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AN AUGMENTED IIM-LEVEL SET METHOD FOR STOKES
EQUATIONS WITH DISCONTINUOUS VISCOSITY

ZHILIN LI, SHARON R. LUBKIN, XIAOHAI WAN

Abstract. A finite difference method is proposed for incompressible Stokes
equations with discontinuous viscosity. The method combines the augmented

immersed interface method with a level set representation of the interface

on a uniform Cartesian grid. In the proposed method, augmented interface
variables are introduced along the interface and be solved by the GMRES

iterative method. The augmented approach allows fast Poisson solvers to be

used and therefore is very efficient. Numerical examples including two moving
interface problems are presented.

1. Introduction

In this paper, we present a numerical method for solving the stationary in-
compressible Stokes equations for two-phase Newtonian flows with an arbitrary
interface. The governing equations have the following form

∇p = ∇ · µ
(
∇u + (∇u)T

)
+ F(x) + g(x), (1.1)

with the incompressibility condition

∇ · u = 0, (1.2)

where u = (u, v)T is the fluid velocity, p is the fluid pressure, µ is the fluid viscosity,
x = (x, y) is the Cartesian coordinate variable, g = (g1, g2)T is a body force such
as gravity, and F is a source which can have a Dirac delta function singularity,

F(x) =
∫

Γ

f(s)δ(x−X(s))ds (1.3)

where Γ is a smooth interface in the solution domain with the arc-length parameter
s, f = (f1, f2)T is the source density, and δ(·) is the Dirac delta function defined in
the distribution sense. The body force term g may also have a finite jump across
the interface Γ as well.

The interface Γ divides the solution domain Ω into two parts Ω+ and Ω− with
Ω = Ω+ ∪ Ω−. If the interface is closed, we use Ω+ to express the exterior domain
of the interface.

2000 Mathematics Subject Classification. 65M06, 65M12, 76T05.
Key words and phrases. Incompressible Stokes equations; discontinuous viscosity;

interface problem; immersed interface method; level set method; fast Poisson solver, GMRES.
c©2007 Texas State University - San Marcos.

Published February 28, 2007.

193



194 Z. LI, S. R. LUBKIN, X. WAN EJDE/CONF/15

We assume that the viscosity coefficient µ is piecewise constant across the inter-
face:

µ(x) =

{
µ+ if x ∈ Ω+,

µ− if x ∈ Ω−,
(1.4)

where µ+ and µ− are two positive constants.
In this paper, we propose a finite difference method coupled with a level set

function representation of the interface on a uniform Cartesian grid to solve the
problem. Finite element and boundary integral methods for this problem can be
found in the literature. These methods may be more efficient if only the solution
on the interface is solved. In our method, we solve for the velocity in the entire
domain.

There are at least two difficulties in solving (1.1)-(1.4) numerically using finite
difference methods. The first one is to deal with the singular force term. A simple
way is to use Peskin’s discrete delta function approach [24] to distribute the singular
force to nearby grid points. Such a discretization is typically first order accurate
and will smooth out the solution. The second difficulty is how to deal with the
discontinuous viscosity. A simple smoothing method may introduce large errors;
see [12] for a one-dimensional example.

In the case of a continuous viscosity with a Dirac delta function source distri-
bution along an interface, various methods have been developed. We refer the
readers to [2, 5, 10, 19, 32] for various methods and the references therein. The
difficulty with a discontinuous viscosity is that the jump conditions for the pressure
and velocity are coupled together (section 3), which makes it difficult to discretize
the system accurately. Approximations of the jump conditions have been used to
decouple the system [16] and have been productively used to simulate problems in
biological fluid dynamics [18].

The augmented immersed interface method for incompressible 2D Stokes flows
with discontinuous viscosity has been developed [15] with the interface represented
by a cubic spline interpolation, a variation of the particle approach. It is easy
with splines to obtain the surface derivatives of jumps of the material variables
(pressure and velocity) since they can be expressed as the functions of the arc-
length. However, the spline approach is difficult to use for multi-connected domains,
moving interface problems with topological changes such as merging and splitting,
and for three dimensional (3D) problems. In addition, the level set method usually
has better stability. For a spline approach, re-parameterization, filtering, and re-
griding may be needed at every or every other time steps. All these reasons favor a
level set approach over a spline approach. Nevertheless, it is not trivial to compute
surface derivatives of an interface quantity from the level set method since the
interface is explicitly defined only at grid points.

2. The Stokes solver: Three Poisson equations approach

Instead of writing the singular force as a source term for the Stokes equations
(1.1), we can solve the Stokes equations in the form

∇p = ∇ · µ+
(
∇u + (∇u)T

)
+ g(x), x ∈ Ω+ (2.1)

and
∇p = ∇ · µ−

(
∇u + (∇u)T

)
+ g(x), x ∈ Ω−. (2.2)
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We define viscosity ratio λ = µ−/µ+. If Γ is closed and λ > 1, then the fluid phase
inside the interface is more viscous and is called a drop; if Γ is closed and λ < 1,
then the fluid phase inside the interface is less viscous than the ambient fluid and
is called a bubble (see for example [26]); if λ = 1 the fluids inside and outside have
equal viscosity.

The solutions to (2.1)-(2.2) are coupled by the jump conditions which will be
stated in Section 3. If we apply the divergence operator to both sides of the mo-
mentum equation (2.1, 2.2) and make use of the incompressibility condition(1.2) in
each fluid, we get

∆p = ∇ · g, (2.3)

where ∆ is the Laplacian. This is a Poisson equation for the pressure p. Once p is
solved from the equation above, we can rewrite the Stokes equation (2.1)-(2.2) in
the form [1]

∆ũ =
∂p

∂x
− g1, (2.4)

∆ṽ =
∂p

∂y
− g2, (2.5)

where

ũ(x) =

{
µ+u(x) x ∈ Ω+

µ−u(x) x ∈ Ω−,
ṽ(x) =

{
µ+v(x) x ∈ Ω+

µ−v(x) x ∈ Ω−.
(2.6)

We obtain u = (u, v) by solving ũ = (ũ, ṽ) from the Poisson equations above. The
three decoupled Poisson equations (2.3)-(2.5) each can be solved efficiently using a
fast Poisson solver if the solutions are smooth across the interface.

3. Jump conditions

It is well known that if there are singular interface forces, then the pressure
p is discontinuous, and the velocity u is non-smooth across the interface. If the
viscosity is discontinuous, that is λ 6= 1, then ũ is also discontinuous. Due to these
discontinuities, the direct application of three Poisson solvers without modifications
will not give the correct solution. It is critical to incorporate the jump conditions in
the finite difference schemes so that the solutions in different phases can be coupled
together correctly across the interface. The jump condition on the pressure p at
point x∗ on the interface Γ is defined as

[p](x∗) =
(

lim
x→(x∗)+

p(x)
)
−
(

lim
x→(x∗)−

p(x)
)
. (3.1)

Other jump conditions are defined similarly. Jump conditions on each variable can
be derived either from the physics of the problem itself or from the partial differen-
tial equations. The derivations of the jump conditions for the Stokes equation are
described elsewhere [15]. Here we just list the results. Define

q = (q1, q2)
T = ([ũ] , [ṽ])T

. (3.2)
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Then the solutions of the Stokes flow are the following three Poisson equations:
∆p = ∇ · g,

[p] = f̂1 − 2
∂

∂τ
(q · τ (x∗)) ,

[ ∂p

∂n

]
=

∂f̂2

∂τ
+ 2

∂2

∂τ2
(q · n (x∗))− 4κ

∂

∂τ
(q · τ (x∗)) + [g · n],

(3.3)


∆ũ = px − g1,

[ũ] = q1,[∂ũ

∂n

]
=
(
f̂2 +

∂

∂τ
(q · n (x∗))

)
sin θ −

( ∂

∂τ
(q · τ (x∗))

)
cos θ,

(3.4)


∆ṽ = py − g2,

[ṽ] = q2,[ ∂ṽ

∂n

]
= −

(
f̂2 +

∂

∂τ
(q · n (x∗))

)
cos θ −

( ∂

∂τ
(q · τ (x∗))

)
sin θ,

(3.5)

[ ũ
µ

]
= 0,

[ ṽ
µ

]
= 0. (3.6)

In the jump conditions above, n = (cos θ, sin θ)T and τ = (− sin θ, cos θ)T are unit
outward normal and tangential directions respectively, θ is the angle between the
x-axis and the normal directions, f̂1 = f ·n and f̂2 = f ·τ are the force components in
the normal and tangential directions. κ is interface curvature. Unit circle is defined
to have constant curvature −1. The vector q is called the augmented variable which
is unknown unless we know the solution (u, v)T . However, if we know q, then the
jump conditions for the pressure and the velocity are decoupled in terms of q and
its surface derivatives. In this paper, we assume that we have a periodic boundary
for all the variables.

The main idea of the augmented approach is to solve q such that (ũ, ṽ)T and p
satisfy the Stokes equations, the jump conditions above, and the kinematic condi-
tion

[u] = [v] = 0. (3.7)

Then (u, v)T and p must be the solution to the original problem.
The jump conditions above enable us to use the immersed interface method

(IIM) to solve the three Poisson equations (2.3)-(2.5) if a guess q is given. The
generalized minimum residual (GMRES) method [28] is used to solve for q so that
the kinematic condition can be satisfied.

4. The numerical algorithm

4.1. Level set representation of interfaces and related quantities. We use
the zero level set of a two dimensional function ϕ(x, y) to represent the interface.
That is, ϕ(x, y) is such a function that

Γ = {(x, y) : ϕ(x, y) = 0} . (4.1)

Generally ϕ(x, y) is chosen as the signed distance function from the interface. We
denote Ω+ = {(x, y), |ϕ(x, y) ≥ 0} and Ω− = {(x, y), |ϕ(x, y) < 0}. For simplicity,
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we assume that the domain Ω is a rectangle [a, b]× [c, d]. The solution domain is
discretized using a uniform Cartesian grid

xi = a + ihx, i = 0, 1, . . . ,m, hx =
b− a

m
;

yj = c + jhy, j = 0, 1, . . . , n, hy =
d− c

n
.

(4.2)

In the rest of the paper, we take hx = hy = h to simplify the notation. The level
set function ϕi,j = ϕ(xi, yj) is defined at grid points. A grid point (xi, yj) is an
irregular inner grid point if

ϕi,j < 0 (4.3)

and any of the following four inequalities is true:

ϕi,j · ϕi−1,j ≤ 0, ϕi,j · ϕi+1,j ≤ 0,

ϕi,j · ϕi,j−1 ≤ 0, ϕi,j · ϕi,j+1 ≤ 0.
(4.4)

Similarly, a grid point (xi, yj) is an irregular outer grid point if

ϕi,j ≥ 0 (4.5)

and any of the following four inequalities is true:

ϕi,j · ϕi−1,j < 0, ϕi,j · ϕi+1,j < 0,

ϕi,j · ϕi,j−1 < 0, ϕi,j · ϕi,j+1 < 0.
(4.6)

For a given irregular grid point x = (xi, yj) near a sufficiently flat section of in-
terface, there is a corresponding orthogonal projection point x∗ = (x∗, y∗) on the
interface satisfying

x∗ = x + an(x) (4.7)

where a is a real unknown variable and n = ∇ϕ/|∇ϕ| is the unit outward normal
direction at x. See Fig. 1 for an illustration.

Since ϕ(x∗) = 0, we have

0 = ϕ(x + an) ≈ ϕ(x) + |∇ϕ|a +
1
2
(nTH(ϕ)n)a2 (4.8)

where the Hessian matrix H is defined as

H(ϕ) =

(
∂2ϕ
∂x2

∂2ϕ
∂x∂y

∂2ϕ
∂y∂x

∂2ϕ
∂y2

)
. (4.9)

The derivatives are approximated using the central finite difference schemes:

∂ϕ

∂x
≈ ϕi+1,j − ϕi−1,j

2h
, (4.10)

∂ϕ

∂y
≈ ϕi,j+1 − ϕi,j−1

2h
, (4.11)

∂2ϕ

∂x2
≈ ϕi+1,j − 2ϕi,j + ϕi−1,j

h2
, (4.12)

∂2ϕ

∂y2
≈ ϕi,j+1 − 2ϕi,j + ϕi,j−1

h2
, (4.13)

∂2ϕ

∂x∂y
=

∂2ϕ

∂y∂x
≈ ϕi+1,j+1 + ϕi−1,j−1 − ϕi+1,j−1 − ϕi−1,j+1

4h2
. (4.14)
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Figure 1. An irregular grid point x = (xi, yj) and its normal
projection point x∗ = (x∗, y∗) on the interface Γ. (ξ, η) is the local
coordinate system at x∗.

At each orthogonal projection x∗, the geometrical information needed includes
the curvature κ and the angle θ between the normal direction and the x-axis at x∗.
The curvature is defined as usual

κ = −
∂2ϕ
∂x2 (∂ϕ

∂y )2 − 2 ∂2ϕ
∂x∂y

∂ϕ
∂x

∂ϕ
∂y + ∂2ϕ

∂y2 (∂ϕ
∂x )2(

(∂ϕ
∂x )2 + (∂ϕ

∂y )2
) 3

2
. (4.15)

The unit normal direction is determined by

cos θ =
∂ϕ
∂x√

(∂ϕ
∂x )2 + (∂ϕ

∂y )2
, sin θ =

∂ϕ
∂y√

(∂ϕ
∂x )2 + (∂ϕ

∂y )2
. (4.16)

The derivatives at x∗ can be approximated using the bilinear interpolation formula
from the derivatives already calculated at grid points using (4.10)-(4.14) as follow-
ing. Given an interface point x∗ and a grid function f(·), we label the four grid
points surrounding x∗ as

(xi, yj), (xi+1, yj), (xi, yj+1), (xi+1, yj+1). (4.17)

See Fig. 1 for an example. If we define

a =
2(x∗ − xi)

h
− 1, b =

2(y∗ − yj)
h

− 1, (4.18)

then we can use the bilinear interpolation scheme{
(1− a)(1− b)fi,j + (1 + a)(1− b)fi+1,j

+ (1− a)(1 + b)fi,j+1 + (1 + a)(1 + b)fi+1,j+1

}
/4

(4.19)
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to approximate f(x∗). We can calculate κ, cos θ and sin θ at the orthogonal pro-
jection point x∗ if we set f = κ(x), f = cos θ, and f = sin θ respectively using
the interpolated formula above. Note that these quantities are poorly conditioned
if |∇ϕ| ∼ 0. However our choice of ϕ as the signed distance function avoids this
difficulty.

4.2. The immersed interface method for elliptic interface problems. Given
an intermediate approximation of q, the solution to the Stokes equations can be
obtained by solving the three Poisson equations (2.3)-(2.5) with known jump con-
ditions in the solution and the flux:

(Ψx)x + (Ψy)y = R(x, y)

[Ψ] = w1, [Ψn] = w2.
(4.20)

using the immersed interface method [9, 13, 14]. The finite difference scheme using
the immersed interface method can be simply written as

Ψi−1,j + Ψi+1,j + Ψi,j−1 + Ψi,j+1 − 4Ψij

h2
= Rij + Cij (4.21)

where Cij = 0 at regular grid points. At an irregular grid point, Cij depends on the
interface curvature, first and second order surface derivatives of w1 and w2 (see [11]
for its formulation and derivation). The immersed interface method not only gives
a second order accurate solution, but also enables us to use widely available fast
Poisson solvers to solve the discrete systems of equations. The fast Poisson solver,
for example the one from Fishpack [23], only requires O(N log(N)) operations,
where N is the total number of grid points. Therefore the Stokes equations with
given q can be solved in O(3N log(N)) operations, which corresponds to the cost
of one GMRES iteration.

4.3. Computing an interface quantity and its tangential derivatives using
the least squares interpolation scheme. To determine the correction term Cij

we need to know the jumps [Ψ] = w1(s), [∂Ψ
∂n ] = w2(s) and the tangential derivatives

w′1, w′′1 and w′2, where s is the arc-length parameterization of the interface [11]. The
problem may be formulated thus: given the values of an interface function φ(s) at a
set of interface points s = s1, . . . , s = sn, find the values of φ(s∗), φ′(s∗) and φ′′(s∗).
It is critical to choose an interpolation scheme for the immersed interface-level set
method to work well.

We assume that the values of the interface function φ(s) are known at all the
projection points from the inner irregular grid points and we want to interpolate
φ(s) at the projection points from the outer irregular grid points, and φ′(s) and
φ′′(s) at the projection points from both inner and outer irregular grid points. See
Fig. 2 for an illustration.

The least squares interpolation scheme for approximating φ(s∗) (or φ′(s∗) and
φ′′(s∗)) can be written as ∑

i

γiφ(si), (4.22)

where γi’s are the coefficients that need to be determined from the Taylor expansion
at the interpolation point s∗

φ(si) = φ(s∗) + φ′(s∗)(si − s∗) +
1
2
φ′′(s∗)(si − s∗)2 + . . . . (4.23)
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Figure 2. On the interface Γ, the values of the interface function
φ(s) at the projection points from the inner irregular grid points
(dark circles) can be used to interpolate both the values of φ(s) at
the projection points from the outer irregular grid points (white
circles) and the values of φ′(s) and φ′′(s) at all the projection
points.

We define

a1 =
∑

i

γi, a2 =
∑

i

(si − s∗)γi a3 =
∑

i

1
2
(si − s∗)2γi, (4.24)

where (si − s∗) is the signed arc length from the interface point at s = si to the
point at s = s∗(see [17] for its formula using the Hermite cubic spline approximation
method). Substituting (4.23) into (4.22), we obtain the coefficients γi from setting

a1 = 1, a2 = 0, a3 = 0. (4.25)

If we choose more than three interface points for the interpolation, then the linear
system of equations (4.25) is under-determined, that is, there are an infinite number
of solutions. We use the singular value decomposition (SVD) method to solve the
system of equations (4.25) to get the unique solution that has the least 2-norm
among all feasible solutions.

For a given s = s∗, the interpolation points are chosen as a few orthogonal
projections of inner grid points (ϕi,j < 0) that are the first few closest to the point
(X(s∗), Y (s∗)). The criterion is the arc length distance such that |s − s∗| ≤ α,
where α is a parameter. We choose α = 6.5h.

4.4. Augmented immersed interface method for the Stokes equations.
The augmented unknown q needs to be solved only at orthogonal projection points
from the inner irregular grid points because we can use interface interpolation to
get the values at outer projection points.

Given a discrete approximation of (q1, q2) at {Xk}, we can solve the first three
equations (3.3)-(3.5) to get an approximate solution: the pressure P(Q), the scaled
velocity Ũ(Q) and Ṽ(Q). Generally the computed velocity (Ũ(Q), Ṽ(Q)) does not
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satisfy the two augmented equations in (3.6), that is, (U,V) = (Ũ/µ, Ṽ/µ) may
not be continuous across the interface.

Let us concatenate the discrete solutions {Pij}, {Uij}, and {Vij} as a vector Ũ
whose dimension is O(3MN), where M and N are the number of grid lines in the
x and y direction respectively. We denote also the vector of the discrete values of
(q1, q2) at the control points {Xk} (consisted of projection points only from the
inner irregular grid points) by Q whose dimension is O(2Nb). Then the discrete
solution of (3.3)-(3.5) given Q can be written as

A Ũ + BQ = F1 (4.26)

for some vector F1 and sparse matrices A and B. It requires solving three Poisson
equations with different source terms and jump conditions to get Ũ .

Once we know the solution Ũ given Q, we can use (Ũ, Ṽ) and the jump con-
ditions [Ũn] and [Ṽn] which also depend on Q, to get [U(Q)] = [Ũ(Q)/µ] and
[V(Q)] = [Ṽ(Q)/µ] at those control points {Xk}, 1 ≤ k ≤ Nb. If both ‖ [U(Q)] ‖
and ‖ [V(Q)] ‖ are smaller than a given tolerance, then the method has already
converged and the set of Q, Ũ/µ, Ṽ/µ is an approximate solution. The interpo-
lation scheme to get [Ũ(Q)/µ] and [Ṽ(Q)/µ], which will be explained in the next
sub-section, depends on Ũ ,Q linearly. Therefore we can write([

Ũ/µ
]
,
[
Ṽ/µ

])T

= S Ũ + EQ− F2, (4.27)

where S and E are two sparse matrices, and F2 is a vector. The matrices depend
on the interpolation scheme but do not need to be actually constructed in the
algorithm. We need to choose such a vector Q that the continuity condition for the
velocity is satisfied along the interface Γ. If we put the two matrix-vector equations
(4.26) and (4.27) together we get[

A B
S E

] [
Ũ
Q

]
=
[
F1

F2

]
. (4.28)

Note that Q is defined only on a set of points {Xk} on the interface while Ũ is
defined at all grid points. The Schur complement for Q is

(E − SA−1B)Q = F2 − SA−1F1 = F̄. (4.29)

If we can solve the system above to get Q, then we can get Ũ easily. Because the
dimension of Q is much smaller than that of Ũ , we expect to get a reasonably fast
algorithm for the two-phase Stokes equations if we can solve (4.29) efficiently.

In implementation, the GMRES iterative method [28] is used to solve (4.29).
The GMRES method only requires matrix-vector multiplication. We explain below
how to evaluate the right hand side F̄ of the Schur complement, and how to evaluate
the matrix-vector multiplication needed by the GMRES iteration. We can see why
we do not need to form the coefficient matrix E − SA−1B explicitly.

4.4.1. Evaluation of the right hand side of the Schur complement. First we set
Q = 0 and solve the de-coupled system (3.3)-(3.5), or (4.26) in the discrete form,
to get Ũ(0) which is A−1F1 from (4.26). From the interpolation (4.27), we also
have ([

U(0)
]
,
[
V(0)

])T = S Ũ(0) + E 0− F2 = S Ũ(0)− F2.
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Note that the residual of the Schur complement for Q = 0 is

R(0) = (E − SA−1B)0− F̄ = −F̄

= −
(
F2 − SA−1F1

)
= −F2 + S Ũ(0)

= ([U(0)] , [V(0)])T
,

(4.30)

which gives the right hand side of the Schur complement system with an opposite
sign.

4.4.2. Evaluation of the matrix-vector multiplication. The matrix-vector multipli-
cation of the Schur complement system given Q is obtained from the following two
steps:

Step 1: Solve the coupled system (3.3)-(3.5), or (4.26) in the discrete form,
to get Ũ(Q).

Step 2: Interpolate Ũ(Q) using (4.27) to get ([U(0)] , [V(0)])T . Then the
matrix vector multiplication is(

E − SA−1B
)
Q = ([U(Q)] , [V(Q)])T − ([U(0)] , [V(0)])T

. (4.31)

This is because(
E − SA−1B

)
Q = EQ− SA−1BQ

= EQ− S
(
A−1F1 − Ũ(Q)

)
(from (4.26)) ,

= EQ + S Ũ(Q)− F2 + F2 − SA−1F1

=
([

U(Q)
]
,
[
V(Q)

])T + F̄ (from (4.27)),

=
([

U(Q)
]
,
[
V(Q)

])T − ([U(0)
]
,
[
V(0)

])T
, (from (4.30)).

Now we can see that a matrix-vector multiplication is equivalent to solving the
coupled system (3.3)-(3.5), or (4.26) in the discrete form, to get Ũ, and using an
interpolation scheme (4.27) to get ([U], [V])T at the control points.

Since we know the right hand side of the linear system of equations and the
matrix-vector multiplication of the coefficient matrix, it is straightforward to use
GMRES or other iterative methods.

In summary, the system of equations for Q can be written as

GQ = b, (4.32)

where b = −
(

[U(0)]
[V(0)]

)
. The coefficient matrix G does not need to be formed

explicitly. Given a guess of Qk, the matrix vector multiplication that is needed for
the GMRES iterative method is simply

GQk =
(

[U(Qk)]
[V(Qk)]

)
−
(

[U(0)]
[V(0)]

)
. (4.33)

4.5. Computing the residual vector using the least squares interpolation.
The matrix-vector multiplication (4.33) only involves the velocity jumps at the
inner projection points. However, the velocity solved from the Poisson equations
(2.3, 2.4, 2.5) is defined only at grid points. We use a least squares interpolation
scheme again to get the velocity at the interface points. The interpolation scheme
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is critical for the accuracy and convergence speed of the GMRES method and thus
is very important for the new method.

For an inner projection point x∗ = (x∗, y∗) and its neighboring grid points
{x = (xm, yn)|m,n ∈ N}, we can find

(ũ(x∗))+ = lim
x→(x∗)+

ũ(x) (4.34)

using the following interpolation∑
m,n

βm,nũ(xm, yn) + C (4.35)

where the coefficients βm,n and the correction term C are to be determined. It is
more convenient to use the local coordinate system in the tangential and normal
directions (Fig. 1) defined as

ξm = (xm − x∗) cos θ + (yn − y∗) sin θ,

ηn = −(xm − x∗) sin θ + (yn − y∗) cos θ.
(4.36)

The Taylor expansion of ũ(xm, yn) at (ξ, η) = (0, 0) is

ũ(ξm, ηn)

= ũ± +
∂ũ±

∂ξ
ξm +

∂ũ±

∂η
ηn +

1
2

∂2ũ±

∂ξ2
ξ2
m +

1
2

∂2ũ±

∂η2
η2

n +
∂2ũ±

∂ξ∂η
ξmηn + . . . .

(4.37)
The ± sign is determined according to whether x ∈ Ω±. Let us define

a+
1 =

∑
(xm,yn)∈Ω+

βm,n, a−1 =
∑

(xm,yn)∈Ω−

βm,n,

a+
2 =

∑
(xm,yn)∈Ω+

βm,nξm, a−2 =
∑

(xm,yn)∈Ω−

βm,nξm,

a+
3 =

∑
(xm,yn)∈Ω+

βm,nηn, a−3 =
∑

(xm,yn)∈Ω−

βm,nηn,

a+
4 =

∑
(xm,yn)∈Ω+

βm,n
1
2
ξ2
m, a−4 =

∑
(xm,yn)∈Ω−

βm,n
1
2
ξ2
m,

a+
5 =

∑
(xm,yn)∈Ω+

βm,n
1
2
η2

n, a−5 =
∑

(xm,yn)∈Ω−

βm,n
1
2
η2

n,

a+
6 =

∑
(xm,yn)∈Ω+

βm,nξmηn, a−6 =
∑

(xm,yn)∈Ω−

βm,nξmηn.

(4.38)

Substituting (4.37) into (4.35), the coefficients βm,n of the interpolation scheme for
ũ+ are seen to be the solution of the following linear system of equations

a+
1 + a−1 = 1, a+

2 + a−2 = 0, a+
3 + a−3 = 0,

a+
4 + a−4 = 0, a+

5 + a−5 = 0, a+
6 + a−6 = 0.

(4.39)

The correction term is

C = a−1 [ũ] + a−2
[∂ũ

∂ξ

]
+ a−3

[∂ũ

∂η

]
+ a−4

[∂2ũ

∂ξ2

]
+ a−5

[∂2ũ

∂η2

]
+ a−6

[ ∂2ũ

∂ξ∂η

]
. (4.40)

Again, we choose more than six grid points for the interpolation to get an under-
determined system of equations. The linear system of equations is solved by the
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SVD method. The jump conditions in the correction term can be represented by
the jump in the solution and the flux (see [15]).

Similarly, we can get an interpolation scheme for ũ−. Once we have ũ± at all
orthogonal projections of inner irregular grid points, it is also straightforward to

get
(

[U]
[V]

)
which is needed in the matrix-vector multiplication.

To get the interpolation grid points for a given inner projection point x∗ =
(x∗, y∗), we choose at least 6 closest grid points to (x∗, y∗) as the interpolation
stencil so that we can have a third order accurate interpolation scheme. To avoid
excess points we use | (ξm, ηn) | ≤ 2.5h.

4.6. The level set method for moving interfaces. We use the level set method
first introduced by Osher & Sethian [22] to solve the moving interface problems
modeled by the incompressible Stokes equations. The level set function is evolved
according to the level set function (a Hamilton-Jacobi equation)

∂ϕ

∂t
+ Vn|∇ϕ| = 0 (4.41)

where Vn = u ·n is the component of the velocity in the level sets normal direction
and ϕ = ϕ(x, t). The level set function ϕ is often chosen as the signed distance
function which satisfies the Eikonal equation

|∇ϕ| = 1 (4.42)

at least in a neighborhood of the interface. To ensure that the level set function ϕ
remains the signed distance function, we solve the following re-initialization equa-
tion at each time step after interface advection until |∇ϕ| = 1 + O(h2):

ϕ(x, t = 0) = ϕ0,

∂ϕ

∂t
= sign(ϕ0)(1− |∇ϕ|).

(4.43)

Numerical methods [21, 30] for Hamilton-Jacobi (HJ) equations can be used
to solve the level set equations (4.41)-(4.43). In our implementation, we use the
explicit forward Euler scheme for the time derivative and the third order WENO
(Weighted Essentially Non-Oscillatory) scheme for the spatial derivatives.

The standard level set methods do not preserve volume well. Sussman et. al. [31]
incorporated the volume conservation condition into the re-initialization equation
(4.43) and a hybrid particle level set approach has also been proposed [3]. We use
a simple approach described in [7] to preserve the area.

5. Numerical examples

In this section we present one example with fixed interface, one with a moving
interface and one with four moving interfaces. All the computations are done on a
P4 2.80GHz DELL desktop PC with 512MB memory. The computational domain
is Ω = [−2, 2]× [−2, 2]. We choose to fix µ+ = 1.0, so λ = µ−

µ+ = µ−.

5.1. A general fixed interface test problem. We first present some results to
a general fixed interface test problem. The interface is chosen to be a unit circle

ϕ(x, y) =
√

x2 + y2 − 1.0. (5.1)
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The initial guess of GMRES for the augmented variable Q takes zero values. The
non-physical exact test solutions of (u, p) are constructed as [15]

u =

{
y
4 if x2 + y2 < 1,
y
4 (x2 + y2) if x2 + y2 ≥ 1;

v =

{
−x

4 (1− x2) if x2 + y2 < 1,

−xy2

4 if x2 + y2 ≥ 1;

p =

{
(− 3

4x3 + 3
8x)y if x2 + y2 < 1,

0 if x2 + y2 ≥ 1.

(5.2)

The body force term g = (g1, g2)T is chosen to be

g1 =

{(
− 9

4x2 + 3
8

)
y if x2 + y2 < 1,

−2µ+y if x2 + y2 ≥ 1;

g2 =

{
− 3

4x3 + 3
8x− 3µ−

2 x if x2 + y2 < 1,
µ+

2 x if x2 + y2 ≥ 1.

(5.3)

And the singular interface force terms are

f̂1 = (
3
4

cos3 θ − 3
8

cos θ) sin θ − 3
2

cos3 θ sin θ[µ],

f̂2 =
1
2
µ+ +

3
4
[µ] cos2 θ(1− 2 cos2 θ).

(5.4)

To accommodate the exact solutions, the jump condition for ∂p
∂n is modified by

adding a correction term, which does not change the difficulty of the problem.
Note that this is a very general fixed interface problem with non-homogeneous
jumps and tangential derivatives in all quantities.

We use linear regression analysis to find the convergence order of all quantities.
For this purpose, we choose m = n = 32 + 16k(k = 0, . . . , 54) and run the conver-
gence analysis for λ = 0.001, 0.1, 10 and 1000. Fig. 3 is the grid refinement analysis
of the test problem. The error is the L∞ error at all grid points. The slope of the
linear regression line is the order of the convergence. It is clear from these results
that the algorithm is second order accurate in velocity u = (u, v)T , as expected,
and almost second order accurate in pressure p. For this problem, it also seems
that with larger λ, the numerical solution for u (or v) tends to be more accurate
than the solution for p.

Fig. 4 shows the algorithm efficiency analysis. The number of GMRES iterations
seems to be independent of grid size for fixed λ, and increases slowly as λ increases.
Most simulations finish within two minutes.

5.2. A moving interface test problem. We present a moving interface test
problem where the surface tension is the only interface force, i.e. the normal force
f̂1 = ακ where α > 0 and κ is the curvature as defined before; we set the tangential
force f̂2 = 0.0. We choose α = 1.0 and m = n = 64 in our simulations. It is known
that starting from an arbitrary interface shape without any body forces, i.e. g = 0,
the interface will evolve to the equilibrium circle shape [10]. The initial interface is
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Figure 3. Convergence analysis in the L∞ norm for four cases in
log-log scale. The slope of the linear regression line is the conver-
gence rate which is close to number 2.0 for all cases. (a) µ− = 0.001
and µ+ = 1.0. (b) µ− = 0.1 and µ+ = 1.0. (c) µ− = 10 and
µ+ = 1.0. (d) µ− = 1000 and µ+ = 1.0. Linear regressions
R2 > 0.98 for all cases.

chosen to be an ellipse

ϕ(x, y) =

√
(x + y)2

2a2
+

(−x + y)2

2b2
− 1.0 (5.5)

where a = 2.0 and b = 0.5. We use periodic boundary conditions for both u and
p. See Fig. 5 for an example of the interface evolution. Also see Fig. 6 for a
comparison of the evolving interfaces with different λ’s at a fixed time. It is clear
from Fig. 6 that the more viscous fluid moves slower. For all the moving interface
simulations, the area conservation algorithm [7] preserves the initial area at each
time step exactly.

5.3. A moving multiple-interface problem. We present another moving inter-
face test problem with a multiply-connected interface consisting initially of four
ellipses. As in the other test problems, we use periodic boundary conditions on the
edges of the simulation rectangle. The two fluids have equal viscosity, the surface
tension is given as f̂1 = ακ where α = 0.1, and we set f̂2 = 0. The initial interfaces
are easily constructed using the union of individual level set functions [21, 30]. As
the four symmetrically placed ellipses relax to circles, we observe preservation of
the symmetries in the flow. Equilibrium is reached when the pressure is uniformly
distributed.
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Figure 4. Algorithm efficiency analysis for 32 by 32 through 896
by 896 grids. Left axis represents number of GMRES iterations
and right axis represents computational CPU cost with unit second
using log scale. GMRES iterations (thick curves) remain relatively
constant with grid size, and CPU time (thin curves) ∼ grid
number2.
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Figure 5. A moving interface simulation with λ = 0.5, at time
t = 0, 0.86, 1.90 and 6.75. Starting from the ellipse, the interface
evolves to a circle. The inner reference circle (dash curve) helps
to show the symmetry of the equilibrium interface. The final area
inside the interface is 3.14 ≈ π so our algorithm preserves area
well.
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Figure 6. Comparison of viscosity effects on interface motion.
Three curves (thin curves) at time t = 1.5, for λ = 0.5, 1.0, 2.0.
λ = 0.5 approaches equilibrium (thick curve) fastest.
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Figure 7. A moving interface simulation starting with four ellip-
tic interfaces (white boundary). Streamlines are drawn and sym-
metry of streamlines are observed as expected. We choose λ = 1
here. (a) t = 5. (b) t = 50.

Discussion

In this paper we proposed a new numerical method for Stokes equations with
interfaces, by combining the augmented interface method with the level set method.
Our method handles moving interfaces and multiply connected interfaces more eas-
ily than a spline approach, and could more easily be extended to 3D. Our algorithm
is shown to be 2nd order accurate in both velocity and pressure, and conserves vol-
ume well. Our method should prove useful for interface problems in fluid flow and
biological models.

One of the remaining open questions is how to use a preconditioning technique
for the Schur complement system since the coefficient matrix for the Schur comple-
ment system is not explicitly formed. Even the simplest diagonal preconditioning
technique needs to use the fast Stokes solver Nb times which would cost more than
that of the entire solution process for the testing examples in this paper. On the
other hand, as discussed in [13], a good interpolation scheme for the residual that
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takes advantages of the interface/jump conditions can reduce the number of itera-
tion significantly. Therefore, it is more practical to tune-in the interpolation scheme
as a preconditioner than to use preconditioning techniques that require structures
of the coefficient matrix. Fortunately, for all the test examples in this paper, the
number of GMRES iterations is modest (fewer than 55).
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