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GLOBAL ATTRACTIVITY IN A NONLINEAR DIFFERENCE
EQUATION

CHUANXI QIAN, YIJUN SUN

Abstract. In this paper, we study the asymptotic behavior of positive solu-
tions of the nonlinear difference equation

xn+1 = xnf(xn−k),

where f : [0,∞)→ (0,∞) is a unimodal function, and k is a nonnegative inte-

ger. Sufficient conditions for the positive equilibrium to be a global attractor

of all positive solutions are established. Our results can be applied to to some
difference equations derived from mathematical biology.

1. Introduction

Our aim in this paper is to study the global attractivity of the difference equation

xn+1 = xnf(xn−k), n = 0, 1, . . . (1.1)

where k ∈ {0, 1, 2, . . . }, and f : [0,∞) → (0,∞) is a unimodal function; i.e, f is
first increasing, and then decreasing. Global attractivity of (1.1) under different
assumptions on f has been studied by several authors, see, for example, Kocic and
Ladas [5], Qian [10] and Graef and Qian [2]. However, few results can be found
under the assumption that f is a unimodal function. Besides its theoretic interest,
our motivation to study (1.1) comes from the following observation. Consider the
delay logistic equation

x′(t) = x(t)[a + bx(t− τ)− cx2(t− τ)], t ≥ 0, (1.2)

where
a, c, τ ∈ (0,∞) and b ∈ (−∞,∞). (1.3)

This equation is a model of single species with a quadratic per-capita growth rate
(see [1] for details). One may see [4] and [7] also for some extensions of (1.2). The
following difference equation with piecewise constant arguments

x′(t) = x(t)[a + bx([t− k])− cx2([t− k])], t ≥ 0, (1.4)
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where [·] denotes the greatest integer function, may be viewed as a semidiscretiza-
tion of (1.2). By an argument similar to that in [3, Section 8.2], one can see that
(1.4) leads to the following equation

xn+1 = xnea+bxn−k−cx2
n−k , n = 0, 1, . . . (1.5)

whose oscillatory and stability properties completely characterize the same proper-
ties for (1.4), and so this leads us to study (1.5), which is a special case of (1.1).

In the following, we only consider the positive solutions of (1.1). If we let

x−k, x−k+1, . . . , x0 (1.6)

be k + 1 given nonnegative numbers with x0 > 0, and x̄ be the unique solution
of f(x) = 1, then (1.1) has a unique positive solution with initial condition (1.6).
Clearly, x̄ is the only positive equilibrium. In the following section, we establish
some sufficient conditions such that x̄ attracts all the positive solutions of (1.1).
Then, in Section 3, we apply our results about (1.1) to (1.5) to establish some
sufficient conditions for the global attractivity of the positive equilibrium of (1.5).

2. Global attractivity of (1.1)

Consider the difference equation

xn+1 = g(xn), n = 1, 2, . . . , (2.1)

where g ∈ C[R,R]. Let G be any set in R. We say that V is a Liapunov function
for (2.1) on G if

(i) V is continuous on G, and
(ii) V̇ (x) = V (g(x))− V (x) ≤ 0 for all x ∈ G.

The following lemma on the asymptotic behavior of (2.1) is taken from [8] and
will be needed later.

Lemma 2.1. Let G be a bounded open positively invariant set. If
(i) V is a Liapunov function for (2.1) on G,
(ii) M ⊂ G, where M is the largest invariant set of E = {x : V̇ (x) = 0, x ∈ Ḡ},
(iii) V is constant on M .

Then M is globally asymptotically stable relative to G.

The following theorem is our main result in this section.

Theorem 2.2. Let f : [0,∞) → (0,∞) satisfy the following assumptions:
(i) f is a unimodal function obtaining its maximum at x = x∗;
(ii) x̄ > x∗ is the unique equilibrium point;
(iii) [ln f(x)]′′ ≤ 0 on (x∗,m0);
(iv) x̄f(m0)k+1 ≥ x∗;
(v) f(m0) ≥ 1

f(x∗) ,

where m0 = x̄f(x∗)k+1. Then x̄ is the global attractor of all positive solutions of
(1.1).

Proof. First, we show that every non-oscillatory (about x̄) solution {xn} tends to x̄.
We assume that xn ≥ x̄ eventually. The proof for the case that xn ≤ x̄ eventually
is similar, and so is omitted. By (1.1),

xn+1

xn
= f(xn−k).
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Since for large n, xn−k ≥ x̄, and x̄ > x∗, we have xn+1
xn

≤ f(x̄) = 1. Hence, {xn} is
non-increasing and limn→∞ xn = l exists. Obviously, l = x̄.

Next, we show that every oscillatory solution tends to x̄. Suppose that {xn} is
an oscillatory solution of (1.1). We say that xs is a local maximum of {xn}, if

xs ≥ x̄, xs ≥ xs−1, xs ≥ xs+1.

Similarly, we say that xr is a local minimum of {xn}, if

xr ≤ x̄, xr ≤ xr−1, xr ≤ xr+1.

By (1.1),
xs = xs−1f(xs−k−1) ≥ xs−1,

so we have f(xs−k−1) ≥ 1, and hence xs−k−1 ≤ x̄. Thus,

xs = xs−k−1

s∏
i=s−k

f(xi−k−1) ≤ x̄[f(x∗)]k+1 = m0.

So, m0 is an upper bound of {xn}. By a similar argument, we have

xr ≥ x̄[f(m0)]k+1 = m1.

Thus, there exists some N0 > 0, such that

m1 ≤ xn ≤ m0, for n ≥ N0.

Notice that under assumption (iv), m1 = x̄f(m0)k+1 ≥ x∗, by induction, we can
prove that

m2s+1 ≤ xn ≤ m2s, for n ≥ Ns

where {ms} is defined by
ms+1 = x̄[f(ms)]k+1

m0 = x̄[f(x∗)]k+1.
(2.2)

To prove xn tends to x̄, it suffices to show that ms tends to x̄. Let G = (0,m0).
Clearly, G is a positively invariant set of IVP (2.2). Define

V (x) =
(
ln

x

x̄

)2
, x ∈ G.

Then
V̇ (x) = [(k + 1) ln f(x)]2 −

(
ln

x

x̄

)2
.

Let
g(x) = (k + 1) ln f(x).

To get V̇ (x) < 0 on G for x 6= x̄, we need |g(x)| < | ln x
x̄ |, which is equivalent to

g(x) < − ln
x

x̄
= ln

x̄

x
for x < x̄;

g(x) > − ln
x

x̄
= ln

x̄

x
for x > x̄.

(2.3)

Let h(x) = ln x̄
x . Observe that

g′(x) =
(k + 1)f ′(x)

f(x)
< 0, g′′(x) = (k + 1)(ln f(x))′′ ≤ 0 on (x∗,m0); (2.4)

and (
h(x)

)′ = − 1
x

< 0,
(
h(x)

)′′ = 1
x2

> 0 for x > 0. (2.5)

So, g and h look as in the following graph
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Figure 1. g(x∗) = max g(x), g(x̄) = h(x̄), by the concavity of f
and g, h(x) > g(x) for x < x̄, h(x) < g(x) for x > x̄

We first show that (2.3) holds on (x̄,m0). Since g(x̄) = ln x̄
x̄ = 0, by the mono-

tonicity and concavity of g and ln x̄
x , it’s enough to show that g(m0) ≥ ln(x̄/m0);

i.e,

[f(m0)]k+1 ≥ x̄

m0
=

x̄

x̄f(x∗)k+1
=

1
f(x∗)k+1

.

From (v), we can see that (2.3) holds immediately on (x̄,m0). Furthermore, we
have g′(x) >

(
ln x̄

x

)′ at x = x̄. So, for x ∈ (x̄, x∗), again by (2.4) and (2.5), we
know that g(x) > ln x̄

x . For x ≤ x∗, since f is increasing and ln x̄
x is decreasing,

(2.3) is satisfied automatically. Thus, we have

V̇ (x) < 0 for x ∈ G and x 6= x̄,

and
E = {x : V̇ (x) = 0, x ∈ G} = {x̄}.

Hence, by Lemma 2.1, x̄ is a global attractor relative to G, and so every solution
{ms} of IVP (2.2) tends to x̄. Then, it follows that {xn} tends to x̄. The proof of
Theorem 2.2 is complete. �

We can get a linearized stability result by using the following lemma.

Lemma 2.3 ([9]). Assume that q ∈ R and k ∈ {0, 1, 2, . . . }. Then the delay
difference equation

xn+1 − xn + qxn−k = 0, n = 0, 1, . . . (2.6)

is asymptotically stable if and only if

0 < q < 2 cos
kπ

2k + 1
. (2.7)

Corollary 2.4. If the assumptions of Theorem 2.2 hold, and

−f ′(x̄)x̄ < 2 cos
kπ

2k + 1
, (2.8)

then (1.1) is globally asymptotically stable.
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Proof. Let yn = ln xn, (1.1) becomes

yn+1 − yn − ln f(eyn−k) = 0, n = 0, 1, . . . (2.9)

The linearized form of (2.9) is

yn+1 − yn − f ′(x̄)x̄yn−k = 0, n = 0, 1, . . . (2.10)

Let p = −f ′(x̄)x̄. We have p > 0 since f ′(x̄) < 0. By (2.7), we have that (2.10) is
stable if (2.8) holds. Hence, (1.1) is locally stable. Then combining with the global
attractivity from Theorem 2.2, we get the global stability result. �

Although we can not prove it now, we believe that if the conditions in Theorem
2.2 hold, then (2.8) holds, and so the conditions in Theorem 2.2 imply the global
stability of (1.1). In Section 3, we will show that this is true for (1.5).

3. Global attractivity of (1.5)

In this section, we apply our results in Section 2 to establish some sufficient
conditions for the global attarctivity of (1.5). Two cases of (1.5) with b ≤ 0 and
b > 0 are considered. For (1.5), x̄ = b+

√
b2+4ac
2c is the only positive equilibrium.

Theorem 3.1. Assume that b ≤ 0, and

(k + 1)a ≤ ln
b +

√
b2 + 8ac

b +
√

b2 + 4ac
. (3.1)

Then x̄ is a global attractor of all positive solutions of (1.5).

Proof. To apply Theorem 2.2, we need to show that all assumptions of Theorem
2.2 are satisfied. Here, f(x) = exp

(
a + bx − cx2

)
, and clearly, f(x) is decreasing

on (0,∞), obtaining its maximum at x∗ = 0. Note that

m0 = x̄f(0)k+1 = x̄e(k+1)a, (3.2)

and it is easy to see that assumption (ii), (iii) and (iv) of Theorem 2.2 are satisfied.
Now, wee only need to check (v), which is

ea+bm0−cm2
0 ≥ 1

ea
= e−a,

that is,
a + bm0 − cm2

0 ≥ −a. (3.3)

Let g(x) = cx2 − bx − 2a. Then x1 = b+
√

b2+8ac
2c is the only positive solution of

g(x) = 0. Since g is increasing on (0,∞), (3.3) is equivalent to m0 ≤ x1, which
is (3.1). Thus, all assumptions of Theorem 2.2 are satisfied, and so x̄ is a global
attractor of (1.5). �

The following result is a consequence of the above theorem and Corollary 2.4.

Corollary 3.2. If b ≤ 0 and (3.1) hold, then (1.5) is globally asymptotically stable.

Proof. By (2.8) in Corollary 2.4, we need

−f ′(x̄)x̄ =
√

b2 + 4ac(b +
√

b2 + 4ac)
2c

< 2 cos
kπ

2k + 1
. (3.4)
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Now, we claim that (3.1) implies (3.4). First, we want to simplify the expression.
Let A = (k + 1)a and C = c/(k + 1). From (3.1), it is easy to see that A ≤ ln 2,
and (3.4) can be written as

√
b2 + 4AC(b +

√
b2 + 4AC)

2C
< 2(k + 1) cos

kπ

2k + 1
. (3.5)

Next, we let

B =
|b|√
C

= − b√
C

> 0.

Then (3.5) can be written as
√

B2 + 4A(−B +
√

B2 + 4A)
2

< 2(k + 1) cos
kπ

2k + 1
.

After simplification, this becomes
√

B2 + 4A

B +
√

B2 + 4A
A < (k + 1) cos

kπ

2k + 1
. (3.6)

Since A ≤ ln 2, the left hand side of Inequality (3.6) is less than ln 2. On the other
hand, the right hand side of (3.6) can be written as

(k + 1) sin
π

4(k + 1
2 )

.

If we use s = k + 1
2 , then the right hand side of Inequality (3.6) is

g(s) = (s +
1
2
) sin

π

4s
, s ≥ 1

2
.

We claim that g is a decreasing function for s ≥ 1
2 . Observe that

g′(s) = sin
π

4s
−

( π

4s
+

π

8s2

)
cos

π

4s
,

and notice that π
4s ≥ sin π

4s for s ≥ 1
2 ,

g′′(s) =
π

4s3
cos

π

4s
−

( π2

16s3
+

π2

32s4

)
sin

π

4s

≥ π

4s3

[
1−

( π

4s

)2 ]
−

( π2

16s3
+

π2

32s4

) π

4s

=
π

4s3

(
1− π2

16s2
− π2

16s
− π2

32s2

)
≥ π

4s3

(
1− π2

12

)
> 0.

So g′ is increasing, maxs≥ 1
2

g′(s) = lims→∞ g′(s) = 0, and g is decreasing for s ≥ 1
2 .

We get

min
s≥ 1

2

g(s) = lim
s→∞

(s +
1
2
) sin

π

4s
=

π

4
,

which is greater than ln 2. Thus (3.6) holds, and therefore (3.4) holds. The proof
is complete. �



EJDE-2006/CONF/15 GLOBAL ATTRACTIVITY 235

Example 3.3. Consider the difference equation

xn+1 = xne0.1−xn−1−x2
n−1 .

Here k = 1, a = 0.1, b = −1, c = 1, and

(k + 1)a = .2 < ln
b +

√
b2 + 8ac

b +
√

b2 + 4ac
≈ 0.623.

Hence, by Corollary 3.2, x̄ is globally asymptotically stable.

Theorem 3.4. Assume b > 0 and

(k + 1)D
4c

≤ ln
b +

√
2D

b +
√

D
, (3.7)

where D = b2 + 4ac. Then all positive solutions of (1.5) tend to x̄.

Proof. Let f(x) = exp
(
a + bx − cx2

)
. We show that f satisfies all the conditions

assumed in Theorem 2.2. Clearly, f is increasing on (0, x∗) and decreasing on
(x∗,∞), where x∗ = b

2c , and so assumption (i) is satisfied. (ii) and (iii) are also
easy to check. We see that to have x̄f(m0)k+1 ≥ x∗, we need

(a + bm0 − cm2
0) ≥

1
k + 1

ln
b

b +
√

D
. (3.8)

By a direct but tedious calculation, (3.8) is equivalent to

(k + 1)D
4c

≤ ln
b +

√
D + 4c

k+1 ln b+
√

D
b

b +
√

D
. (3.9)

We claim that (3.7) implies (3.9). To prove our claim, it suffices to show

b +
√

2D

b +
√

D
≤

b +
√

D + 4c
k+1 ln b+

√
D

b

b +
√

D
,

which is equivalent to

√
2D ≤

√
D +

4c

k + 1
ln

b +
√

D

b
,

that is
(k + 1)D

4c
≤ ln

b +
√

D

b
.

By (3.7), it is sufficient to show that

ln
b +

√
2D

b +
√

D
≤ ln

b +
√

D

b
. (3.10)

It is not difficult to see that (3.10) is equivalent to
√

2− 1
b +

√
D
≤ 1

b
,

which is obviously true. Thus, (iv) is satisfied.
To check (v), we need exp

(
a + bm0 − cm2

0) ≥ exp
(
− (a + bx∗ − cx∗2)

)
; i.e,

a + bm0 − cm2
0 ≥ −D

4c
. (3.11)
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Let

h(x) = a + bx− cx2 +
D

4c
. (3.12)

We see that the positive solution of (3.12) is x2 = b+
√

2D
2c . Since both m0 and x2

are larger than x∗, and on (x∗,∞), h is decreasing, (3.11) is equivalent to m0 ≤ x2,
which is satisfied by (3.7). Hence, it follows by Theorem 2.2 that {xn} tends to
x̄. �

Corollary 3.5. Assume that (3.7) holds. Then (1.5) is globally asymptotically
stable.

Proof. By condition (2.8) in Corollary 2.4, we need

−f ′(x̄)x̄ =
√

D(b +
√

D)
2c

< 2 cos
kπ

2k + 1
,

which is equivalent to
D

4c
< cos

kπ

2k + 1
− b

√
D

4c
.

Then, combining this with Theorem 3.4, we know that if

D

4c
≤ min{ 1

k + 1
ln

b +
√

2D

b +
√

D
, cos

kπ

2k + 1
− b

√
D

4c
} (3.13)

holds, then (1.5) is globally asymptotically stable. Now, we show that

1
k + 1

ln
b +

√
2D

b +
√

D
≤ cos

kπ

2k + 1
− b

√
D

4c
, (3.14)

under the assumption (3.7). Observe that

b
√

D

4c
=

b√
D

D

4c
≤ b√

D

1
k + 1

ln
b +

√
2D

b +
√

D

by (3.7). So it suffices to show that

(
b√
D

+ 1)
1

k + 1
ln

b +
√

2D

b +
√

D
≤ cos

kπ

2k + 1
.

After simplification, this becomes

(
b√
D

+ 1) ln
b +

√
2D

b +
√

D
≤ (k + 1) sin

π

4k + 2
.

Let b√
D

= t (0 < t < 1) and s = k + 1
2 (s ≥ 1

2 ). It is sufficient to show that

(t + 1) ln
t +

√
2

t + 1
≤ (s +

1
2
) sin

π

4s
. (3.15)

If the maximum of the function of t is less than the minimum of the function of s,
then we are done. Let

f(t) = (t + 1) ln
t +

√
2

t + 1
, g(s) = (s +

1
2
) sin

π

4s
.

We claim that f is increasing on (0, 1). To this end, observe that

f ′(t) = ln
t +

√
2

t + 1
−
√

2− 1
t +

√
2

, f ′′(t) =
2
√

2− 3
(t +

√
2)2(t + 1)

< 0.
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Since f ′ is decreasing and min0<t<1 f ′(t) = f ′(1) ≈ 0.0166 > 0, f is increasing
for 0 < t < 1. We know from the proof of Corollary 3.2 that g is decreasing on
( 1
2 ,∞). It is easy to see that max0<t<1 f(t) = f(1) ≈ 0.376 and mins≥ 1

2
g(s) =

lims→∞ g(s) ≈ 0.786. Thus, we have f(t) ≤ g(s) always; i.e, (3.15) holds. The
proof of Corollary 3.5 is complete. �

Example 3.6. Consider the difference equation

xn+1 = xne0.01+xn−3−20x2
n−3 .

Here a = .01, b = 1, c = 20 and k = 3. So

(k + 1)D
4c

≈ .09 ≤ ln
b +

√
2D

b +
√

D
≈ .825.

By Corollary 3.5, x̄ is globally asymptotically stable.

4. Remarks

Consider the difference equation

xn+1 − xn = xn(a + bxn−k − cx2
n−k), (4.1)

where a, c ∈ (0,∞), b ∈ (−∞,+∞), and k ∈ {0, 1, . . . }. Equation (4.1) may be
viewed as a discrete analogue of the delay differential equation (1.3). The global
attractivity of the positive equilibrium when k = 0 was investigated by Rodrigues
[11]. Kocic and Ladas [6], posted the following research projects: Obtain a global
stability result for the positive equilibrium x̄ of (4.1) when k ≥ 1, and obtain explicit
sufficient conditions on a, b, c and k so that all solutions of (4.1) with appropriate
initial condition remain positive for all n ≥ 0. By using an argument similar to one
in this paper, we can establish a sufficient condition for the positive equilibrium
x̄ to be a global attractor of all positive solutions of (4.1). Then together with
the linearized stability result, we can obtain a global stability result for the positive
equilibrium x̄ of (4.1) when k ≥ 1. However, the problem that how to obtain explicit
sufficient condition so that all solutions remain positive for all n ≥ 0 remains open.
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