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A BOUNDARY CONTROL PROBLEM WITH A NONLINEAR
REACTION TERM

JOHN R. CANNON, MOHAMED SALMAN

Abstract. The authors study the problem ut = uxx − au, 0 < x < 1, t > 0;

u(x, 0) = 0, and −ux(0, t) = ux(1, t) = φ(t), where a = a(x, t, u), and φ(t) = 1
for t2k < t < t2k+1 and φ(t) = 0 for t2k+1 < t < t2k+2, k = 0, 1, 2, . . . with

t0 = 0 and the sequence tk is determined by the equations
R 1
0 u(x, tk)dx = M ,

for k = 1, 3, 5, . . . , and
R 1
0 u(x, tk)dx = m, for k = 2, 4, 6, . . . , where 0 < m <

M . Note that the switching points tk, are unknown. A maximum principal

argument has been used to prove that the solution is positive under certain

conditions. Existence and uniqueness are demonstrated. Theoretical estimates
of the tk and tk+1−tk are obtained and numerical verifications of the estimates

are presented.

1. Introduction

In this paper, we consider the problem
ut = uxx − a(x, t, u)u, 0 < x < 1, t > 0,

−ux(0, t) = ux(1, t) = φ(t), t ≥ 0,

u(x, 0) = 0, 0 ≤ x ≤ 1,

(1.1)

where a(x, t, u) is a continuous function and

0 ≤ α ≤ a(x, t, u) ≤ β (1.2)

for (x, t) ∈ [0, 1]× [0, T ] and u ∈ R, and

φ(t) =

{
1, t2n ≤ t ≤ t2n+1,

0, t2n+1 ≤ t ≤ t2n+2,
(1.3)

where {tn} depends on

µ(t) =
∫ 1

0

u(x, t)dx, (1.4)

where

2µ(t2n) = m, n = 1, 2, . . . ,

µ(t2n+1) = M, n = 0, 1, . . . ,
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with 0 < m < M .

2. Existence of solutions

We study the existence of a solution u(x, t) to (1.1) for a given stepwise boundary
conditions φ(t). We assume that

|uau(x, t, u)| ≤ C, (2.1)

uniformly for all x, t, u, which ensures that the source term F (x, t, u) = −a(x, t, u)u
is uniformly Lipschitz with respect to u; i.e.,

|F (x, t, u1)− F (x, t, u2)| ≤ C|u1 − u2|,

for all x, t, u1, u2. The constants C’s in the above inequalities or that come in the
sequel aren’t necessarily the same.

Under certain smoothness conditions on u(x, t), a(x, t, u), problem (1.1) is equiv-
alent to

u(x, t) = 2
∫ t

0

[θ(x, t− τ) + θ(1− x, t− τ)]φ(τ)dτ

+
∫ t

0

∫ 1

0

[θ(x− ξ, t− τ) + θ(x + ξ, t− τ)]F (ξ, τ, u(ξ, τ))dξdτ.

(2.2)

Let us show that the integral equation (2.2) has a solution by considering the
operator

Hu = 2
∫ t

0

[θ(x, t− τ) + θ(1− x, t− τ)]φ(τ)dτ

+
∫ t

0

∫ 1

0

[θ(x− ξ, t− τ) + θ(x + ξ, t− τ)]F (ξ, τ, u(ξ, τ))dξdτ,

on the set of functions

Bη = {u(x, t) ∈ C([0, 1]× [0, η]), ‖u‖η < ∞},

where

‖u‖η = sup
0≤x≤1, 0≤t≤η

|u(x, t)| .

The set Bη is a Banach space. The mapping H maps Bη into into itself [1]. Fur-
thermore,

|Hu1 −Hu2| ≤ Ct ‖u1 − u2‖t ,

which implies

‖Hu1 −Hu2‖η ≤ Cη ‖u1 − u2‖η .

If we select η < 1/C, then H is a contraction map on Bη, Thus H has a unique
fixed point u ∈ Bη, which solves (2.2). Since F is uniformly Lipschitz, the solution
u can be extended on any time interval [0, T ] (see [1]).
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3. Maximum Principle

In this section, we use the maximum principle to prove that problem (1.1) has a
nonnegative solution. To achieve this, we establish the following lemmas.

Lemma 3.1. Let D = {(x, t) : 0 < x < 1; 0 < t ≤ T} and a(x, t, u) satisfy
condition (1.2). The solution u of

ut = uxx − a(x, t, u)u, in D,

u(x, 0) ≥ 0, u(x, 0) ≥ 0, 0 ≤ x ≤ 1,

−ux(0, t) = ux(1, t) = 1, 0 ≤ t ≤ T,

(3.1)

is nonnegative on D.

Proof. To prove that u(x, t) ≥ 0 in D, let us assume the converse, i.e., u(x, t) < 0 at
some point in D. The continuity of u(x, t) on D implies the existence of a negative
minimum in D. If minD u = u(0, t), for some 0 < t ≤ T , then the boundary
condition ux(0, t) = −1 implies ux < 0 in neighborhood of (0, t), so u(x, t) < u(0, t)
for some small x, which contradicts the fact that u(0, t) is the minimum.

A similar argument can be used to prove that the minimum can never happen
at x = 1. So, u has its negative minimum at (x, t) in the interior of D. This implies
ut(x, t) ≤ 0 and uxx(x, t) ≥ 0. Therefore, ut − uxx + au is negative at (x, t), which
is a contradiction. Thus, we proved the lemma. �

Next, we consider the problem

ut = uxx − a(x, t, u)u, (x, t) = D,

ux(0, t) = ux(1, t) = 0, 0 ≤ t ≤ T,

u(x, 0) ≥ 0, 0 ≤ x ≤ 1,

(3.2)

and a(x, t, u) satisfies condition (1.2). We establish the following lemma for a closely
related problem.

Lemma 3.2. For a positive constant γ, the solution v(x, t; γ) of

vt = vxx − γv, in D,

vx(0, t) = vx(0, t) = 0, t ≥ 0,

v(x, 0) > 0, 0 ≤ x ≤ 1

is positive for all (x, t) ∈ D where γ is a positive constant.

Proof. Let w = eγtv. Then

wt = wxx, in D,

wx(0, t) = wx(1, t) = 0, t ≥ 0,

w(x, 0) = v(x, 0) > 0, 0 ≤ x ≤ 1.

If w ≤ 0, then w has a minimum that’s not positive either at x = 0 or x = 1 for some
t = t0 ∈ (0, T ], which implies by the strong maximum principle [15], wx(0, t0) > 0
or wx(1, t0) < 0, which is a contradiction. Hence, w > 0, and therefore, v > 0. �
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Lemma 3.3. The solution z(x, t, ε) of

zt = zxx in D,

zx(0, t) = ε, 0 ≤ t ≤ T,

zx(1, t) = −ε, 0 ≤ t ≤ T,

z(x, 0) = 0, 0 ≤ x ≤ 1,

satisfies the inequality
−Cε < z(x, t) ≤ 0 in D,

where the positive constant C is a linear function of G.

Proof. This is a straightforward application of the strong minimum principle and
a simple comparison with

u(x, t) = −2εt + εx(1− x).

�

Lemma 3.4. The solution u of (3.2) satisfies the inequality

0 < v(x, t;β) ≤ u(x, t) ≤ v(x, t;α) in D,

where α and β are the lower and upper bound of a(x, t, u), respectively.

Proof. First consider v(x, t;β)+ z(x, t; ε). For a fixed T , we can chose ε sufficiently
small so that v + z > 0 in D. Consider w = u− v − z. Clearly, w satisfies

wt = wxx − aw − (a− β)v in D,

wx(0, t) = −ε, 0 ≤ t ≤ T,

wx(1, t) = ε, 0 ≤ t ≤ T,

w(x, 0) = 0, 0 ≤ x ≤ 1.

Suppose w < 0 somewhere in D. Then the boundary conditions force a negative
minimum in D, where

wt − wxx + aw + (a− β)v < 0,

which contradicts the equation

wt − wxx + aw + (a− β)v = 0 in D.

Thus, w ≥ 0 which implies that

u(x, t) ≥ v(x, t, β) + z(x, t, ε)

for all ε > 0 sufficiently small. Hence,

u(x, t) ≥ v(x, t;β).

Likewise, by considering w = v − z − u, the inequality

v(x, t;α) ≥ u(x, t),

follows by a similar argument. �

Theorem 3.5. The solution u of (1.1) is nonnegative.

Proof. By applying, successively, Lemma 3.1 and 3.4 on each time stage where we
keep the flux ux either zero or one, and the conclusion follows. �
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4. Existence of the Time Switches

If we formally differentiate (1.4), we obtain

µ′(t) = 2φ(t)−
∫ 1

0

a(x, t, u)udx. (4.1)

To prove the existence of t1, let φ(t) = 1 for t > 0. In view of hypothesis (1.2),
equation (4.1) implies the estimate

µ′(t) ≥ 2− β

∫ 1

0

u dx;

that is,
µ′(t) ≥ 2− βµ(t), t ≥ 0.

By applying Gronwal’s inequality, we get

µ(t) ≥ 2
β

[1− e−βt].

Since µ(t) is continuous, then there exists a t1 > 0 such that

µ(t1) = M,

for any 0 < M < 2
β .

Next, we prove the existence of t2 by taking φ(t) = 0 for t > t1. This implies

µ′(t) = −
∫ 1

0

a(x, t, u)u(x, t)dx, t > t1.

Using the estimate on a(x, t, u), we obtain

µ′(t) ≤ −αµ(t), t ≥ t1.

Gronwal’s inequality implies

µ(t) ≤ µ(t1)e−α(t−t1) = Me−α(t−t1), t ≥ t1.

Since µ(t) is continuous, then there exists a t2 > t1 such that

µ(t2) = m,

where 0 < m < M .
For t > t2, we take φ(t) = 1. This gives the estimate

µ′(t) ≥ 2− βµ(t), t ≥ t2.

Using the condition µ(t2) = m and Gronwal’s inequality, we get

µ(t) ≥ 2
β
−

( 2
β
−m

)
e−β(t−t2), t ≥ t2.

Note that the coefficient 2
β −m is positive, which implies the existence of t3 > t2

such that
µ(t3) = M.

We inductively get for t > t2n and φ(t) = 1,

µ(t) ≥ 2
β
−

( 2
β
−m

)
e−β(t−t2n), t ≥ t2n, (4.2)

which implies the existence of t2n+1 such that µ(t2n+1) = M .
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Also, for t > t2n+1 and φ(t) = 0, we have,

µ(t) ≤ Me−α(t−t2n+1), t ≥ t2n+1, (4.3)

which ensures the existence of t2n+2 such that µ(t2n+2) = m.
Estimate (4.2) implies

M = µ(t2n+1) ≥
2
β
−

( 2
β
−m

)
e−β(t2n+1−t2n),

which gives rise to

t2n+1 − t2n ≤
1
β

ln
2−mβ

2−Mβ
. (4.4)

Similarly, if we employ (4.3), we can get

t2n+2 − t2n+1 ≤
1
α

ln
M

m
.

5. Numerical Example

In this section, we consider a finite difference method to discretize the problem

ut = cuxx − sinu, 0 < x < 1, 0 < t ≤ T,

−ux(0, t) = ux(1, t) = φ(t), 0 < t ≤ T,

u(x, 0) = 0, 0 < x < 1,

where the boundary control function is

φ(t) =

{
10, t2n ≤ t ≤ t2n+1,

0, elsewhere,
(5.1)

and {tn} depends on

µ(t) =
∫ 1

0

u(x, t)dx, (5.2)

where

2µ(t2n) = 1, n = 1, 2, . . . ,

µ(t2n+1) = 2, n = 0, 1, . . . .

The time limit and the diffusivity constant are taken as T = 40 and c = 0.05.
Let’s consider the space and time discretization

(i) ∆x = 1
J , xj = j∆x, j = 0, 1, . . . , J

(ii) ∆t = T
N , τn = n∆t, n = 0, . . . , N

where J = 50 and N = 400 . The integer N is chosen large enough so that the
time step ∆t is much smaller than an estimated differences between two consecutive
values of the time switches.

We consider the backward implicit finite difference scheme

Un+1
j − Un

j

∆t
= c

Un+1
j−1 − 2Un+1

j + Un+1
j+1

(∆x)2
− sinUn

j ,

which can be written as

−νUn+1
j−1 + (1 + 2ν)Un+1

j − νUn+1
j+1 = Un

j −∆t sinUn
j , (5.3)
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n Tn Tn − Tn−1 n Tn Tn − Tn−1

1 5.2000 5.1000 8 21.6000 1.2000
2 6.4000 1.2000 9 25.5000 3.9000
3 10.2000 3.8000 10 26.7000 1.2000
4 11.4000 1.2000 11 30.6000 3.9000
5 15.3000 3.9000 12 31.8000 1.2000
6 16.5000 1.2000 13 35.6000 3.8000
7 20.4000 3.9000 14 36.8000 1.2000

Table 1. The Time switches Tn and the differences Tn − Tn−1.
Note the differences between any two consecutive times tend to
alternate between 1.2 and 3.8 or 3.9.

where ν = c∆t/(∆x)2, j = 1, . . . , J−1 and n = 0, 1, . . . , N−1. The initial condition
is U0

j = 0 for j = 1, . . . , J − 1, and the boundary conditions are

−Un
1 − Un

0

∆x
=

Un
J − Un

J−1

∆x
= φ(τn), (5.4)

for n = 0, 1, . . . , N . The total mass integral is calculated by the following trape-
zoidal rule

µn =
h

2

N−1∑
j=0

(
Un+1

j + Un
j+1

)
. (5.5)

The numerical experiment is carried out in the following way. We start by setting
the flux at φ = 10 then we solve a tridiagonal system coming out of the difference
method. We evaluate the total mass µn and compare it with the upper threshold
M = 2. We move to the next time step while keeping the flux at φ = 10, if
µn < M , or switch it to φ = 0, if µn ≥ M . At the moment, say τn1 , for some
integer n1, when the total mass exceeds M for the first time, we take T1 = τn1 as
an approximation for the first time switch. With φ = 0, we move on our solution
through the time, as long as µn does not fall below the threshold m = 1. By the
moment, when µn2 ≤ m, for some integer n2, we set T2 = τn2 , and we switch the
flux back to φ = 10 at the next step. We keep switching the flux on (φ = 10)
and off (φ = 0) and calculating the time switches Tk until the end of the run when
τn = 40.

Table (1) shows the times switches Tn. As we can see there, the difference
between any two consecutive time switches has a tendency to alternate between 3.8,
3.9 and 1.2. For the same set of data, graphs (1) through (5) show the concentration
versus the space at consecutive time steps. The graphs are obtained for different
stages, where at each stage the flux is kept constant at the end points. A profile of
the concentrations at x = 0.5 for various times is shown in graph (6) with the same
specified data. Graph (7) shows the total mass computed through (5.5) versus the
time. Note the slow increase and the sharp fall in the graph due to the sink term
sinUn

j .
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Figure 1. The first stage where the flux φ is held at 10 at the
end points. Each curve shows the concentration profile at various
discrete time steps τn = n∆t. As the time goes on, the level of
concentrations gets higher
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creases. Notice the fluctuations when the concentration is dropped
suddenly to 0 at the beginning of the stage.
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Figure 3. The third stage where the flux φ is switched to 10
at the end points. Each curve shows the concentration profile at
various discrete time steps. Notice the fluctuations due to the
sudden change on the concentrations. After a little while, the
concentrations levels increase monotonically.
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Figure 4. The fourth stage where the flux φ is switched to 0 at
the end points. Notice the similarity with the second stage.
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Figure 5. The fifth stage where the flux φ is switched to 10 at
the end points. Notice the similarity with the third stage.
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