2006 International Conference in Honor of Jacqueline Fleckinger.
Electronic Journal of Differential Equations, Conference 16, 2007, pp. 29-34.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

ON POSITIVE SOLUTIONS FOR A CLASS OF STRONGLY COUPLED P-LAPLACIAN SYSTEMS

JAFFAR ALI, R. SHIVAJI
Dedicated to Jacqueline Fleckinger on the occasion of an international conference in her honor

Abstract. Consider the system

$$
\begin{gathered}
-\Delta_{p} u=\lambda f(u, v) \quad \text { in } \Omega \\
-\Delta_{q} v=\lambda g(u, v) \quad \text { in } \Omega \\
u=0=v \quad \text { on } \partial \Omega
\end{gathered}
$$

where $\Delta_{s} z=\operatorname{div}\left(|\nabla z|^{s-2} \nabla z\right), s>1, \lambda$ is a non-negative parameter, and Ω is a bounded domain in \mathbb{R} with smooth boundary $\partial \Omega$. We discuss the existence of a large positive solution for λ large when

$$
\lim _{x \rightarrow \infty} \frac{f\left(x, M[g(x, x)]^{1 / q-1}\right)}{x^{p-1}}=0
$$

for every $M>0$, and $\lim _{x \rightarrow \infty} g(x, x) / x^{q-1}=0$. In particular, we do not assume any sign conditions on $f(0,0)$ or $g(0,0)$. We also discuss a multiplicity results when $f(0,0)=0=g(0,0)$.

1. Introduction

Consider the boundary-value problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda f(u, v) \quad \text { in } \Omega \\
-\Delta_{q} v=\lambda g(u, v) \quad \text { in } \Omega \tag{1.1}\\
u=0=v \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\Delta_{s} z=\operatorname{div}\left(|\nabla z|^{s-2} \nabla z\right), s>1, \lambda$ is a non-negative parameter, and Ω is a bounded domain in \mathbb{R} with smooth boundary $\partial \Omega$.

We are interested in the study of positive solutions to 1.1 when no conditions on $f(0,0), g(0,0)$ are assumed, in particular, they could be negative (semipositone systems). Semipositive problems are mathematically challenging area in the study of positive solutions (see [2] and [5]). For a review on semipositone problems, see [3]. In this paper we make the following assumptions:

[^0](H1) $f, g \in C^{1}((0, \infty) \times(0, \infty)) \cap C([0, \infty) \times[0, \infty))$ be monotone functions such that $f_{u}, f_{v}, g_{u}, g_{v} \geq 0$ and $\lim _{u, v \rightarrow \infty} f(u, v)=\lim _{u, v \rightarrow \infty} g(u, v)=\infty$.
(H2) $\lim _{x \rightarrow \infty} \frac{f\left(x, M[g(x, x)]^{1 / q-1}\right)}{x^{p-1}}=0$ for every $M>0$.
(H3) $\lim _{x \rightarrow \infty} \frac{g(x, x)}{x^{q-1}}=0$.
We establish the following existence and multiplicity results:
Theorem 1.1. Let (H1)-(H3) hold. Then there exists a positive number λ^{*} such that (1.1) has a large positive solution (u, v) for $\lambda>\lambda^{*}$.

Theorem 1.2. Let (H1)-(H3) hold. Further let $F(s)=f(s, c s)$ and $G(s)=g(\tilde{c} s, s)$ for any $c, \tilde{c}>0$ and assume that f and g be sufficiently smooth functions in the neighborhood of zero with $F(0)=G(0)=0, F^{(k)}(0)=0=G^{(l)}(0)$ for $k=1,2, \ldots[p-1], l=1,2, \ldots[q-1]$ where $[s]$ denotes the integer part of s. Then 1.1 has at least two positive solutions provided λ is large.

This paper extends the recent work in 1, where the authors study such systems with weaker coupling, namely systems of the form,

$$
\begin{align*}
-\Delta_{p} u=\lambda_{1} \alpha(v)+\mu_{1} \delta(u) & \text { in } \Omega \\
-\Delta_{q} v=\lambda_{2} \beta(u)+\mu_{2} \gamma(v) & \text { in } \Omega \tag{1.2}\\
u=0=v & \text { on } \partial \Omega
\end{align*}
$$

where $\lambda_{1}, \lambda_{2}, \mu_{1}$ and μ_{2} are non-negative parameters, with the following conditions:
(C1) $\alpha, \beta, \delta, \gamma \in C^{1}(0, \infty) \cap C[0, \infty)$ be monotone functions such that

$$
\lim _{x \rightarrow \infty} \alpha(x)=\lim _{x \rightarrow \infty} \beta(x)=\lim _{x \rightarrow \infty} \delta(x)=\lim _{x \rightarrow \infty} \gamma(x)=\infty
$$

(C2) $\lim _{x \rightarrow \infty} \frac{\alpha\left(M[\beta(x)]^{1 / q-1}\right)}{x^{p-1}}=0$ for every $M>0$.
(C3) $\lim _{x \rightarrow \infty} \frac{\delta(x)}{x^{p-1}}=\lim _{x \rightarrow \infty} \frac{\gamma(x)}{x^{q-1}}=0$.
In [1], authors establish an existence result for the system (1.2) when $\lambda_{1}+\mu_{1}$ and $\lambda_{2}+\mu_{2}$ are large. In addition, for the case when $f(0)=h(0)=g(0)=\gamma(0)=0$, authors discuss a multiplicity result for $\lambda_{1}+\mu_{1}$ and $\lambda_{2}+\mu_{2}$ large. Here we extend this study to classes of systems with much stronger coupling. Our approach is based on the method of sub-and supersolutions (see e.g. [4]). In Section 2, we will prove Theorem 1.1, in Section 3, we will prove Theorem 1.2 and in Section 4, we discuss some examples with strong coupling.

2. Proof of Theorem 1.1

We extend $f(u, v)$ and $g(u, v)$ for all $(u, v) \in \mathbb{R}^{2}$ smoothly such that there exists a constant $k_{0}>0$ such that $f(u, v), g(u, v) \geq-k_{0}$ for all $(u, v) \in \mathbb{R}^{2}$. We shall establish Theorem 1.1 by constructing a positive weak subsolution $\left(\psi_{1}, \psi_{2}\right) \in$ $W^{1, p}(\Omega) \cap C(\bar{\Omega}) \times W^{1, q}(\bar{\Omega}) \cap C(\bar{\Omega})$ and a supersolution $\left(z_{1}, z_{2}\right) \in W^{1, p}(\Omega) \cap C(\bar{\Omega}) \times$ $W^{1, q}(\Omega) \cap C(\bar{\Omega})$ of 1.1 such that $\psi_{i} \leq z_{i}$ for $i=1,2$. That is, ψ_{i}, z_{i} satisfies

$$
\begin{aligned}
\left(\psi_{1}, \psi_{2}\right)=(0,0)= & \left(z_{1}, z_{2}\right) \text { on } \partial \Omega \\
& \int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla \xi d x \leq \lambda \int_{\Omega} f\left(\psi_{1}, \psi_{2}\right) \xi d x \\
& \int_{\Omega}\left|\nabla \psi_{2}\right|^{p-2} \nabla \psi_{2} \cdot \nabla \xi d x \leq \lambda \int_{\Omega} g\left(\psi_{1}, \psi_{2}\right) \xi d x \\
& \int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla \xi d x \geq \lambda \int_{\Omega} f\left(z_{1}, z_{2}\right) \xi d x \\
& \int_{\Omega}\left|\nabla z_{2}\right|^{p-2} \nabla z_{2} \cdot \nabla \xi d x \geq \lambda \int_{\Omega} g\left(z_{1}, z_{2}\right) \xi d x
\end{aligned}
$$

for all $\xi \in W:=\left\{\eta \in C_{0}^{\infty}(\Omega): \eta \geq 0\right.$ in $\left.\Omega\right\}$.
Let $\lambda_{1}^{(r)}$ the first eigenvalue of $-\Delta_{r}$ with Dirichlet boundary conditions and ϕ_{r} the corresponding eigenfunction with $\phi_{r}>0 ; \Omega$ and $\left\|\phi_{r}\right\|_{\infty}=1$ for $r=p, q$. Let $m, \delta>0$ be such that $\left|\nabla \phi_{r}\right|^{r}-\lambda_{1}^{(r)} \phi_{r}^{r} \geq m$ on $\bar{\Omega}_{\delta}=\{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$ for $r=p, q$. (This is possible since $\left|\nabla \phi_{r}\right| \neq 0$ on $\partial \Omega$ while $\phi_{r}=0$ on $\partial \Omega$ for $r=p, q$). We shall verify that

$$
\left(\psi_{1}, \psi_{2}\right):=\left(\left[\frac{\lambda k_{0}}{m}\right]^{1 / p-1}\left(\frac{p-1}{p}\right) \phi_{p}^{p / p-1},\left[\frac{\lambda k_{0}}{m}\right]^{1 / q-1}\left(\frac{q-1}{q}\right) \phi_{q}^{q / q-1}\right)
$$

is a subsolution of 1.1 for λ large. Let $\xi \in W$. Then

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla \xi d x & =\left(\frac{\lambda k_{0}}{m}\right) \int_{\Omega} \phi_{p}\left|\nabla \phi_{p}\right|^{p-2} \nabla \phi_{p} \cdot \nabla \xi d x \\
& =\left(\frac{\lambda k_{0}}{m}\right)\left\{\int_{\Omega}\left|\nabla \phi_{p}\right|^{p-2} \nabla \phi_{p} \cdot \nabla\left(\phi_{p} \xi\right) d x-\int_{\Omega}\left|\nabla \phi_{p}\right|^{p} \xi d x\right\} \\
& =\left(\frac{\lambda k_{0}}{m}\right)\left\{\int_{\Omega}\left[\lambda_{1}^{(p)} \phi_{p}^{p}-\left|\nabla \phi_{p}\right|^{p}\right] \xi d x\right\}
\end{aligned}
$$

Similarly

$$
\int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla \xi d x=\left(\frac{\lambda k_{0}}{m}\right)\left\{\int_{\Omega}\left[\lambda_{1}^{(q)} \phi_{q}^{q}-\left|\nabla \phi_{q}\right|^{q}\right] \xi d x\right\}
$$

Now on $\bar{\Omega}_{\delta}$ we have $\left|\nabla \phi_{r}\right|^{r}-\lambda_{1}^{(s)} \phi_{r}^{r} \geq m$ for $r=p, q$. Which implies that

$$
\begin{aligned}
& \frac{k_{0}}{m}\left(\lambda_{1}^{(p)} \phi_{p}^{p}-\left|\nabla \phi_{p}\right|^{p}\right)-f\left(\psi_{1}, \psi_{2}\right) \leq 0 \\
& \frac{k_{0}}{m}\left(\lambda_{1}^{(q)} \phi_{q}^{q}-\left|\nabla \phi_{q}\right|^{q}\right)-g\left(\psi_{1}, \psi_{2}\right) \leq 0
\end{aligned}
$$

Next on $\Omega-\bar{\Omega}_{\delta}$ we have $\phi_{p} \geq \mu, \phi_{q} \geq \mu$ for some $\mu>0$, and therefore for λ large

$$
\begin{aligned}
f\left(\psi_{1}, \psi_{2}\right) & \geq \frac{k_{0}}{m} \lambda_{1}^{(p)} \geq \frac{k_{0}}{m} \lambda_{1}^{(p)} \phi_{p}^{p}-\left|\nabla \phi_{p}\right|^{p} \\
g\left(\psi_{1}, \psi_{2}\right) & \geq \frac{k_{0}}{m} \lambda_{1}^{(q)} \geq \frac{k_{0}}{m} \lambda_{1}^{(q)} \phi_{q}^{q}-\left|\nabla \phi_{q}\right|^{q}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla \psi_{1}\right|^{p-2} \nabla \psi_{1} \cdot \nabla \xi d x \leq \lambda \int_{\Omega} f\left(\psi_{1}, \psi_{2}\right) \xi d x \\
& \int_{\Omega}\left|\nabla \psi_{2}\right|^{q-2} \nabla \psi_{2} \cdot \nabla \xi d x \leq \lambda \int_{\Omega} g\left(\psi_{1}, \psi_{2}\right) \xi d x
\end{aligned}
$$

i.e., $\left(\psi_{1}, \psi_{2}\right)$ is a subsolution of (1.1) for λ large.

Next let e_{r} be the solution of $-\Delta_{r} e_{r}=1$ in $\Omega, e_{r}=0$ on $\partial \Omega$ for $r=p, q$. Let $\left(z_{1}, z_{2}\right):=\left(\frac{c}{\mu_{p}} \lambda^{1 / p-1} e_{p},\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right]^{1 / q-1} \lambda^{1 / q-1} e_{q}\right)$ where $\mu_{r}=\left\|e_{r}\right\|_{\infty} ;$ $r=p, q$. Then

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{1}\right|^{p-2} \nabla z_{1} \cdot \nabla \xi d x & =\lambda\left(\frac{c}{\mu_{p}}\right)^{p-1} \int_{\Omega}\left|\nabla e_{p}\right|^{p-2} \nabla e_{p} \cdot \nabla \xi d x \\
& =\frac{1}{\left(\mu_{p}\right)^{p-1}}\left(c \lambda^{1 / p-1}\right)^{p-1} \int_{\Omega} \xi d x
\end{aligned}
$$

By (H2) we can choose c large enough so that

$$
\begin{aligned}
& \frac{1}{\left(\mu_{p}\right)^{p-1}}\left(c \lambda^{1 / p-1}\right)^{p-1} \int_{\Omega} \xi d x \\
& \geq \lambda \int_{\Omega} f\left(c \lambda^{1 / p-1},\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right]^{1 / q-1} \lambda^{1 / q-1} \mu_{q}\right) \xi d x \\
& \geq \lambda \int_{\Omega} f\left(c \lambda^{1 / p-1} \frac{e_{p}}{\mu_{p}},\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right]^{1 / q-1} \lambda^{1 / q-1} e_{q}\right) \xi d x \\
& =\lambda \int_{\Omega} f\left(z_{1}, z_{2}\right) \xi d x
\end{aligned}
$$

Next

$$
\begin{aligned}
\int_{\Omega}\left|\nabla z_{2}\right|^{q-2} \nabla z_{2} \cdot \nabla \xi d x & =\lambda\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right] \int_{\Omega}\left|\nabla e_{q}\right|^{q-2} \nabla e_{q} \cdot \nabla \xi d x \\
& =\lambda\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right] \int_{\Omega} \xi d x
\end{aligned}
$$

By (H3) choose c large so that $\frac{1}{\lambda^{1 / q-1}} \mu_{q} \geq \frac{\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right]^{1 / q-1}}{c \lambda^{1 / p-1}}$, then

$$
\begin{aligned}
& \lambda\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right] \int_{\Omega} \xi d x \\
& \geq \lambda \int_{\Omega} g\left(c \lambda^{1 / p-1},\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right]^{1 / q-1} \lambda^{1 / q-1} \mu_{q}\right) \xi d x \\
& \geq \lambda \int_{\Omega} g\left(c \lambda^{1 / p-1} \frac{e_{p}}{\mu_{p}},\left[g\left(c \lambda^{1 / p-1}, c \lambda^{1 / p-1}\right)\right]^{1 / q-1} \lambda^{1 / q-1} e_{q}\right) \xi d x \\
& =\lambda \int_{\Omega} g\left(z_{1}, z_{2}\right) \xi d x
\end{aligned}
$$

i.e., $\left(z_{1}, z_{2}\right)$ is a supersolution of 1.1 with $z_{i} \geq \psi_{i}$ for c large, $i=1,2$. (Note $\left|\nabla e_{r}\right| \neq 0 ; \partial \Omega$ for $\left.r=p, q\right)$.

Thus, there exists a solution (u, v) of 1.1 with $\psi_{1} \leq u \leq z_{1}, \psi_{2} \leq v \leq z_{2}$. This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

To prove Theorem 1.2 we will construct a subsolution $\left(\psi_{1}, \psi_{2}\right)$, a strict supersolution $\left(\zeta_{1}, \zeta_{2}\right)$, a strict subsolution $\left(w_{1}, w_{2}\right)$, and a supersolution $\left(z_{1}, z_{2}\right)$ for (1.1) such that $\left(\psi_{1}, \psi_{2}\right) \leq\left(\zeta_{1}, \zeta_{2}\right) \leq\left(z_{1}, z_{2}\right),\left(\psi_{1}, \psi_{2}\right) \leq\left(w_{1}, w_{2}\right) \leq\left(z_{1}, z_{2}\right)$, and
$\left(w_{1}, w_{2}\right) \not \subset\left(\zeta_{1}, \zeta_{2}\right)$. Then (1.1) has at least three distinct solutions $\left(u_{i}, v_{i}\right), i=$ $1,2,3$, such that $\left(u_{1}, v_{1}\right) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(\zeta_{1}, \zeta_{2}\right)\right],\left(u_{2}, v_{2}\right) \in\left[\left(w_{1}, w_{2}\right),\left(z_{1}, z_{2}\right)\right]$, and

$$
\left(u_{3}, v_{3}\right) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right] \backslash\left(\left[\left(\psi_{1}, \psi_{2}\right),\left(\zeta_{1}, \zeta_{2}\right)\right] \cup\left[\left(w_{1}, w_{2}\right),\left(z_{1}, z_{2}\right)\right]\right) .
$$

We first note that $\left(\psi_{1}, \psi_{2}\right)=(0,0)$ is a solution (hence a subsolution). As in Section 2, we can always construct a large supersolution $\left(z_{1}, z_{2}\right)$. We next consider

$$
\begin{gather*}
-\Delta_{p} w_{1}=\lambda \tilde{f}\left(w_{1}, w_{2}\right) \quad \text { in } \Omega \\
-\Delta_{q} w_{2}=\lambda \tilde{g}\left(w_{1}, w_{2}\right) \quad \text { in } \Omega \tag{3.1}\\
w_{1}=0=w_{2} \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\tilde{f}(u, v)=f(u, v)-1$ and $\tilde{g}(u, v)=g(u, v)-1$. Then by Theorem 1.1 (3.1) has a positive solution $\left(w_{1}, w_{2}\right)$ when λ is large. Clearly this $\left(w_{1}, w_{2}\right)$ is a strict subsolution of (1.1). Finally we construct the strict supersolution $\left(\zeta_{1}, \zeta_{2}\right)$.

To do so, we let ϕ_{p}, ϕ_{q} as described in Section 2. We note that there exists positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
\phi_{p} \leq c_{1} \phi_{q} \quad \text { and } \quad \phi_{q} \leq c_{2} \phi_{p} . \tag{3.2}
\end{equation*}
$$

Let $\left(\zeta_{1}, \zeta_{2}\right)=\left(\epsilon \phi_{p}, \epsilon \phi_{q}\right)$ where $\epsilon>0$. Let $H_{p}(s):=\lambda_{1}^{(p)} s^{p-1}-\lambda f\left(s, c_{2} s\right)$ and $H_{q}(s):=\lambda_{1}^{(q)} s^{q-1}-\lambda g\left(c_{1} s, s\right)$. Observe that $H_{p}(0)=H_{q}(0)=0, H_{p}^{(k)}(0)=$ $0=H_{q}^{(l)}(0)$ for $k=1,2, \ldots[p-2]$ and $l=1,2, \ldots[q-2] . \quad H_{p}^{(p-1)}(0)>0$ and $H_{q}^{(q-1)}(0)>0$ if p, q are integers, while $\lim _{r \rightarrow 0} H^{([p])}(r)=+\infty=\lim _{r \rightarrow 0} H^{([q])}(r)$ if p, q are not integers. Thus there exists θ such that $H_{p}(s)>0$ and $H_{q}(s)>0$ for $s \in(0, \theta]$. Hence for $0<\epsilon \leq \theta$ we have

$$
\begin{align*}
\lambda_{1}^{(p)}\left(\zeta_{1}\right)^{p-1}=\lambda_{1}^{(p)}\left(\epsilon \phi_{p}\right)^{p-1} & >\lambda f\left(\epsilon \phi_{p}, c_{2} \epsilon \phi_{p}\right) \\
& \geq \lambda f\left(\epsilon \phi_{p}, \epsilon \phi_{q}\right) \tag{3.3}\\
& =\lambda f\left(\zeta_{1}, \zeta_{2}\right) \quad x \in \Omega,
\end{align*}
$$

and similarly we get

$$
\begin{align*}
\lambda_{1}^{(q)}\left(\zeta_{2}\right)^{q-1}=\lambda_{1}^{(q)}\left(\epsilon \phi_{q}\right)^{q-1} & >\lambda g\left(c_{1} \epsilon \phi_{q}, \epsilon \phi_{q}\right) \\
& \geq \lambda g\left(\epsilon \phi_{p}, \epsilon \phi_{q}\right) \tag{3.4}\\
& =\lambda g\left(\zeta_{1}, \zeta_{2}\right), \quad x \in \Omega .
\end{align*}
$$

Using the inequalities (3.3) and (3.4) we have,

$$
\begin{aligned}
\int_{\Omega}\left|\nabla \zeta_{1}\right|^{p-2} \nabla \zeta_{1} \cdot \nabla \xi d x & =\epsilon^{p-1} \int_{\Omega}\left|\nabla \phi_{p}\right|^{p-2} \nabla \phi_{p} \cdot \nabla \xi \\
& =\int_{\Omega} \lambda_{1}^{(p)}\left(\epsilon \phi_{p}\right)^{p-1} \xi d x \\
& >\lambda \int_{\Omega} f\left(\zeta_{1}, \zeta_{2}\right) \xi d x .
\end{aligned}
$$

Similarly we have

$$
\int_{\Omega}\left|\nabla \zeta_{2}\right|^{q-2} \nabla \zeta_{2} \cdot \nabla \xi d x>\lambda \int_{\Omega} g\left(\zeta_{1}, \zeta_{2}\right) \xi d x
$$

Thus $\left(\zeta_{1}, \zeta_{2}\right)$ is a strict supersolution. Here we can choose ϵ small so that $\left(w_{1}, w_{2}\right) \not \approx$ $\left(\zeta_{1}, \zeta_{2}\right)$.

Hence there exists solutions $\left(u_{1}, v_{1}\right) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(\zeta_{1}, \zeta_{2}\right)\right],\left(u_{2}, v_{2}\right) \in\left[\left(w_{1}, w_{2}\right),\left(z_{1}, z_{2}\right)\right]$, and $\left(u_{3}, v_{3}\right) \in\left[\left(\psi_{1}, \psi_{2}\right),\left(z_{1}, z_{2}\right)\right] \backslash\left(\left[\left(\psi_{1}, \psi_{2}\right),\left(\zeta_{1}, \zeta_{2}\right)\right] \cup\left[\left(w_{1}, w_{2}\right),\left(z_{1}, z_{2}\right)\right]\right)$. Since $\left(\psi_{1}, \psi_{2}\right) \equiv(0,0)$ is a solution it may turn out that $\left(u_{1}, v_{1}\right) \equiv\left(\psi_{1}, \psi_{2}\right) \equiv(0,0)$. In any case we have two positive solutions $\left(u_{2}, v_{2}\right)$ and $\left(u_{3}, v_{3}\right)$. Hence Theorem 1.2 holds.

Remark 3.1. Note that in the construction of the supersolution $\left(\zeta_{1}, \zeta_{2}\right)$ we require the conditions at zero on F and G only for the constants $c=c_{2}$ and $\tilde{c}=c_{1}$.

4. Examples

Example 4.1. Consider the problem

$$
\begin{gather*}
-\Delta_{p} u=\lambda\left[v^{\alpha}+(u v)^{\beta}-1\right] \quad \text { in } \Omega \\
-\Delta_{q} v=\lambda\left[u^{\sigma}+(u v)^{\gamma / 2}-1\right] \quad \text { in } \Omega \tag{4.1}\\
u=0=v \quad \text { on } \partial \Omega
\end{gather*}
$$

where $\alpha, \beta, \sigma, \gamma$ are positive parameters. Then it is easy to see that 4.1) satisfies the hypotheses of Theorem 1.1 if $\max \{\sigma, \gamma\} \frac{\alpha}{q-1}<p-1,\left(\max \{\sigma, \gamma\} \frac{1}{q-1}+1\right) \beta<p-1$ and $\max \{\sigma, \gamma\}<q-1$.

Example 4.2. Let

$$
h(x)=\left\{\begin{array}{ll}
x^{\alpha} ; & x \leq 1 \\
\frac{\alpha}{\sigma} x^{\sigma}+\left(1-\frac{\alpha}{\sigma}\right) ; & x>1,
\end{array} \quad \text { and } \quad \gamma(x)= \begin{cases}x^{\mu} ; & x \leq 1 \\
\frac{\mu}{\delta} x^{\delta}+\left(1-\frac{\mu}{\delta}\right) ; & x>1,\end{cases}\right.
$$

where $\alpha, \sigma, \mu, \delta$ are positive parameters. Here we assume $\alpha>p-1$ if p is an integer, $\alpha>[p]$ if p is not an integer, $\mu>q-1$ if q is an integer and $\mu>[q]$ if q is not an integer.

Consider the problem

$$
\begin{gather*}
-\Delta u=\lambda\left[1+u^{\beta}\right] h(v) \quad \text { in } \Omega \\
-\Delta v=\lambda \gamma(u) \quad \text { in } \Omega \tag{4.2}\\
u=0=v \quad \text { on } \partial \Omega
\end{gather*}
$$

where $0 \leq \beta<p-1$. Then it is easy to see that 4.2 satisfies the hypotheses of Theorem 1.2 if $\delta \sigma<[p-1-\beta](q-1)$ and $\delta<q-1$.

References

[1] Jaffar Ali, R. Shivaji. Positive solutions for a class of p-laplacian systems with multiple parameters. To appear in the Journal of Mathematical Analysis and Applications.
[2] H. Berestycki, L. A. Caffarelli and L. Nirenberg. Inequalities for second order elliptic equations with applications to unbounded domains. A Celebration of John F. Nash Jr., Duke Math. J. 81 (1996), 467-494.
[3] A. Castro, C. Maya and R. Shivaji. Nonlinear eigenvalue problems with semipositone structure. Electron. Jour. of Diff. Eqns, Conf 05 (2000), pp. 33-49.
[4] P. Drábek and J. Hernandez. Existence and uniqueness of positive solutions for some quasilinear elliptic problem. Nonlin. Anal. 44 (2001), 189-204.
[5] P. L Lions. On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24 (1982), 441-467.

Department of Mathematics, Mississippi State University, Mississippi State, MS 39759, USA

E-mail address, Jaffar Ali: js415@ra.msstate.edu
E-mail address, R. Shivaji: shivaji@ra.msstate.edu

[^0]: 2000 Mathematics Subject Classification. 35J55, 35J70.
 Key words and phrases. Positive solutions; p-Laplacian systems; semipositone problems.
 (C)2007 Texas State University - San Marcos.

 Published May 15, 2007.

