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ON THE DIRECTION OF PITCHFORK BIFURCATION

XIAOJIE HOU, PHILIP KORMAN, YI LI

Abstract. We present an algorithm for computing the direction of pitchfork
bifurcation for two-point boundary value problems. The formula is rather

involved, but its computational evaluation is quite feasible. As an application,

we obtain a multiplicity result.

1. Introduction

We study positive, negative, and sign-changing solutions for the problem

u′′(x) + f(u(x))− λ = 0, for − 1 < x < 1,

u(−1) = u(1) = 0.
(1.1)

Our principal example will be f(u) = u2k, with an integer k ≥ 2, although our
result is considerably more general. For k = 1 this problem was exhaustively ana-
lyzed in Scovel’s Ph.D. thesis [7], and in McKean and Scovel [5]. They used explicit
integration via elliptic functions, which means that their method does not work
for k > 1. Anuradha and Shivaji [1] have studied a related problem. Using the
quadrature technique, they showed existence of infinitely many points of bifurca-
tion. Korman [3] has used bifurcation theory to approach the problem (1.1), and
in particular the case of f(u) = u2k, with k > 1. He was able to generalize some,
but not all, of the results of McKean and Scovel [5]. One of the difficulties involved
the direction of pitchfork bifurcation, which is the subject of the present paper.

Let us briefly review part of what is known for this problem in case of f(u) = u2k,
see [3] for more details. When λ = 0, the problem has a unique positive solution.
This solution continues for a while when λ > 0. At a critical λ = λ0 the positive
solution develops zero slope at the boundary, i.e. u′(−1) = u′(1) = 0, and a
pitchfork bifurcation occurs at λ = λ0. Namely, we have a symmetric sign-changing
solution for λ > λ0, and a parabola-like family of asymmetric solutions. One of
these solutions is negative near the x = −1 end and positive on the rest of the
interval (−1, 1), while the other one is negative near x = 1 end, see Figure 1. The
issue is: which way this parabola-like curve of asymmetric solutions bifurcates, is
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it for λ > λ0, or toward decreasing λ? (The numerical evidence of Ramaswamy [6],
and of Korman [2] suggests that the pitchfork opens forward in λ.)
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Figure 1. Two types of asymmetric solutions

The following elementary example shows why this question is non-trivial. The
solution set of the equation

x(ax2 − bλ) = 0
exhibits a pitchfork in (λ, x) plane, in a neighborhood of the point (λ = 0, x = 0),
for any non-zero constants a and b. If a/b > 0, the pitchfork opens to the right, and
if a/b < 0 to the left. The same behavior holds in case of more general equations

f(x, λ) ≡ x(ax2 − bλ) + · · · = 0,

where . . . stands for higher order terms at (0, 0) (e.g. λ2x2, x4, etc). To obtain the
ratio a/b, governing the direction of the pitchfork, one calculates

a/b = − fxxx(0, 0)
6fλx(0, 0)

.

If one tries the same approach for the equation (1.1), one needs to differentiate that
equation three times. The resulting equations has a number of terms, which seems
impossible to handle.

We approach the problem by using direct integration. Our algorithm involves
integrals that cannot be explicitly evaluated, but their computational evaluation is
quite feasible, both in case f(u) = u2k, and for more general nonlinearities.

2. The direction of bifurcation

Let us consider the symmetry breaking solution, which is negative near the
x = −1 end, and positive near x = 1. Let us denote by ξ the point of negative
minimum, by η the point of positive maximum, and by θ the root of u(x). We
also denote w = u(ξ) < 0 and v = u(η) > 0, the minimum and maximum values
respectively, see Figure 1. Clearly ξ = ξ(λ), η = η(λ), but since solutions of
autonomous equations are symmetric with respect to their extremal points, we
have

η − ξ = 1, for all λ. (2.1)
(The points ξ and η are midpoints of the intervals (−1, θ) and (θ, 1) respectively.)
Assume that the symmetry breaking solution bifurcates at λ = λ0. Then w = 0 at
λ = λ0. At other λ’s, λ = λ(w), w < 0. If we can show that dλ

dw (0) < 0 (> 0) then
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the pitchfork opens forward (backward). (Observe that the function λ(w) is defined
only for w ≤ 0. Hence λ(w) will have a point of minimum at w = 0, provided that
λ′(0) < 0.)

Clearly,
1
2
u′

2(x) + F (u(x))− λu(x) = c, (2.2)

where F (u) =
∫ u

0
f(t) dt, and c is a constant. Evaluating the formula (2.2) at x = ξ,

and then at x = η, we have c = F (w)− λw = F (v)− λv, which implies

λ =
F (v)− F (w)

v − w
. (2.3)

Also from (2.2) we have on the interval (ξ, η) (where du
dx > 0)

du

dx
=
√

2
√

F (v)− F (u)− λ(v − u).

Integrating over the unit interval (ξ, η) (see (2.1)),∫ v

w

du√
F (v)− F (u)− λ(v − u)

=
√

2. (2.4)

In formulas (2.3) and (2.4) we regard v and λ as functions of w, i.e. v = v(w),
λ = λ(w), with w ≤ 0. We have λ(0) = λ0, and v(0) ≡ v0 = u0(0), where
(λ0, u0(x)) is the point of pitchfork bifurcation. Let us calculate λ0 and v0 for our
f(u) = u2k. Setting w = 0 in (2.3), we have

λ0 =
F (v0)

v0
=

v2k
0

2k + 1
. (2.5)

Setting w = 0 in (2.4), and using (2.3) and (2.5)∫ v0

0

du√
v2k
0

2k+1u− 1
2k+1u2k+1

=
√

2. (2.6)

We evaluate the integral in (2.6) by making a substitution u = v0z,∫ v0

0

du√
v2k
0

2k+1u− 1
2k+1u2k+1

= v
−k+1/2
0

√
2k + 1

∫ 1

0

dz√
z − z2k+1

≡ v
−k+1/2
0

√
2k + 1 J(k),

where, using Mathematica, we express in terms of the standard gamma function,

J(k) ≡
∫ 1

0

dz√
z − z2k+1

=
2
√

πΓ(1 + 1
4k )

Γ( 1
2 + 1

4k )
.

Returning to (2.6), we have

v0 =
[ (2k + 1)J2(k)

2

]1/(2k−1)

. (2.7)

We calculate v0 from this formula, and then use (2.5) to calculate λ0. We now turn
to the calculation of dλ

dw (0). In the formula (2.3) we multiply through by v−w, and
differentiate with respect to w,

λ′(w) (v(w)− w) + λ(w)(v′(w)− 1) = f(v)v′(w)− f(w).
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We now set w = 0. Then λ = λ0, and v = v0. Since f(0) = 0, we obtain

λ′(0) =
1
v0

[λ0 + v′(0) (f(v0)− λ0)] . (2.8)

In order to find v′(0), we plug (2.3) into (2.4), obtaining∫ v

w

du√
F (v)− F (u)− F (v)−F (w)

v−w (v − u)
=
√

2. (2.9)

The integral in (2.9) is improper at both end-points. To regularize it, we use the
substitution

u =
1
2
(v − w) sin θ +

w

2
+

v

2
. (2.10)

Then (2.9) takes the form

G(v, w) ≡
∫ π/2

−π/2

H(v, w, θ) dθ =
√

2, (2.11)

where

H(v, w, θ) =
1
2

(v − w)3/2 cos θ√
(F (v)− F (u)) (v − w)− (F (v)− F (w)) (v − u)

,

and u is given by (2.10). Mathematica seems unable to evaluate exactly the inte-
gral in (2.11) for general k, however it easily evaluates a very accurate numerical
approximation for any particular k. We now differentiate (2.11) with respect to w

Gv(v, w)v′(w) + Gw(v, w) = 0,

where Gv =
∫ π/2

−π/2
Hv(v, w, θ) dθ, and Gw =

∫ π/2

−π/2
Hw(v, w, θ) dθ. We now set

w = 0, v = v0, and solve for v′(0),

v′(0) = −Gw(v0, 0)
Gv(v0, 0)

. (2.12)

After calculating v′(0) from (2.12), we are able to calculate λ′(0) from (2.8).

Example. Let k = 2, i.e. f(u) = u4. Using Mathematica, we calculate λ0 ' 6.454,
v0 ' 2.383, v′(0) ' −0.542, and λ′(0) ' −3.160. Conclusion: we have a pitchfork
bifurcation at λ0 ' 6.454, with the pitchfork facing forward in λ.

One can verify that λ′(0) < 0 for larger k too (the values of λ′(0) < 0 increase
with k, and λ′(0) ' −2.003 at k = 720), although at k = 721 (and larger k) our
program runs into a problem: Mathematica is unable to calculate the integral for
Gw(v0, 0) to the accuracy it desires. When we had replaced Mathematica’s NIn-
tegrate command by a “home-made” numerical integration routine, the program
worked for larger k too, and the results were similar. However, we state the next
result conservatively.

Theorem 2.1. Consider the problem

u′′(x) + u2k(x)− λ = 0, for −1 < x < 1, u(−1) = u(1) = 0, (2.13)

with 1 ≤ k ≤ 720. Compute λ0 = λ0(k) by using the formulas (2.7) and (2.5).
Then there is a negative λ̄ = λ̄(k) < 0, so that the problem (2.13) has exactly
two positive solutions for λ̄ < λ < 0, it has exactly one positive and one negative
solution on (0, λ0). Moreover, there is a λ1(k) > λ0, so that the problem (2.13) has
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four solutions on (λ0, λ1), one negative (and symmetric), one sign-changing and
symmetric (with u(0) > 0), and two asymmetric solutions (see Figure 2).

Proof. It is well known that at λ = 0 there exists a unique positive solution. This
solution is known to be non-degenerate, so that we can continue it for small λ > 0.
Setting u(x) = µv(x), with µ determined by the relation µ2k−1 = λ, we convert the
problem (2.13) into

v′′(x) + λ(v2k(x)− 1) = 0, for − 1 < x < 1, v(−1) = v(1) = 0. (2.14)

With the parameter now in front of the nonlinearity, the results of [4] apply. They
imply that we can always continue both positive and sign-changing solutions of
(2.14) (and hence of (2.13), and that the curve of positive solutions does not turn
for λ > 0 (for g(v) ≡ v2k − 1, we have vg′(v) > g(v) for all v > 0). By Korman
[2] this curve of positive solutions cannot be continued for all λ > 0 (the function
g(v) = v2k − 1 has no “stable” roots, i.e. roots where derivative is negative). By
the Sturm’s comparison theorem, it is easy to see that positive solutions cannot
become unbounded at a finite λ. Hence, solutions on this curve must eventually
stop being positive, and the only way this can happen is that u′(±1) = 0 at some
λ0 (in view of the symmetry of positive solutions). By P. Korman [3] a pitchfork
bifurcation occurs at λ0, and by the result of the present paper, the pitchfork faces
forward in λ. �

u’(−1)

lambda

O

Figure 2. Pitchfork bifurcation

Remarks

(1) The bifurcation diagram for the Theorem 2.1 is given in Figure 2, where
we draw u′(−1) as a function of λ. In that figure solid lines denote positive
and negative solutions, the dashed line denotes sign-changing symmetric
solutions, and the doted lines stand for the symmetry breaking solutions.
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(2) Our result applies to more general f(u). If one is only interested in local
direction of pitchfork bifurcation, one can consider any differentiable f(u),
with f(0) = 0.

(3) Our computations constitute a proof that the pitchfork opens forward,
rather than a numerical simulation. We have computed the integrals in
(2.12) by using a sophisticated adaptive routine of Mathematica. We had
λ′(0) < −2 for all 1 ≤ k ≤ 720. Even assuming a 50% relative error, λ′(0)
is still negative. Mathematica’s relative error is much less than that, and in
fact our program quit at k = 721, when it could not deliver high accuracy.
If someone desires an absolute assurance, one can do error analysis of the
integration method, together with computations in exact arithmetics. This
would be very time consuming, but straightforward.

(4) It was shown in P. Korman [3] that the problem (2.13) has infinitely many
points of pitchfork bifurcation. It follows from our result that they all face
forward.
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