx +
|r|q+1

q + 1

∫
Ω

|v|q+1dx− µr

∫
Ω

|v(x)|dx (2.2)

We introduce the fibering functional∫
Ω

|∇v|pdx = 1 (2.3)
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Under condition (2.3) the functional Ẽ takes the form

Ẽ(r, v) = −rp

p
+

rq+1

q + 1

∫
Ω

|v|q+1dx− µr

∫
Ω

|v(x)|dx (2.4)

The bifurcation equation is

0 =
∂Ẽ

∂r
= −rp−1 + rq

∫
Ω

|v|q+1dx− µ

∫
Ω

|v(x)|dx (2.5)

which gives

−rp + rq+1

∫
Ω

|v|q+1dx− µr

∫
Ω

|v(x)|dx = 0. (2.6)

Let set
Ẽ(v) = E(r(v)v) (2.7)

Step 2: Let us consider the variational problem

M0 = sup
{
Ẽ(v); v ∈ W 1,p

0 (Ω)/
∫

Ω

|∇v|pdx = 1
}
. (2.8)

It follows that

Ẽ(v) = min
r≥0

Ẽ(r, v) = min
r≥0

{−rp

p
+

rq+1

q + 1

∫
Ω

|v|q+1dx− µr

∫
Ω

|v(x)|dx} < 0, (2.9)

as a matter of fact, (2.6) gives

−rp(v)
p

= −rq+1(v)
p

∫
Ω

|v|q+1dx + µ
r(v)
p

∫
Ω

|v(x)|dx,

On the other hand,

Ẽ(v) = E(r(v)v)

= −rq+1(v)
p

∫
Ω

|v|q+1dx + µ
r(v)
p

∫
Ω

|v(x)|dx

+
rq+1(v)

p

∫
Ω

|v|q+1dx− µr(v)
∫

Ω

|v(x)|dx,

which gives

Ẽ(v) =
(p− q − 1)
(q + 1)p

rq+1(v)
∫

Ω

|v|q+1dx− µr(v)(1− 1
p
)
∫

Ω

|v(x)|dx (2.10)

By (1.6), Ẽ(v) < 0.
Let us prove the following Lemma.

Lemma 2.1. The sequence maximizing problem (2.8) is bounded in W 1,p
0 (Ω).

Proof. Let (vn) be a maximizing sequence for (2.8). We set

vn(x) = cn + vn(x) (2.11)

with ∫
Ω

vn(x)dx = 0 . (2.12)

Since ∫
Ω

|∇vn|pdx =
∫

Ω

|∇vn|pdx = 1 (2.13)
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and by the Sobolev embedding theorems (the Poincare-Wirtinger inequality), the
sequence (vn) is bounded in W 1,p(Ω). From the bifurcation equation (2.5), we
obtain

rp
n = rq+1

n

∫
Ω

|cn + vn|q+1dx− µrn

∫
Ω

|cn + vn|dx. (2.14)

Let us assume that
cn → +∞, as n → +∞ . (2.15)

Then ∫
Ω

|1 +
vn

cn
|q+1dx =

1
cq+1
n rq−p+1

n

+
µ

cq
nrq

n

∫
Ω

|1 +
vn

cn
|dx . (2.16)

By embedding results, there exists C > 0 such that

‖vn‖W 1,p(Ω) ≤ C, ∀n ∈ N

Using (2.15) and since by assumption (1.6) the space W 1,p(Ω) is compactly em-
bedded in Lq+1(Ω). We may assume that (vn) converges strongly in latter space.
Then from (2.16) we have∫

Ω

|1 +
vn

cn
|q+1dx → |Ω| > 0, as n → +∞. (2.17)

The proof is complete. �

Hence, we can assume that the sequence (vn) converges weakly in W 1,p
0 (Ω). By

assumption (1.6), it follows that vn → v in Lq+1(Ω). This implies that

‖∇v0‖p ≤ lim inf
n→+∞

‖∇vn‖p .

Since

‖∇vn‖p
p =

∫
Ω

|∇vn|pdx = 1,

we obtain

0 ≤ ‖∇v0‖p
p =

∫
Ω

|∇v0|pdx ≤ 1. (2.18)

Now we shall prove the equality ∫
Ω

|∇v0|pdx = 1. (2.19)

We assume the contrary; i.e, that∫
Ω

|∇v0|pdx < 1. (2.20)

Note that

0 <

∫
Ω

|∇v0|pdx . (2.21)

Otherwise, if
∫
Ω
|∇v0|pdx = 0, v0 = c0 is a constant, and from (2.8), we have for

all ε > 0 there exist n0 ∈ N such that for all n ≥ n0 we have

M0 − ε < Ẽ(vn) < M0.

Let θ ∈]0, 1[. Then

Ẽ(θvn)− ε ≤ M0 − ε < Ẽ(vn) < M0 (2.22)
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by (2.10). We recall that

Ẽ(vn) =
(p− q − 1)
(q + 1)p

rq+1
n

∫
Ω

|vn|q+1dx− µrn(
p− 1

p
)
∫

Ω

|vn(x)|dx .

Using (2.22), we see that

(1− θ)µrn(
p− 1

p
)
∫

Ω

|vn(x)|dx < ε for all n ≥ n0.

Then we have

rn

∫
Ω

|vn(x)|dx → r0

∫
Ω

|v0(x)|dx = 0

as n → +∞ and v0 = c0 = 0 which gives Ẽ(v0) = 0. This contradicts M0 < 0.
Due to (2.20) and (2.21), there exists θ > 1 (i.e., θp = 1/

∫
Ω
|∇v0(x)|pdx > 1)

such that v∗ = θv0 satisfies ∫
Ω

|∇v∗(x)|pdx = 1

and

Ẽ(v∗) = Ẽ(θv0) = min
r≥0

{
− rp

p
+

rq+1

q + 1
θq+1

∫
Ω

|v0|q+1dx− µrθ

∫
Ω

|v0(x)|dx
}

= min
ρ≥0

{
− ρp

pθp
+

ρq+1

q + 1

∫
Ω

|v0|q+1dx− µρ

∫
Ω

|v0(x)|dx
}

> min
ρ≥0

{
− ρp

p
+

ρq+1

q + 1

∫
Ω

|v0|q+1dx− µρ

∫
Ω

|v0(x)|dx
}
.

Thus,
Ẽ(v∗) > Ẽ(v0).

This inequality contradicts the definition of (2.8). Thus, we have obtained a solution
to the variational problem.
Step 3:

Ẽ(v0) = sup
{
Ẽ(v); v ∈ W 1,p

0 (Ω)/
∫

Ω

|∇v|pdx = 1
}

The fibering method implies r = r0 = r(v0) where r0 > 0 and

− rp
0

p
+

rq+1
0

q + 1

∫
Ω

|v0|q+1dx− µr0

∫
Ω

|v0(x)| dx

= min
r≥0

{
− rp

p
+

rq+1

q + 1

∫
Ω

|v|q+1dx− µr

∫
Ω

|v(x)|dx
}

To complete the proof, we must show that the equation (1.5) is verified. We can
assume that v0 is nonnegative by replacing vn by |vn|. Moreover, there exists a
Lagrange multiplier σ such that

Ẽ′(v0).h = σ
( ∫

Ω

|∇(.)|pdx
)′

(v0).h ∀h ∈ W 1,p
0 (Ω). (2.23)

From the above equation, and by taking v0 as test function, we have

r0

{ ∫
Ω

((r0v0)q − µ)v0dx
}

= pσ

∫
Ω

|∇(v0)|pdx = pσ .



254 N. YEBARI, A. ZERTITI EJDE/CONF/14

By (2.6) we obtain σ = rp
0
p > 0. Then we can write

Ẽ′(v0) = pσ(−∆pv0)

which is equivalent to
−∆p(r0v0) = (r0v0)q − µ .

Then if we set u = r0v0 ≥ 0, we can see that u is a solution of problem (1.5).

Step 4: For u ≥ 0, we have Ẽ(v0) < 0, thus the solution u ≥ 0 is non trivial.
Step 5: We have obtained the nonnegative nontrivial solution u to problem (1.5).
A standard bootstrap argument (see Drabek [4]) shows that u ∈ L∞(Ω). Then the
asserted regularity of u ∈ C1,α

Loc(Ω) follows by Tolksdorf [9]. Thus the theorem is
proved.
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