2006 International Conference in Honor of Jacqueline Fleckinger.
Electronic Journal of Differential Equations, Conference 16, 2007, pp. 81-93.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

SOME REMARKS ON INFINITE-DIMENSIONAL NONLINEAR ELLIPTIC PROBLEMS

PHILIPPE CLÉMENT, MARTA GARCÍA-HUIDOBRO, RAÚL F. MANÁSEVICH
Dedicated to Jacqueline Fleckinger on the occasion of an international conference in her honor

Abstract

We discuss some nonlinear problems associated with an infinite dimensional operator L defined on a real separable Hilbert space H. As the operator L we choose the Ornstein-Uhlenbeck operator induced by a centered Gaussian measure μ with covariance operator Q.

1. Introduction

The goal of this note is to present some results for nonlinear problems associated with an infinite dimensional operator L defined on a real separable Hilbert space H. As the operator L we choose the Ornstein-Uhlenbeck operator induced by a centered Gaussian measure μ with covariance operator Q (see [8]).

In the first part we consider existence and uniqueness of solutions for a problem of the form

$$
\begin{equation*}
-L u+\beta(u)=f \tag{1.1}
\end{equation*}
$$

where β satisfies
(H1) β is a strictly increasing homeomorphism of \mathbb{R} onto $\mathbb{R}, \beta(0)=0$,
and $f \in L^{2}(H, \mu)$ is given. As a consequence of the existence part we can show that the operator $L\left(\beta^{-1}\right)$, with an appropriate domain, has an m-dissipative closure in $L^{1}(H, \mu)$. Thus, in view of the Crandall-Liggett Theorem, see 7] (and also 6]), it generates a nonlinear contraction semigroup on the closure of its domain in $L^{1}(H, \mu)$.

In the second part we make the additional assumption that β is odd and we consider the nonlinear eigenvalue problem

$$
\begin{equation*}
-L u+\beta(u)=\lambda u, \quad \lambda \geq 0 \tag{1.2}
\end{equation*}
$$

[^0]where $u \in L^{2}(H, \mu),\|u\|_{L^{2}(H, \mu)}=R$, with $R>0$ given.
By using results in [4] and 9], we obtain the existence of an infinite sequence $\left\{\left(\lambda_{n}, u_{n}\right)\right\}_{n \in \mathbb{N}}$ of solutions to 1.2 with $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. This implies the existence of infinitely many solution pairs (λ, u) with non constant u. Moreover, we discuss the existence of solutions with nonnegative and non constant u.

2. Preliminaries

In this section we establish the notation that we will use throughout this work. Most of it is taken from [8] and we refer the reader to this book. H will denote a finite or infinite dimensional real separable Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $|\cdot|$. Throughout the paper $\mu=N_{Q}$ will denote the centered Gaussian measure on H with covariance Q, (see [8, page 12]), where Q denotes a positive symmetric operator of trace class in H with $\operatorname{Ker}(Q)=\{0\}$. Also, $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ will denote a complete orthonormal system of eigenvectors of Q with corresponding eigenvalues $\left\{\gamma_{k}\right\}_{k \in \mathbb{N}}$ satisfying

$$
\begin{equation*}
0<\gamma_{k+1} \leq \gamma_{k} \tag{2.1}
\end{equation*}
$$

We recall here that the Ornstein-Uhlenbeck semigroup "associated with μ " is given by

$$
R_{t} \varphi(x)=\int_{H} \varphi\left(e^{t A} x+y\right) N_{Q_{t}}(d y), \quad x \in H, t>0
$$

and $\varphi \in B_{b}(H)$ (Borel bounded functions on H). Here $A=-\frac{1}{2} Q^{-1}$ and

$$
Q_{t} x=\int_{0}^{t} e^{2 s A} x d s=Q\left(I-e^{2 t A}\right) x, \quad x \in H, t>0
$$

As a consequence of [8, Proposition 10.22], R_{t} can be uniquely extended to a strongly continuous contraction semigroup in $L^{2}(H, \mu)$, which we still denote by R_{t}, and μ is the unique invariant measure of R_{t} and for $x \in H$,

$$
\lim _{t \rightarrow \infty} R_{t} \varphi(x)=\int_{H} \varphi(y) d \mu(y)=\bar{\varphi}
$$

Moreover, from [8, Th5.8], R_{t} can be uniquely extended to a strongly continuous positive contraction semigroup in $L^{p}(H, \mu)$ for all $1 \leq p<\infty$.

We shall denote by L_{p} the infinitesimal generator of R_{t} in $L^{p}(H, \mu)$. In particular, L_{1} is m-dissipative in $L^{1}(H, \mu)$ hence it satisfies

$$
\begin{equation*}
\int_{H}\left(L_{1} u\right)(x) \operatorname{sgn}(u(x)) d \mu \leq 0, \quad \text { for every } u \in D\left(L_{1}\right) \tag{2.2}
\end{equation*}
$$

see e.g. 3, Lemma 2], where we have used the notation

$$
\operatorname{sgn}(t)= \begin{cases}1 & t>0 \\ 0 & t=0 \\ -1 & t<0\end{cases}
$$

Moreover, $-L_{2}$ is a nonnegative self adjoint operator in $L^{2}(H, \mu)$ with domain

$$
\begin{equation*}
D\left(L_{2}\right)=\left\{u \in W^{2,2}(H, \mu): \int_{H}\left|(-A)^{1 / 2} D u\right|^{2} d \mu<\infty\right\} \tag{2.3}
\end{equation*}
$$

see [8, Propositions 10.22 and 10.34] and

$$
\begin{equation*}
L_{2} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[D^{2} \varphi\right](x)+\langle x, A D \varphi(x)\rangle \tag{2.4}
\end{equation*}
$$

where $\varphi \in \mathcal{E}_{A}(H)$, which is defined to be the linear span in $C_{b}(H)$ (continuous bounded functions in H) of real and imaginary parts of φ_{h}, where $\varphi_{h}(x)=e^{i\langle h, x\rangle}$, $h \in D(A)$, and D, D^{2} are the differential operators introduced in [8, Proposition 10.3 and 10.32]. We also introduce $\mathcal{E}(H)$ as the linear span in $C_{b}(H)$ of real and imaginary parts of φ_{h}, where $\varphi_{h}(x)=e^{i\langle h, x\rangle}$, and now $h \in H$. Finally we note also that the null space $N\left(L_{p}\right)=\{$ const. $\}, 1 \leq p<\infty$.

We also consider the Dirichlet form $a: W^{1,2}(H, \mu) \times W^{1,2}(H, \mu) \rightarrow \mathbb{R}$ defined by

$$
a(\varphi, \psi)=\frac{1}{2} \int_{H}\langle D \varphi, D \psi\rangle d \mu
$$

The linear space $W^{1,2}(H, \mu)$ endowed with the inner product

$$
\langle\varphi, \psi\rangle_{W^{1,2}(H, \mu)}=\langle\varphi, \psi\rangle_{L^{2}(H, \mu)}+2 a(\varphi, \psi)
$$

is a real separable Hilbert space with

$$
\begin{equation*}
W^{1,2}(H, \mu) \hookrightarrow L^{2}(H, \mu) \quad \text { compact } \tag{2.5}
\end{equation*}
$$

see [8, Theorem 10.16]. Finally, we recall that

$$
\begin{equation*}
a(\varphi, \psi)=-\int_{H}\left\langle L_{2} \varphi, \psi\right\rangle d \mu \tag{2.6}
\end{equation*}
$$

for all $\varphi \in D\left(L_{2}\right)$, and all $\psi \in W^{1,2}(H, \mu)$, see [8, Section 10.4].
Remark 2.1. We want to note that in this work the operator L_{2} is defined as the generator of the semigroup R_{t} in $L^{2}(H, \mu)$, while in [8] the operator L_{2} is defined on page 151 via the Lax-Milgram Theorem. In view of [8, Proposition 10.22 (iv)], they are the same.

3. An infinite dimensional porous media type operator

The aim of this section is to construct an infinite dimensional nonlinear second order elliptic operator which is of porous media type $\Delta\left(\beta^{-1}\right)$, following the approach of 5]

Let β satisfy (H1) and consider problem (1.1).
Proposition 3.1. (a) For every $f \in L^{2}(H, \mu)$ there exists a unique $u \in D\left(L_{2}\right)$ such that $\beta(u) \in L^{2}(H, \mu)$ and u satisfies (1.1) with $L=L_{2}$.
(b) If
(H2) $\beta(u)=\varepsilon u+\gamma(u)$ for some $\varepsilon>0$ and some continuous monotone increasing function $\gamma: \mathbb{R} \rightarrow \mathbb{R}, \gamma(0)=0$,
then for any $f \in L^{1}(H, \mu)$ there exists a unique $u \in D\left(L_{1}\right)$ with $\beta(u) \in L^{1}(H, \mu)$ satisfying (1.1) with $L=L_{1}$.

Proof. We start by proving (a). Set $A:=-L_{2}, B u(x):=\beta(u(x))$, where

$$
D(B)=\left\{u \in L^{2}(H, \mu): \beta(u) \in L^{2}(H, \mu)\right\}
$$

and write (1.1) as

$$
A u+B u=f, \quad f \in L^{2}(H, \mu)
$$

We claim that A is maximal monotone and that it is the subdifferential of the convex l.s.c functional $J_{a}: L^{2}(H, \mu) \mapsto[0, \infty]$ defined by

$$
J_{a}(\varphi)= \begin{cases}a(\varphi, \varphi), & \varphi \in W^{1,2}(H, \mu) \tag{3.1}\\ +\infty & \text { otherwise }\end{cases}
$$

Indeed, for $u \in D\left(L_{2}\right)$ and $h \in W^{1,2}(H, \mu)$, by 2.6), we have that

$$
\begin{aligned}
J_{a}(u+h) & =J_{a}(u)+\int_{H}\langle D u, D h\rangle d \mu+J_{a}(h) \\
& \geq J_{a}(u)-\int_{H}\left\langle L_{2} u, h\right\rangle d \mu
\end{aligned}
$$

which implies that $u \in D\left(\partial J_{a}\right)$ and $-L_{2} u \in \partial J_{a}(u)$. Note that since J_{a} is convex, it follows that ∂J_{a} is monotone, moreover, since $-L_{2}$ is nonnegative and selfadjoint in $L^{2}(H, \mu)$, it follows that it is maximal monotone. Hence $-L_{2}=\partial J_{a}$ by the maximal monotonicity of $-L_{2}$. Also, B is the subdifferential of

$$
J_{b}(u)= \begin{cases}\int_{H} b(u) d \mu, & \text { if } \int_{H} b(u) d \mu<\infty \\ \infty & \text { otherwise }\end{cases}
$$

where

$$
\begin{equation*}
b(t):=\int_{0}^{t} \beta(s) d s \tag{3.2}
\end{equation*}
$$

Therefore A and B satisfy all the assumptions in [2, Example 1] implying that

$$
\operatorname{Int}(R(A+B))=\operatorname{Int}(R(A)+R(B))
$$

Since $R(B)=L^{2}(H, \mu)$, we conclude that $R(A+B)=L^{2}(H, \mu)$. Finally, the uniqueness assertion follows from the strict monotonicity of β.

Next we prove (b). In order to achieve this we write 1.1) as

$$
\begin{equation*}
\left(\varepsilon-L_{1}\right) u+\gamma(u)=f, \quad f \in L^{1}(H, \mu) \tag{3.3}
\end{equation*}
$$

Hence in view of Theorem 1 in [3] it is sufficient to see that the operator $A:=$ $\varepsilon-L_{1}$ satisfies $(I),(I I)$, and $(I I I)$ in [3]. Since by definition L_{1} generates a linear contraction C_{0} semigroup in $L^{1}(H, \mu)$, so does $L_{1}-\varepsilon=-A$, which yields (I). Also, from the dissipativity of L_{1} we have that

$$
\varepsilon\|u\|_{L^{1}(H, \mu)} \leq\left\|\varepsilon u-L_{1}\right\|_{L^{1}(H, \mu)}=\|A\|_{L^{1}(H, \mu)}
$$

implying that $(I I I)$ is also satisfied. Finally we prove $(I I)$. Let $\lambda>0$ and $f \in$ $L^{1}(H, \mu)$. Since the semigroup generated by L_{1} is positive, we have that

$$
(I+\lambda A)^{-1} f \leq(I+\lambda A)^{-1} f^{+}
$$

and hence

$$
\begin{equation*}
\text { ess } \sup (I+\lambda A)^{-1} f \leq \operatorname{ess} \sup (I+\lambda A)^{-1} f^{+} \tag{3.4}
\end{equation*}
$$

Since L_{p} generates a linear contraction C_{0} semigroup in $L^{p}(H, \mu)$ for all $1 \leq p<\infty$, so does $L_{p}-\varepsilon$, hence

$$
\begin{equation*}
\left\|(I+\lambda A)^{-1} f^{+}\right\|_{L^{p}(H, \mu)} \leq\left\|f^{+}\right\|_{L^{p}(H, \mu)} \tag{3.5}
\end{equation*}
$$

provided that $f^{+} \in L^{p}(H, \mu)$. Assuming $f^{+} \in L^{\infty}(H, \mu)$, by letting $p \rightarrow \infty$ in 3.5) we obtain

$$
\begin{aligned}
\operatorname{ess} \sup (I+\lambda A)^{-1} f^{+} & =\left\|(I+\lambda A)^{-1} f^{+}\right\|_{L^{\infty}(H, \mu)} \\
& \leq\left\|f^{+}\right\|_{L^{\infty}(H, \mu)}=\operatorname{ess} \sup f^{+} \\
& =\max \{0, \text { ess sup } f\} .
\end{aligned}
$$

Therefore, using (3.4 we conclude that

$$
\operatorname{ess} \sup (I+\lambda A)^{-1} f \leq \max \{0, \text { ess sup } f\}
$$

which is exactly assumption ($I I$) in [3].
We are now in a position to define a "porous media type" operator, which we denote by L_{ϕ}, where $\phi=\beta^{-1}$ in $L^{1}(H, \mu)$:

$$
D\left(L_{\Phi}\right):=\left\{u \in L^{1}(H, \mu): \phi(u) \in D\left(L_{1}\right)\right\}
$$

and for $u \in D\left(L_{\Phi}\right)$ we set

$$
L_{\phi} u:=L_{1}(\phi(u)) .
$$

We have the following result.
Theorem 3.2. (i) The closure of L_{ϕ} is a nonlinear (possibly multivalued) mdissipative operator in $L^{1}(H, \mu)$.
(ii) If β satisfies assumption (H2), then L_{ϕ} is itself a nonlinear m-dissipative operator in $L^{1}(H, \mu)$.
(iii) If $\phi \in C^{2}(\mathbb{R})$, then $\overline{D\left(L_{\phi}\right)}=L^{1}(H, \mu)$.

Remark 3.3. We do not claim that the last two assertions in Theorem 3.2 are optimal.

Proof of Theorem 3.2. (i) We will first prove the dissipativity of L_{ϕ} in $L^{1}(H, \mu)$. Let $u, v \in D\left(L_{\phi}\right)$ and let $\bar{u}=\phi(u), \bar{v}=\phi(v)$. By assumption, \bar{u} and \bar{v} belong to $D\left(L_{1}\right)$. In view of the dissipativity of L_{1} in $L^{1}(H, \mu)$ we have

$$
\begin{equation*}
\int_{H} L_{1}(\bar{u}-\bar{v}) \operatorname{sgn}(\bar{u}-\bar{v}) d \mu \leq 0 \tag{3.6}
\end{equation*}
$$

and in view of (H1),

$$
\begin{equation*}
\operatorname{sgn}(u-v)=\operatorname{sgn}(\bar{u}-\bar{v}) \tag{3.7}
\end{equation*}
$$

Hence, replacing (3.7) into (3.6), and using the definition of \bar{u}, \bar{v} we get

$$
\int_{H}\left(L_{1}(\phi(u)-\phi(v)) \operatorname{sgn}(u-v) d \mu \leq 0\right.
$$

which implies the dissipativity of L_{ϕ}. We prove now that $R\left(I-L_{\phi}\right)$ is dense in $L^{1}(H, \mu)$. Let $f \in L^{2}(H, \mu)$. Then by Proposition 3.1 (a), there exists $v \in D\left(L_{2}\right)$, with $\beta(v) \in L^{2}(H, \mu)$, such that

$$
-L_{2} v+\beta(v)=f
$$

hence setting $u=\beta(v)$ we obtain $v=\phi(u)$ and

$$
u-L_{2} \phi(u)=f
$$

hence $f \in R\left(I-L_{\phi}\right.$) (since $\left.L_{2} \subset L_{1}\right)$. We conclude that $L^{2}(H, \mu) \subseteq R\left(I-\lambda L_{\phi}\right)$ and the claim follows from the density of $L^{2}(H, \mu)$ in $L^{1}(H, \mu)$.

It is a well known fact that if $\overline{L_{\phi}}$ denotes the closure of L_{ϕ}, then $\overline{L_{\phi}}$ is dissipative (possibly multivalued) and $R\left(I-\overline{L_{\phi}}\right)$ is closed, hence equal to $L^{1}(H, \mu)$. Therefore $\overline{L_{\phi}}$ is m-dissipative in $L^{1}(H, \mu)$.
(ii) It follows from Proposition 3.1 that if β is of the form (H2) then the range

$$
R\left(I-L_{\phi}\right)=L^{1}(H, \mu)
$$

hence in this case L_{ϕ} is m-dissipative.
(iii) It is sufficient to show that $\mathcal{E}_{A}(H) \subseteq D\left(L_{\phi}\right)$, since $\mathcal{E}_{A}(H)$ is dense in $L^{2}(H, \mu)$. If $v \in \mathcal{E}_{A}(H)$, then there exists $N \geq 1, h_{1}, h_{2}, \ldots, h_{N}, k_{1}, k_{2}, \ldots, k_{N} \in D(A)$ $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}, \beta_{1}, \beta_{2}, \ldots, \beta_{N} \in \mathbb{R}$ such that

$$
\begin{equation*}
v(x)=\sum_{i=1}^{N}\left(\alpha_{i} \cos \left\langle h_{i}, x\right\rangle+\beta_{i} \sin \left\langle k_{i}, x\right\rangle\right), \quad x \in H \tag{3.8}
\end{equation*}
$$

We will prove that $\phi(v) \in D\left(L_{2}\right)$. In view of (2.3), with first verify that $\phi(v) \in$ $W^{2,2}(H, \mu)$. Since $v \in C_{b}(H)$, we have that $\phi(v), \phi^{\prime}(v)$ and $\phi^{\prime \prime}(v)$ are in $C_{b}(H)$. In particular, $\phi(v) \in L^{2}(H, \mu)$.

From the definition of $W^{2,2}(H, \mu)$ in [8, Section 10.6, page 161], we need to compute $D_{j} D_{\ell} \phi(v), j, \ell \in \mathbb{N}$. Since $D_{j} v$ and $D_{\ell} v$ are bounded and continuous, from

$$
D_{\ell} \phi(v)=\phi^{\prime}(v) D_{\ell} v
$$

and

$$
\begin{equation*}
D_{j} D_{\ell} \phi(v)(x)=\phi^{\prime}(v) D_{j} D_{\ell} v(x)+\phi^{\prime \prime}(v) D_{j} v(x) D_{\ell} v(x) \tag{3.9}
\end{equation*}
$$

we obtain that $D_{j} D_{\ell} \phi(v) \in C_{b}(H) \subseteq L^{2}(H, \mu)$.
Next we show that

$$
\begin{equation*}
\sum_{j, \ell=1}^{\infty} \int_{H}\left|D_{j} D_{\ell} \phi(v)\right|^{2} d \mu<\infty \tag{3.10}
\end{equation*}
$$

From $\sqrt{3.9}$ it is sufficient to show that

$$
\begin{equation*}
\sum_{j, \ell=1}^{\infty} \int_{H}\left|D_{j} D_{\ell} v\right|^{2} d \mu<\infty \quad \text { and } \quad \sum_{j, \ell=1}^{\infty} \int_{H}\left|D_{j} v(x) D_{\ell} v(x)\right|^{2} d \mu<\infty \tag{3.11}
\end{equation*}
$$

Indeed, the first assertion in (3.11) follows from the fact that $v \in \mathcal{E}_{A}(H) \subseteq \mathcal{E}(H) \subseteq$ $W^{2,2}(H, \mu)$. For the second one we note that

$$
\begin{equation*}
\left|D_{j} v(x)\right| \leq C \sum_{i=1}^{N}\left(\left|\left\langle h_{i}, e_{j}\right\rangle\right|+\left|\left\langle k_{i}, e_{j}\right\rangle\right|\right) \tag{3.12}
\end{equation*}
$$

where C is a positive constant depending only on $\alpha_{1}, \ldots, \alpha_{N}, \beta_{1}, \ldots, \beta_{N}$, hence

$$
\begin{equation*}
\sum_{j, \ell=1}^{\infty}\left|D_{j} v(x) D_{\ell} v(x)\right|^{2} \leq 4 N^{2} C^{4}\left(\sum_{i=1}^{N}\left|h_{i}\right|^{2}+\left|k_{i}\right|^{2}\right)^{2} \tag{3.13}
\end{equation*}
$$

implying that the second assertion in (3.11) holds and therefore $\phi(v) \in W^{2,2}(H, \mu)$. Finally we will prove that

$$
\begin{equation*}
\int_{H}\left|(-A)^{1 / 2} D \phi(v)\right|^{2} d \mu<\infty \tag{3.14}
\end{equation*}
$$

First we prove that $D \phi(v)(x) \in D\left((-A)^{1 / 2}\right)$. Since $A=-\frac{1}{2} Q^{-1}, w \in H$ belongs to $D\left((-A)^{1 / 2}\right)$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{\infty} \gamma_{j}^{-1}\left\langle w, e_{j}\right\rangle^{2}<\infty \tag{3.15}
\end{equation*}
$$

Now, $D \phi(v)(x)=\phi^{\prime}(v) D_{j} v(x)$ and $\left|\phi^{\prime}(v)\right| \leq C_{0}$ for some positive constant C_{0}, hence from 3.12 we find that

$$
\left|D_{j} \phi(v)(x)\right|^{2} \leq C_{0}^{2}\left|D_{j} v(x)\right|^{2} \leq 2 N C_{0}^{2} C^{2} \sum_{i=1}^{N}\left(\left|\left\langle h_{i}, e_{j}\right\rangle\right|^{2}+\left|\left\langle k_{i}, e_{j}\right\rangle\right|^{2}\right)
$$

where $h_{i}, k_{i} \in D(A), i=1, \ldots, N$, that is,

$$
\begin{equation*}
\sum_{j=1}^{\infty} \gamma_{j}^{-2}\left|\left\langle h_{i}, e_{j}\right\rangle\right|^{2}<\infty \quad \text { and } \quad \sum_{j=1}^{\infty} \gamma_{j}^{-2}\left|\left\langle k_{i}, e_{j}\right\rangle\right|^{2}<\infty \tag{3.16}
\end{equation*}
$$

Hence from 3.16,

$$
\sum_{j=1}^{\infty} \gamma_{j}^{-1}\left|D_{j} \phi(v)(x)\right|^{2} \leq 2 N C_{0}^{2} C^{2} \sum_{i=1}^{N} \sum_{j=1}^{\infty} \gamma_{j}^{-1}\left(\left|\left\langle h_{i}, e_{j}\right\rangle\right|^{2}+\left|\left\langle k_{i}, e_{j}\right\rangle\right|^{2}\right)<\infty
$$

since by (2.1) $\gamma_{j}^{-1} \leq \gamma_{j}^{-2}$ for large j. This implies that $D \phi(v)(x) \in D\left((-A)^{1 / 2}\right)$ for any $x \in H$ and

$$
\begin{aligned}
\left|(-A)^{1 / 2} D \phi(v)\right|^{2}(x) & =\sum_{j=1}^{\infty}\left\langle D \phi(v)(x),(-A)^{1 / 2} e_{j}\right\rangle^{2} \\
& =\frac{1}{2} \sum_{j=1}^{\infty}\left\langle D \phi(v)(x), \gamma_{j}^{-1 / 2} e_{j}\right\rangle^{2} \\
& =\frac{1}{2} \sum_{j=1}^{\infty} \gamma_{j}^{-1}\left\langle D \phi(v)(x), e_{j}\right\rangle^{2}
\end{aligned}
$$

implying that the integrand in 3.14 is Borel measurable and bounded and thus (3.14) holds. This completes the proof of part (3).

We end this section by giving some properties of the nonlinear semigroup generated by $\overline{L_{\phi}}$.

Proposition 3.4. Let β satisfy (H1) and $S_{t}: \overline{D\left(\overline{L_{\phi}}\right)} \rightarrow \overline{D\left(\overline{L_{\phi}}\right)}$ be the nonlinear semigroup generated by $\overline{L_{\phi}}$. Then the following hold.
(i) For any $c \in \mathbb{R}, c \in D\left(L_{\phi}\right)$, and $S_{t}(c)=c$.
(ii) Let $f, g \in \overline{\overline{D\left(\overline{L_{\phi}}\right)}}$ such that $f \leq g$. Then $S_{t}(f) \leq S_{t}(g)$ for all $t>0$.
(iii) For any $f \in \overline{D\left(\overline{L_{\phi}}\right)}$,

$$
\int_{H} S_{t} f d \mu=\int_{H} f d \mu \quad \text { for all } t>0 .
$$

Proof. From Proposition 3.1, for any $h>0$ there is a unique $u \in L^{2}(H, \mu)$ such that

$$
\begin{equation*}
-L_{2} u+\frac{1}{h} \beta(u)=\frac{1}{h} f \tag{3.17}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left.\left(I-h \overline{L_{\phi}}\right)\right)^{-1} f=\beta(u) \tag{3.18}
\end{equation*}
$$

Proof of (i). If $f=c$, we have $\beta(u)=c$ and thus by induction it follows that

$$
\begin{equation*}
\left(I-h \overline{L_{\phi}}\right)^{-m} c=c \quad \text { for all } m \in \mathbb{N}, \tag{3.19}
\end{equation*}
$$

therefore, for any $t>0$ we have

$$
S_{t}(c)=\lim _{m \rightarrow \infty}\left(I-\frac{t}{m} \overline{L_{\phi}}\right)^{-m} c=c
$$

Proof of (ii). Let now $f_{1}, f_{2} \in L^{2}(H, \mu)$, with $f_{1} \leq f_{2}$, and for $h>0$ and $\varepsilon>0$, and $i=1,2$, let u_{i}^{ε} satisfy

$$
\varepsilon u_{i}^{\varepsilon}-L_{2} u_{i}^{\varepsilon}+\frac{1}{h} \beta\left(u_{i}^{\varepsilon}\right)=\frac{1}{h} f_{1} .
$$

From [1, Proposition 4.7 (iv) implies (i)] with

$$
\varphi(u)= \begin{cases}0 & u \geq 0 \\ +\infty & \text { otherwise }\end{cases}
$$

we obtain $u_{1}^{\varepsilon} \leq u_{2}^{\varepsilon}$. By letting $\varepsilon \rightarrow 0$ we obtain $u_{1} \leq u_{2}$ where u_{i} satisfy

$$
-L_{2} u_{i}+\frac{1}{h} \beta\left(u_{i}\right)=f_{i}, \quad i=1,2
$$

Hence, $\beta\left(u_{1}\right) \leq \beta\left(u_{2}\right)$ and thus

$$
\left.\left.\left(I-h \overline{L_{\phi}}\right)\right)^{-1} f_{1} \leq\left(I-h \overline{L_{\phi}}\right)\right)^{-1} f_{2}
$$

Therefore, by induction,

$$
\begin{equation*}
\left.\left.\left(I-h \overline{L_{\phi}}\right)\right)^{-m} f_{1} \leq\left(I-h \overline{L_{\phi}}\right)\right)^{-m} f_{2} \tag{3.20}
\end{equation*}
$$

Since $L^{2}(H, \mu)$ is dense in $L^{1}(H, \mu), 3.20$ holds also for $f_{1}, f_{2} \in L^{1}(H, \mu)$. By taking $f_{1}, f_{2} \in \overline{D\left(\overline{L_{\phi}}\right)}$, we obtain as before that $S_{t}\left(f_{1}\right) \leq S_{t}\left(f_{2}\right)$.
Proof of (iii). Arguing as before, it is sufficient to prove that

$$
\int_{H}\left(I-h \overline{L_{\phi}}\right)^{-1} f d \mu=\int_{H} f d \mu
$$

for all $h>0$ and $f \in L^{2}(H, \mu)$. This follows by integrating 3.17 over H to obtain

$$
\int_{H} \beta(u) d \mu=\int_{H} f d \mu
$$

hence our claim follows by integrating now 3.18 over H.

4. A nonlinear eigenvalue problem associated with the Ornstein-Uhlenbeck operator

In this section we consider the nonlinear eigenvalue problem

$$
\begin{equation*}
-L_{2} u+\beta(u)=\lambda u \tag{4.1}
\end{equation*}
$$

where β satisfies (H1) and is odd. By a solution to this equation we mean a pair $(\lambda, u) \in \mathbb{R} \times L^{2}(H, \mu)$ satisfying $u \in W^{2,2}(H, \mu), \beta(u) \in L^{2}(H, \mu)$. Clearly, for any $\lambda \in \mathbb{R},(\lambda, 0)$ is a solution to 4.1). Set

$$
\lambda^{*}:=\sup \{\lambda \in \mathbb{R}: s \mapsto \beta(s)-\lambda s \text { is strictly increasing in } \mathbb{R}\}
$$

We have that $0 \leq \lambda^{*}<\infty$. If $\lambda<\lambda^{*}$, then $s \mapsto \beta(s)-\lambda s$ is strictly increasing and hence, from Proposition 3.1 (a) we have that $(\lambda, 0)$ is the only solution to 4.1. For $\lambda \in \mathbb{R}$ let us consider the functional $J_{\lambda}: L^{2}(H, \mu) \rightarrow[-\infty, \infty]$ defined by

$$
J_{\lambda}(u)= \begin{cases}J_{a}(u)+J_{b}(u)-\frac{\lambda}{2}\|u\|_{L^{2}(H, \mu)}^{2}, & u \in W^{1,2}(H, \mu), \int_{H} b(u) d \mu<\infty \tag{4.2}\\ +\infty & \text { otherwise }\end{cases}
$$

We observe that for $\lambda<\lambda^{*}$, J_{λ} is strictly convex, l.s.c. and nonnegative, and 0 is its global minimizer.

Next we investigate the positive constant solutions to 4.1) $u(x) \equiv c$. Then $\beta(c)=\lambda c$. We have the following result.
Proposition 4.1. Assume that

$$
\begin{equation*}
t \mapsto \beta(t) / t \text { is strictly increasing on }(0, \infty) \tag{4.3}
\end{equation*}
$$

Then for all $c>0$ the pair $(\beta(c) / c, c)$ is a solution to 4.1) and $u=c$ minimizes the functional J_{0} on the set

$$
S_{c}:=\left\{u \in W^{1,2}(H, \mu):\|u\|_{L^{2}(H, \mu)}=c\right\}
$$

Furthermore, $u=c$ is the unique nonnegative minimizer of J_{0} on S_{c}.
Proof. From (4.3) we obtain that the mapping $t \mapsto b(\sqrt{t}), t>0$, is strictly convex, hence for any $u \in D\left(J_{0}\right)$ we have by Jensen's inequality ([10, Theorem 2.2(a)]) that

$$
\begin{equation*}
J_{0}(u) \geq \int_{H} b\left(\sqrt{|u|^{2}}\right) d \mu \geq b\left(\sqrt{\int_{H}|u|^{2} d \mu}\right)=b(c)=J_{0}(c) \tag{4.4}
\end{equation*}
$$

implying that $u=c$ is a minimizer for J_{0}. On the other hand, if u is a minimizer, then from (4.4) and the fact that $J_{0}(c) \geq J_{0}(u)$, we obtain that

$$
\int_{H} b\left(\sqrt{|u|^{2}}\right) d \mu=b\left(\sqrt{\int_{H}|u|^{2} d \mu}\right)
$$

hence by [10, Theorem $2.2(\mathrm{~b})$] we deduce that u^{2} must be a constant, hence $u=c$ since u is nonnegative.

We will now state and prove our existence results.
Theorem 4.2. (i) For any $R>0$ there exists a solution (λ, u) to 4.1 satisfying $u \geq 0$ and u minimizes J_{0} on S_{R}.
(ii) For any $R>0$ there exists a sequence of solutions $\left\{\left(\lambda_{n}, u_{n}\right)\right\}_{n \in \mathbb{N}}$ to 4.1) such that $u_{n} \in S_{R}$ and

$$
\begin{equation*}
\lambda_{n}>0 \quad \text { for } n \in \mathbb{N}, \quad \text { and } \quad \sup _{n \in \mathbb{N}} \lambda_{n}=\infty \tag{4.5}
\end{equation*}
$$

Proof. (ii) We will apply Theorem 1 in [4, see also 9]. As the real infinite dimensional separable Hilbert space we choose $E=L^{2}(H, \mu)$. Let $\varphi: E \rightarrow[0, \infty]$ be defined by $\varphi(u):=J_{-1}, u \in E$. Then clearly φ is convex, even, and $\varphi(0)=0$. Moreover, in view of the compactness of the imbedding 2.5), the convex set

$$
\{u \in E: \varphi(u) \leq \rho\}
$$

is compact in E for all $\rho \geq 0$. Moreover, since $\mathcal{E}(H) \subseteq C_{b}(H) \cap W^{1,2}(H, \mu)$ we have that $\mathcal{E}(H) \subseteq D(\varphi)$. The density of $\mathcal{E}(H)$ in E implies the density of $D(\varphi)$ in E.

Hence, all the assumptions of 4, Theorem 1] are satisfied and therefore there exists a sequence $\left(\nu_{k}, u_{k}\right) \in \mathbb{R} \times E, k \in \mathbb{N}$ such that $\left\|u_{k}\right\|_{E}=R, \partial J_{-1}\left(u_{k}\right) \ni \nu_{k} u_{k}$ and $\sup _{k \geq 1} \varphi\left(u_{k}\right)=\infty$. We claim that

$$
D\left(\partial J_{-1}\right)=D\left(L_{2}\right) \cap D(B)
$$

and

$$
\partial J_{-1}(u)=-L_{2} u+B u+u, \quad u \in D\left(\partial J_{-1}\right)
$$

Indeed,

$$
J_{-1}=J_{a}+J_{\tilde{b}}
$$

where $\tilde{b}(t)=b(t)+\frac{1}{2} t^{2}$ and we have

$$
\partial J_{a}=-L_{2}, \quad \text { and } \quad \partial J_{\tilde{b}}=B+I
$$

In view of Proposition 3.1 (a), we have

$$
R\left(-L_{2}+B+2 I\right)=E
$$

which implies that $-L_{2}+(B+I)$ is maximal monotone. From [1, page 41] we have

$$
\partial J_{-1}=\partial J_{a}+\partial J_{\tilde{b}},
$$

which proves the claim. Therefore

$$
-L_{2} u_{k}+\beta\left(u_{k}\right)=\left(\nu_{k}-1\right) u_{k}, \quad k \in \mathbb{N}
$$

Set $\lambda_{k}=\nu_{k}-1, k \in \mathbb{N}$. By taking inner product with u_{k} and taking into account that $\left\|u_{k}\right\|_{E}=R>0$ we have that $\lambda_{k}>0$. Finally, since

$$
\varphi\left(u_{k}\right) \leq\left\langle\partial \varphi\left(u_{k}\right), u_{k}\right\rangle=\nu_{k} R^{2}
$$

we have $\sup _{k \in \mathbb{N}} \lambda_{k}=\infty$. and thus 4.5 holds.
(i) In this part we shall use that $u \in W^{1,2}(H, \mu)$ implies that $|u| \in W^{1,2}(H, \mu)$, $J_{a}(|u|)=J_{a}(u)$, and moreover, since β is odd, we also have $J_{b}(|u|)=J_{b}(u)$. We will apply Theorem 3 in [4. To this end we set

$$
P:=\left\{v \in L^{2}(H, \mu): v \geq 0\right\}, \quad I_{P}(u)= \begin{cases}0 & u \in P \\ +\infty & \text { otherwise }\end{cases}
$$

and define $\varphi_{+}: E \rightarrow[0, \infty]$ by $\varphi_{+}(u)=\varphi(u)+I_{P}(u), u \in E$. We have that φ_{+} is convex, l.s.c., the set $\left\{u \in E: \varphi_{+}(u) \leq \rho\right\}$ is compact for every $\rho \geq 0$, and $\varphi_{+}(0)=0$. We claim that $\overline{D\left(\varphi_{+}\right)}=P$. Indeed, let $u \in P$. By the density of $D(\varphi)$ in E, there exists $\left\{u_{n}\right\} \subseteq D(\varphi)$ such that $u_{n} \rightarrow u$ in E. Hence, $\left|u_{n}\right| \in D\left(\varphi_{+}\right)$and $\left|u_{n}\right| \rightarrow|u|=u$ in E.

Let $R>0$. From [4, Theorem 3] there exists $(\nu, u) \in \mathbb{R}^{+} \times P$, with $\|u\|_{E}=R$, $\nu u \in D\left(\partial \varphi_{+}\right), \nu u \in \partial \varphi_{+}(u)$ and

$$
\varphi_{+}(u)=\inf _{v \in S_{R}} \varphi_{+}(v)
$$

It follows that

$$
\varphi_{+}(v) \geq \varphi_{+}(u)+\langle\nu u, v-u\rangle \quad \text { for all } v \in D(\varphi)
$$

Since $u \in P$, we have $\varphi_{+}(u)=\varphi(u)$, hence

$$
\varphi_{+}(v) \geq \varphi(u)+\langle\nu u, v-u\rangle \quad \text { for all } v \in D(\varphi)
$$

Moreover, for all $v \in P \cap D(\varphi)$ we have

$$
\varphi(v) \geq \varphi(u)+\langle\nu u, v-u\rangle
$$

hence for all $v \in D(\varphi)$ we have

$$
\varphi(|v|) \geq \varphi(u)+\langle\nu u,| v|-u\rangle .
$$

Since $\varphi(|v|)=\varphi(v)$, we obtain

$$
\varphi(v) \geq \varphi(u)+\langle\nu u, v-u\rangle+\langle\nu u,| v|-v\rangle \geq \varphi(u)+\langle\nu u, v-u\rangle
$$

hence $\nu u \in D\left(\partial \varphi(u)\right.$ and $\nu u=-L_{2}+B u+u$. Setting now $\lambda=\nu-1$ we get

$$
-L_{2} u+B u=\lambda u
$$

Finally, we have

$$
\begin{aligned}
J_{0}(u) & =\varphi(u)-\frac{1}{2} R^{2}=\varphi_{+}(u)-\frac{1}{2} R^{2} \\
& =\inf _{v \in S_{R}} \varphi_{+}(v)-\frac{1}{2} R^{2}=\inf _{v \in S_{R}} \varphi(|v|)-\frac{1}{2} R^{2} \\
& =\inf _{v \in S_{R}} \varphi(v)-\frac{1}{2} R^{2} \\
& =\inf _{v \in S_{R}} J_{0}(v)
\end{aligned}
$$

We complete this note by exhibiting a class of functions β for which the minimum of J_{0} on S_{R} is not attained at the constants for R small.

Proposition 4.3. Assume that β satisfies the extra conditions

$$
\begin{equation*}
\lim _{s \rightarrow 0} \frac{b(s)}{s^{2}}=\infty, \quad \text { and } \quad \lim _{s \rightarrow \infty} \frac{b(s)}{s^{2}}=0 \tag{4.6}
\end{equation*}
$$

there exists $C>0$ such that $b(s t) \leq C b(s) b(t)$ for all $s, t>0$.
Then, there exists $R_{0}>0$ such that for any $R \in\left(0, R_{0}\right) J_{0}$ does not achieve its minimum on S_{R} at the constants.
Proof. For $n \in \mathbb{N}$, we set

$$
\tilde{u}_{n}(t)= \begin{cases}-n \alpha_{n}\left(|t|-\frac{1}{n}\right) & |t| \leq \frac{1}{n} \\ 0 & |t|>\frac{1}{n}\end{cases}
$$

where α_{n} will be chosen later. We define $u_{n}: H \rightarrow \mathbb{R}$ by $u_{n}(x):=\tilde{u}_{n}\left(\left\langle x, e_{1}\right\rangle\right)$ and we choose α_{n} so that $\left\|u_{n}\right\|_{L^{2}(H, \mu)}=R$. We observe also that $u_{n} \in W^{1,2}(H, \mu)$. One verifies that

$$
\begin{equation*}
C_{1} R \sqrt{n} \leq \alpha_{n} \leq C_{2} R \sqrt{n} \tag{4.8}
\end{equation*}
$$

for some positive constants C_{1}, C_{2}. We will show now that if n is chosen large enough and $R>0$ is small enough, then

$$
J_{0}\left(u_{n}\right)<J_{0}(R)=b(R)
$$

Indeed, it follows from the definition of μ that

$$
\begin{equation*}
\frac{1}{2} \int_{H}\left|D u_{n}\right|^{2} d \mu \leq K_{0} \int_{0}^{1 / n}\left|\tilde{u}_{n}^{\prime}\right|^{2} d t, \quad \int_{H} b\left(u_{n}\right) d \mu \leq K_{0} \int_{0}^{1 / n} b\left(\tilde{u}_{n}\right) d t \tag{4.9}
\end{equation*}
$$

for some positive constant K_{0}. Now, from 4.8 we have

$$
\begin{equation*}
\int_{0}^{1 / n}\left|\tilde{u}_{n}^{\prime}\right|^{2} d t=n \alpha_{n}^{2} \leq C_{2}^{2} n^{2} R^{2} \tag{4.10}
\end{equation*}
$$

and from 4.8 and 4.7 we get

$$
\int_{0}^{1 / n} b\left(\tilde{u}_{n}\right) d t=\frac{1}{n \alpha_{n}} \int_{0}^{\alpha_{n}} b(s) d s \leq \frac{b\left(\alpha_{n}\right)}{n} \leq \frac{b\left(C_{2} R \sqrt{n}\right)}{n} \leq C b(R) \frac{b\left(C_{2} \sqrt{n}\right)}{n}
$$

Using now the second condition in 4.6 to find $n_{0} \in \mathbb{N}$ so that

$$
C K_{0} \frac{b\left(C_{2} \sqrt{n_{0}}\right)}{n_{0}}<\frac{1}{4}
$$

from the second inequality in 4.9 we obtain

$$
\begin{equation*}
\int_{H} b\left(u_{n}\right) d \mu \leq \int_{H} b\left(u_{n_{0}}\right) d \mu<\frac{1}{4} b(R) \tag{4.11}
\end{equation*}
$$

Finally, in view of the first assumption in 4.6 we can find $R_{0}>0$ such that for any $R \in\left(0, R_{0}\right)$

$$
K_{0} C_{2}^{2} n_{0}^{2} \frac{R^{2}}{b(R)} \leq \frac{1}{4}
$$

therefore from the first inequality in 4.9 and 4.10 , we have

$$
\begin{equation*}
\frac{1}{2} \int_{H}\left|D u_{n}\right|^{2} d \mu \leq K_{0} C_{2}^{2} n_{0}^{2} \frac{R^{2}}{b(R)} b(R) \leq \frac{1}{4} b(R) \tag{4.12}
\end{equation*}
$$

Hence, from 4.11) and 4.12 we conclude that for any $R \in\left(0, R_{0}\right)$,

$$
\inf _{v \in S_{R}} J_{0}(v) \leq J_{0}\left(u_{n_{0}}\right) \leq \frac{1}{2} b(R)=\frac{1}{2} J_{0}(R)
$$

This completes the proof of the proposition.
Remark 4.4. We note that $\beta(s)=|s|^{p-1} s, 0<p<1$, satisfies all the assumptions of Proposition 4.3 .

As a last comment, we mention that as a consequence of Theorem 4.2 and Proposition 4.3 we have shown the existence of a nonnegative nonconstant solution to 4.1). It is worth observing that a function u of the form

$$
u(x)=\tilde{u}\left(\left\langle x, e_{1}\right\rangle,\left\langle x, e_{2}\right\rangle, \ldots,\left\langle x, e_{N}\right\rangle\right)
$$

where $\tilde{u}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a solution to 4.1 with $H=\mathbb{R}^{N}$ with the usual inner product and

$$
L_{2}=\frac{1}{2} \Delta+\langle b(x), \nabla\rangle
$$

where $b_{i}(x)=-\frac{x_{i}}{2 \gamma_{i}}, 1 \leq i \leq N$, is also a solution to the infinite dimensional problem. It is an open problem to know whether 4.1 possesses solutions depending on infinitely many variables.

References

[1] H. Brézis; Operateurs Maximaux Monotones et Semigroups de Contractions dans les Espaces de Hilbert, North Holland, Amsterdam 1978.
[2] H. Brézis and A. Haraux; Image d'une somme d'oprateurs monotones et applications, Israel J. Math. 23 (1976), no. 2, 165-186.
[3] H. Brézis and W. Strauss, Semi-linear second-order elliptic equations in L^{1}. J. Math. Soc. Japan 25 (1973), 565-590.
[4] Ph. Clément; Eigenvalue problem for a class of cyclically maximal monotone operators. Nonlinear Anal. 1 (1976/77), no. 2, 93-103.
[5] M. G. Crandall; An introduction to evolution governed by accretive operators. In Dynamical systems: An international symposium. L. Cesari, J. Hale and J. La Salle (eds) 131-165, Academic Press, New York, 1976.
[6] M. G. Crandall; Nonlinear semigroups and evolution governed by accretive operators. Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983), 305-337, Proc. Sympos. Pure Math., 45, Part 1, Amer. Math. Soc., Providence, RI, 1986.
[7] M. G. Crandall and T. M. Liggett; Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265-298.
[8] G. da Prato; An introduction to infinite-dimensional analysis. Revised and extended from the 2001 original by Da Prato. Universitext. Springer-Verlag, Berlin, 2006.
[9] S. Kaizu, A. Nishiyama and J. Watanabe; Convergence of solutions of nonlinear eigenvalue problems. Adv. Math. Sci. Appl. 3 (1993/94), Special Issue, 353-366.
[10] E. Lieb and M. Loss; Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001.

Philippe Clément
Mathematical Institute, Leiden University, P.O. Box 9512, NL-2300, RA Leiden, and
EEMCS/ DIAM, TU Delft, P.O. Box 5031, NL-2600, GA Delft, The Netherlands
E-mail address: clement@math.leidenuniv.nl
Marta García-Huidobro
Departamento de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile

E-mail address: mgarcia@mat.puc.cl
Raúl F. Manásevich
Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad de Chile, Casilla 170, Correo 3, Santiago, Chile

E-mail address: manasevi@dim.uchile.cl

[^0]: 2000 Mathematics Subject Classification. 35J65, 35J25.
 Key words and phrases. Hilbert space; Ornstein-Uhlenbeck operator;
 nonlinear elliptic problems.
 © 2007 Texas State University - San Marcos.
 Published May 15, 2007.
 Ph. Clément was supported by grant 7150117 from FONDECYT; M. García-H. by grant 1030593 from FONDECYT; R. Manásevich by grant P04-066-F from Fondap Matemáticas Aplicadas and Milenio.

