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Abstract. We investigate the asymptotic properties as t → ∞ of the differ-

ential equation

ẍ(t) + a(t)ẋ(t) +∇G(x(t)) = 0, t ≥ 0

where x(·) is R-valued, the map a : R+ → R+ is non increasing, and G :

R → R is a potential with locally Lipschitz continuous derivative. We identify
conditions on the function a(·) that guarantee or exclude the convergence of

solutions of this problem to points in argmin G, in the case where G is convex

and argmin G is an interval. The conditionZ ∞

0
e−

R t
0 a(s) dsdt <∞

is known to be necessary for convergence of trajectories. We give a slightly

stronger condition that is sufficient.

1. Introduction

In this note, we study the differential equation

ẍ(t) + a(t)ẋ(t) +∇G(x(t)) = 0, t ≥ 0 (1.1)

where x(·) is R-valued, the map G : R → R is at least of class C1, and a : R+ → R+

is a non increasing function. In a previous paper [3], we studied this differential
equation in a finite- or infinite-dimensional Hilbert space H. We are interested in
the case where a(t) → 0 as t →∞. Broadly speaking, convergence of solutions can
be expected if a(t) → 0 sufficiently slowly. One of the questions left open in that
paper was whether solutions converge to a limit if the property∫ ∞

0

e−
R t
0 a(s)dsdt = ∞ (1.2)

does not hold and if argminG consists of more than just one point. In this note,
we give a positive answer to this question, in the one dimensional case.

2000 Mathematics Subject Classification. 34G20, 34A12, 34D05.
Key words and phrases. Differential equation; dissipative dynamical system;
vanishing damping; asymptotic behavior.
c©2009 Texas State University - San Marcos.

Published April 15, 2009.

33



34 A. CABOT, H. ENGLER, S. GADAT EJDE/CONF/17

2. Preliminary Facts

Throughout this paper, we will denote by G : R → R a C1 function for which
the derivative G′ is Lipschitz continuous, uniformly on bounded sets. The function
a : R+ → R+ will always be assumed to be continuous and non-increasing. We also
define the energy

E(t) = G(x(t)) +
1
2
|ẋ(t)|2 .

Here are some basic results for solutions of (1.1) from [3].
For any (x0, x1) ∈ R2, the problem (1.1) has a unique solution x(·) ∈ C2([0, T ), R)

satisfying x(0) = x0, ẋ(0) = x1 on some maximal time interval [0, T ) ⊂ [0,∞). For
every t ∈ [0, T ), the energy identity holds

d

dt
E(t) = −a(t)|ẋ(t)|2.

If in addition G is bounded from below, then∫ T

0

a(t)|ẋ(t)|2dt < ∞ , (2.1)

and the solution exists for all T > 0. If also G(ξ) → ∞ as |ξ| → ∞ (i.e. if G is
coercive), then all solutions to (1.1) remain bounded together with their first and
second derivatives for all t > 0. The bound depends only on the initial data. If a
solution x to (1.1) converges toward some x ∈ R, then limt→∞ ẋ(t) = limt→∞ ẍ(t) =
0 and G′(x) = 0. If

∫∞
0

a(s) ds < ∞ and if inf G > −∞, then solutions x(·) of (1.1)
for which (x(0), ẋ(0)) 6∈ argminG× {0} cannot converge to a point in argminG.

For the remainder of this note we shall assume that argminG 6= ∅. Without loss
of generality, we may assume that minR G = 0 and G(0) = 0. If for some ρ ∈ R+

and z ∈ argminG

∀x ∈ R, G(x)−G(z) ≤ ρ G′(x)(x− z)

then it is possible to show that any solution x to the differential equation (1.1)
satisfies ∫ ∞

0

a(t) E(t) dt < ∞.

Since t 7→ E(t) is decreasing, this estimate implies that E(t) → minG = 0 as
t →∞, provided that

∫∞
0

a(t) dt = ∞. If now argmin G = {x} is a singleton, then
trajectories must converge to x under fairly weak additional conditions. The reader
is referred to [3] for details.

3. Convex potentials with non-unique minima

In this section, we investigate the convergence of the trajectories of (1.1) when
argminG is not a singleton. While the previous discussion shows that

∫∞
0

a(s)ds =
∞ is a necessary condition for trajectories to converge to a point in argminG, this
condition is clearly not sufficient, as the particular case G ≡ 0 shows. In this case,
the solution is given by

x(t) = x(0) + ẋ(0)
∫ t

0

e−
R s
0 a(u) duds

and the solution x converges if and only if (1.2) does not hold. Therefore it is
natural to ask whether for a general potential G, the trajectory x is convergent if
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this condition does not hold. The potential G is assumed to have all the properties
listed in the previous section. A general result of non-convergence of the trajectories
under the condition (1.2) is shown in [3]. There, we assume that G is coercive,
infR G = 0, argmin G = [α, β] for some α < β, and that G is non-increasing on
(−∞, α] and non-decreasing on [β,∞). It is also assumed that a satisfies condition
(1.2). Then either a solution satisfies (x(0), ẋ(0)) ∈ [α, β]×{0}, or else the ω- limit
set ω(x0, ẋ0) contains [α, β] and hence the trajectory x does not converge.

We now ask if the converse assertion is true: do the trajectories x of (1.1)
converge if (1.2) does not hold? We give a positive answer when the map a satisfies
the following stronger condition∫ ∞

0

e−θ
R s
0 a(u) duds < ∞, (3.1)

for some θ ∈ (0, 1).

Theorem 3.1. Let G : R → R be a convex function of class C1 such that G′ is
Lipschitz continuous on the bounded sets of R. Assume that argminG = [α, β] with
α < β and that there exists δ > 0 such that

∀ξ ∈ (−∞, α], G′(ξ) ≤ 2 δ (ξ − α) and ∀ξ ∈ [β,∞), G′(ξ) ≥ 2 δ (ξ − β).

Let a : R+ → R+ be a differentiable non increasing map such that limt→∞ a(t) = 0
and such that condition (3.1) holds for some positive θ < 1. Then, for any solution
x to the differential equation (1.1), limt→∞ x(t) exists.

Proof. We may assume without loss of generality that α = 0, β = 1. The conditions
on G imply that it is coercive, hence limt→∞ E(t) = 0 and |x(t)| ≤ M for some
M > 0, for all t ∈ R+.

Define the set T = {t ≥ 0 | ẋ(t) = 0}. We shall show that either T = [0,∞) or T
is a finite set. Assume first that T has an accumulation point t∗. Then ẋ(t∗) = 0
and ẍ(t∗) = 0 by Rolle’s Theorem. Since then ẋ(t∗) = ẍ(t∗) = G′(x(t∗)) = 0, x(·)
must be constant by forward and backward uniqueness, T = [0,∞), and clearly the
limit exists. Therefore we may now assume that T is discrete. If T is a finite set,
then ẋ does not change sign for sufficiently large t, and the trajectory x has a limit.

It remains to consider the case T = {tn |n ∈ N}, where the tn are increasing
and tend to ∞. We want to show that this is impossible. Observe that at each tn,
ẋ must change its sign and G′(x(tn)) 6= 0, since otherwise also ẍ(tn) = 0 and we
would again have a stationary solution. Without loss of generality, we can assume
that ẋ(0) < 0, x(0) < 0 and therefore x(t0) < 0. Since G′(x(t0)) < 0, equation
(1.1) shows that ẍ(t0) > 0, hence the map ẋ is positive on (t0, t1), x(t1) > 1, ẋ is
negative on (t1, t2), and so on.

The argument so far shows that G′(x(t)) vanishes on a union of infinitely many
disjoint closed intervals,

{t | 0 ≤ x(t) ≤ 1} = ∪k≥0[u2k, u2k+1]

where 0 < t0 < u0 and u2k−1 < tk < u2k for k = 1, 2, . . . . Let us observe that, for
every k ∈ N,

1 = |x(u2k+1)− x(u2k)| =
∫ u2k+1

u2k

|ẋ(t)| dt ≤ |u2k+1 − u2k| max
t≥u2k

|ẋ(t)|.

Since limt→∞ ẋ(t) = 0, we deduce that limk→∞ |u2k+1 − u2k| = ∞.
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We next observe that for u2k ≤ t ≤ u2k+1 the function v = ẋ satisfies v̇(t) +
a(t)v(t) = 0 and hence

∀t ∈ [u2k, u2k+1], ẋ(t) = ẋ(u2k)e−
R t

u2k
a(τ)dτ

. (3.2)

Claim 3.2. There is a constant γ such that u2k+2 − u2k+1 ≤ γ for all k ∈ N.

To show this claim, fix k ∈ N and assume that t ∈ [u2k+1, u2k+2]. Assume for
now that k is odd and thus x(t) ≤ 0. Define the quantity A(t) = exp

(
1
2

∫ t

0
a(s) ds

)
and set y(t) = A(t) x(t). Then y is the solution of the differential equation

ÿ(t) + A(t)G′
(

y(t)
A(t)

)
−

(
a2(t)

4
+

ȧ(t)
2

)
y(t) = 0, (3.3)

and satisfies y(u2k+1) = y(u2k+2) = 0 and ẏ(u2k+1) = A(u2k+1) ẋ(u2k+1) < 0.
Since the map a converges to 0, we can choose k large enough so that a(t) < 2

√
δ

for every t ∈ [u2k+1, u2k+2]. On the other hand, the assumption on G′ shows that,
for every t ∈ [u2k+1, u2k+2],

A(t) G′
(

y(t)
A(t)

)
≤ 2 δ y(t).

Recalling finally that ȧ(t) ≤ 0 for every t ≥ 0, we deduce from (3.3) that

∀t ∈ [u2k+1, u2k+2], ÿ(t) + δ y(t) ≥ 0.

The unique solution z of the differential equation z̈(t) + δ z(t) = 0 with the same
initial conditions as y has the first zero larger than u2k+1 at u2k+1 + π√

δ
. By a

standard comparison argument, we deduce that y vanishes before z does, hence

u2k+2 ≤ u2k+1 + γ, γ =
π√
δ

.

The same argument applies if k is even. This proves the claim.

Claim 3.3. There is a k0 ∈ N such that for k ≥ k0

|ẋ(u2k+2)| ≤ |ẋ(u2k)| e−θ
R u2k+2

u2k
a(s) ds.

where θ is as in (3.1).

To prove this, pick k0 so large that for all k ≥ k0,

(1− θ)(u2k+2 − u2k) ≥ γθ .

This is possible since u2k+2 − u2k → ∞ as k → ∞. Since a is non-increasing, this
implies that

θ

∫ u2k+2

u2k+1

a(τ)dτ ≤ γθa(u2k+1)

≤ (1− θ)(u2k+1 − u2k)a(u2k+1)

≤ (1− θ)
∫ u2k+1

u2k

a(τ)dτ

and hence

θ

∫ u2k+2

u2k

a(τ)dτ ≤
∫ u2k+1

u2k

a(τ)dτ .
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Then for k ≥ k0,

|ẋ(u2k+2)| ≤ |ẋ(u2k+1)| = |ẋ(u2k)|e−
R u2k+1

u2k
a(s) ds

≤ |ẋ(u2k)|e−θ
R u2k+2

u2k
a(s) ds

proving the claim.

Claim 3.4. If the set T is unbounded, there must exist a constant C, depending
on T and on x(0), ẋ(0) such that for all t ≥ 0

|ẋ(t)| ≤ C e−θ
R t
0 a(s) ds. (3.4)

By making sure that C is sufficiently large, we only have to prove the estimate
for t ≥ u2k0 . First assume that u2k ≤ t ≤ u2k+1 for some k. Then from (3.2)

|ẋ(t)| ≤ |ẋ(u2k)| e−
R t

u2k
a(s) ds ≤ |ẋ(u2k)| e−θ

R t
u2k

a(s) ds
.

Using induction, we deduce from Claim 3.3 that

|ẋ(t)| ≤ |ẋ(u2k0)| e
−θ

R t
u2k0

a(s) ds
= C1 e−θ

R t
0 a(s) ds

with C1 = |ẋ(u2k0)| eθ
R u2k0
0 a(s) ds. Next consider the case where u2k+1 < t ≤ u2k+2

for some k. Then

|ẋ(t)| ≤ |ẋ(u2k+1)| ≤ C1 e−θ
R u2k+1
0 a(s) ds ≤ C1e

θ
R u2k+2

u2k+1 a(τ)dτ e−θ
R t
0 a(s) ds .

Due to Claim 3.2, eθ
R u2k+2

u2k+1 a(τ)dτ ≤ C2 for all k, for some constant C2. Estimate
(3.4) now follows for t ≥ u2k0 with C = C1C2. By enlarging C further, the estimate
follows for all t ≥ 0.

Let us now conclude the proof of the theorem. From assumption (3.1) and esti-
mate (3.4), we derive that ẋ ∈ L1(0,∞). Hence limt→∞ x(t) exists, contradicting
the initial assumption. Therefore limt→∞ x(t) exists after all, and the theorem has
been proved. �

Remark 3.5. Note that the map t 7→ c
t+1 with c > 1 satisfies condition (3.1) for

every θ ∈ ( 1
c , 1). In fact, if merely a(t) ≥ c

t+1 for t large enough for some c > 1,
then condition (3.1) is satisfied. Consider next the family of maps a : R+ → R+

defined by

a(t) =
1

t + 1
+

d

(t + 1) ln(t + 2)
,

for some d > 0. It is immediate to check that condition (1.2) holds if and only
if d ∈ (0, 1]. Thus non-stationary trajectories of (1.1) do not converge when d ∈
(0, 1]. But condition (3.1) is never satisfied, for any θ ∈ (0, 1) and d > 0, and
the convergence of trajectories remains an open question. Thus there remains a
“logarithmic” gap between the criteria for existence and non-existence of limits.

We conclude with some remarks on convergence results in dimension n > 1. It is
possible to extend the non-convergence result given at the beginning of this section
to the case where the differential equation is given in a Hilbert space H, see [3].
However, it is not clear how to prove that limt→∞ x(t) exists, in a general Hilbert
space H and for the case where G is convex and argminG is not a singleton. Since
in this case |ẋ(t)| ≤

√
2E(t), it appears natural to derive convergence results from

suitable estimates for E(t). In [3], we give conditions that imply E(t) ≤ Da(t)
for all t, for some constant D > 0. However, since we must also assume that
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0

a(s)ds = ∞, these estimates are not strong enough to guarantee the convergence
of trajectories.

One could try to extend the proof of Theorem 3.1. Set a1(t) = a(t) · χS(x(t)),
where χS is the characteristic function of S = argminG, then d

dtE(t) ≤ −2a1(t)E(t),
and hence E(t) ≤ E(0)e−2

R t
0 a1(s)ds. If the function t 7→ e−

R t
0 a1(s)ds can be shown

to be in L1(0,∞), it would follow that |ẋ| is integrable, implying the convergence
of trajectories. This works in the one-dimensional case since the behavior of trajec-
tories is quite simple. However, if dimH > 1, it is difficult to satisfy this property,
since trajectories corresponding to (1.1) can be expected to behave like trajectories
of a billiard problem in S = argminG for large times.

When the map a is constant and positive, it is established in [1, 2] that the
trajectories of (1.1) are weakly convergent if the potential G : H → R is convex
and argminG 6= ∅, in an arbitrary Hilbert space H. The key ingredient of the
proof is the Opial lemma [4], which allows the authors of these papers to prove
convergence even if |ẋ(·)| is only in L2(0,∞) and not in L1(0,∞). However, if e.g.
a(t) = c

t+1 , then Opial’s lemma requires that we show
∫∞
0

(t+1)|ẋ(t)|2 dt < ∞, while
(2.1) implies only

∫∞
0

1
t+1 |ẋ(t)|2 dt < ∞. Hence there remains a gap if arguments

similar to those in [1] or [2] are to be used. It is unclear how this gap can be closed.
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