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EXISTENCE OF THREE SOLUTIONS FOR A HIGHER-ORDER
BOUNDARY-VALUE PROBLEM

JOHN R. GRAEF, LINGJU KONG, QINGKAI KONG

Abstract. We consider a higher-order multi-point boundary-value problem
with a nonlinear boundary condition. Sufficient conditions are obtained for

the existence of three solutions. In our problem, the differential equation
has dependence on all lower order derivatives of the unknown function and

the boundary condition covers many multi-point boundary conditions studied

earlier by other authors. Our results extend some recent work in the literature.

1. Introduction

In this paper, we are concerned with the existence of solutions of the nth order
boundary value problem (BVP) consisting of the equation

u(n) + f
(
t, u, u′, . . . , u(n−1)

)
= 0, t ∈ (0, 1), (1.1)

and the general multi-point boundary conditions (BC)

u(i)(0) = gi

(
u(i)(t1), . . . , u(i)(tm)

)
, i = 0, . . . , n− 2,

u(n−2)(1) = gn−1

(
u(n−2)(t1), . . . , u(n−2)(tm)

)
,

(1.2)

where n ≥ 2 and m ≥ 1 are integers, tj ∈ [0, 1] for j = 1, . . . ,m with 0 ≤ t1 <
t2 < · · · < tm ≤ 1, f ∈ C((0, 1) × Rn), and gi ∈ C(Rm) for i = 0, . . . , n − 1. By a
solution of (1.1), (1.2), we mean a function u ∈ Cn−1[0, 1]∩Cn(0, 1) such that u(t)
satisfies (1.1) on (0, 1), and satisfies (1.2).

We observe that (1.2) covers many multi-point BCs studied in the literature.
In recent years, the existence of solutions of BVPs with various multi-point linear
BCs have been extensively investigated by numerous researchers using a variety of
methods and techniques. For a small sample of such work, we refer the reader to
[8, 10, 12, 13, 14] for results on second order problems and [2, 4, 6] on higher order
ones. BVPs with two-point or multi-point nonlinear BCs have also been studied
in the literature, for example, in [1, 3, 5, 7, 11]. In particular, using the lower and
upper solution method, the present authors [5] studied (1.1), (1.2) and found several
sufficient conditions for the existence of a solution. This paper may be regarded
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as a continuation of our work in [5]. Here, we prove a result on the existence of
multiple solutions of (1.1), (1.2).

The approach used in this paper is motivated by Henderson and Thompson [9].
Our result is under the assumption that there exist two strict lower solutions and
two strict upper solutions of (1.1), (1.2) satisfying certain relations and that f
satisfies a Nagumo growth condition. We use the lower and upper solutions to
obtain a modified problem of (1.1), (1.2) and find a priori bounds on solutions of
this problem. Then, we employ degree theory to show that (1.1), (1.2) has three
distinct solutions. Recently, this method has been developed in [1, 2, 10] to study
other types of BVPs. Specifically, Du, Liu, and Lin [2] studied the BVP consisting
of (1.1) and the three-point BC

u(i)(0) = 0, i = 0, . . . , n− 2, u(n−2)(1) = ξu(n−2)(η), (1.3)

where ξ > 0, 0 < η < 1 with 0 < ξη < 1, and discussed the existence of three
solutions. Our work is an improvement and extension of the result in [2]. In fact,
our BC (1.2) is much more general than BC (1.3); even for the special case of BC
(1.3), our result is new and better since the restriction 0 < ξη < 1 is removed; i.e.,
our result works not only for the nonresonance case covered in [2] but also for the
resonance case.

In the next section, we present our main theorem together with an illustrative
example. The proof of the main theorem is given a separate section.

2. Main Result

In the sequel, for any u ∈ C[0, 1], we define ‖u‖∞ = maxt∈[0,1] |u(t)|. Let

‖u‖ = max{‖u‖∞, ‖u′‖∞, . . . , ‖u(n−1)‖∞}
and

‖u‖p =

{
(
∫ 1

0
|u(t)|pdt)1/p, 1 ≤ p < ∞,

inf{M : meas{t : |u(t)| > M} = 0}, p = ∞,

stand for the norms in Cn−1[0, 1] and Lp(0, 1), respectively, where mess{·} denotes
the Lebesgue measure of a set.

We first define strict lower and upper solutions of (1.1), (1.2) and a Nagumo
condition.

Definition 2.1. A function α ∈ Cn−1[0, 1] ∩ Cn(0, 1) is said to be a strict lower
solution of (1.1), (1.2) if

α(n)(t) + f
(
t, α(t), α′(t), . . . , α(n−1)(t)

)
> 0 on (0, 1), (2.1)

and
α(i)(0) < gi

(
α(i)(t1), . . . , α(i)(tm)

)
, i = 0, . . . , n− 2,

α(n−2)(1) < gn−1

(
α(n−2)(t1), . . . , α(n−2)(tm)

)
.

(2.2)

A function β ∈ Cn−1[0, 1]∩Cn(0, 1) is said to be a strict upper solution of (1.1),
(1.2) if

β(n)(t) + f
(
t, β(t), β′(t), . . . , β(n−1)(t)

)
< 0 on (0, 1), (2.3)

and
β(i)(0) > gi

(
β(i)(t1), . . . , β(i)(tm)

)
, i = 0, . . . , n− 2,

β(n−2)(1) > gn−1

(
β(n−2)(t1), . . . , β(n−2)(tm)

)
.

(2.4)
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Definition 2.2. Let α, β ∈ Cn−1[0, 1] satisfy

α(i)(t) ≤ β(i)(t) for t ∈ [0, 1] and i = 0, . . . , n− 2. (2.5)

We say that f satisfies a Nagumo condition with respect to α and β if for

ξ = max
{
β(n−2)(1)− α(n−2)(0), β(n−2)(0)− α(n−2)(1)

}
, (2.6)

there exist a constant C = C(α, β) with

C > max
{
ξ, ‖α(n−1)‖∞, ‖β(n−1)‖∞

}
(2.7)

and functions φ ∈ C[0,∞) and w ∈ Lp(0, 1), 1 ≤ p ≤ ∞, such that φ > 0 on [0,∞),

|f(t, x0, . . . , xn−1)| ≤ w(t)φ(|xn−1|) on (0, 1)×
n−2∏
i=0

[α(i)(t), β(i)(t)]× R, (2.8)

and ∫ C

ξ

v(p−1)/p

φ(v)
dv > ‖w‖pη

(p−1)/p, (2.9)

where (p− 1)/p ≡ 1 for p = ∞ and

η = max
t∈[0,1]

β(n−2)(t)− min
t∈[0,1]

α(n−2)(t). (2.10)

Remark 2.3. Let α, β ∈ Cn−1[0, 1] satisfy (2.5). Assume that there exist w ∈
Lp(0, 1), 1 ≤ p ≤ ∞, and 0 ≤ σ ≤ 1 + (p− 1)/p such that

|f(t, x0, . . . , xn−1)| ≤ w(t)(1+ |xn−1|σ) on (0, 1)×
n−2∏
i=0

[α(i)(t), β(i)(t)]×R. (2.11)

Then f satisfies a Nagumo condition with respect to α and β with φ(v) = 1 + vσ.

Now, we present the main result of this paper.

Theorem 2.4. Assume that the following conditions hold:
(H1) BVP (1.1), (1.2) has two strict lower solutions α1 and α2 and two strict

upper solutions β1 and β2 satisfying

α
(i)
1 (t) ≤ α

(i)
2 (t) ≤ β

(i)
2 (t), α

(i)
1 (t) ≤ β

(i)
1 (t) ≤ β

(i)
2 (t), and α

(i)
2 (t) 6≤ β

(i)
1 (t)

for t ∈ [0, 1] and i = 0, . . . , n− 2;
(H2) for (t, x0, . . . , xn−1) ∈ (0, 1)×

∏n−3
i=0 [α(i)(t), β(i)(t)]×R2, f(t, x0, . . . , xn−1)

is nondecreasing in each of the variables x0, . . . , xn−3;
(H3) f satisfies a Nagumo condition with respect to α1 and β2 with C = C(α1, β2)

being the constant given in Definition 2.2;
(H4) for i = 1, . . . , n− 1 and (y1, . . . , ym) ∈ Rm, gi(y1, . . . , ym) is nondecreasing

in each of its arguments.
Then (1.1), (1.2) has at least three solutions u1(t), u2(t), and u3(t) satisfying

α
(i)
j (t) ≤ u

(i)
j (t) ≤ β

(i)
j (t) for t ∈ [0, 1], i = 0, . . . , n− 2, and j = 1, 2, (2.12)

and

α
(i)
1 (t) ≤ u

(i)
3 (t) ≤ β

(i)
2 (t), u

(i)
3 (t) 6≤ β

(i)
1 (t), and u

(i)
3 (t) 6≥ α

(i)
2 (t) (2.13)

for t ∈ [0, 1] and i = 0, . . . , n− 2.
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Remark 2.5. Notice that in (H2) we do not need the monotonicity of f in the
last two variables xn−2 and xn−1. In particular, for the case when n = 2, no
monotonicity is required on f .

In the remainder of this section, we provide the following example to illustrate
Theorem 2.4. To the best of our knowledge, no existing criteria can be applied to
this example.

Example. Consider the BVP consisting of the equation

u′′′ + t−1/2h(u′) + (u′′)2 + 1 = 0, t ∈ (0, 1), (2.14)

and the BC
u(0) = u1/3(1/2) + 1, u′(0) = u′(1) = ur(1/2), (2.15)

where h ∈ C(R) satisfies

h(y) ≥ 8 for y ∈ [−9,−8] ∪ [2, 3],

h(y) ≤ −26 for y ∈ [−3,−2] ∪ [8, 9],
(2.16)

and r = a/b ∈ (ln 2/ ln 3, ln 9/ ln 8) with a, b odd numbers. Clearly, the function
g(x) = xr is nondecreasing and odd on R. Let

α1(t) = −4t3/3 + 2t2 − 9t− 2,

α2(t) = −4t3/3 + 2t2 + 2t + 1,

β1(t) = 4t3/3− 2t2 − 2t + 2,

β2(t) = 4t3/3− 2t2 + 9t + 4.

(2.17)

We claim that (2.14), (2.15) has at least three solutions u1(t), u2(t), and u3(t)
satisfying (2.12) and (2.13) with the above α1(t), α2(t), β1(t), and β2(t).

In fact, with n = 3, m = 1, t1 = 1/2, f(t, x0, x1, x2) = t−1/2h(x1) + x2
2 + 1,

g0(x) = x1/3 + 1, and g1(x) = g2(x) = xr, we see that BVP (2.14), (2.15) is of the
form of (1.1), (1.2). Clearly, (H2) and (H4) hold.

From (2.17), we have that for t ∈ [0, 1]

−9 ≤ α′1(t) = −4t2 + 4t− 9 ≤ −8,

2 ≤ α′2(t) = −4t2 + 4t + 2 ≤ 3,

−3 ≤ β′1(t) = 4t2 − 4t− 2 ≤ −2,

8 ≤ β′2(t) = 4t2 − 4t + 9 ≤ 9,

(2.18)

and
−4 ≤ α′′1(t) = −8t + 4 ≤ 4,

−4 ≤ α′′2(t) = −8t + 4 ≤ 4,

−4 ≤ β′′1 (t) = 8t− 4 ≤ 4,

−4 ≤ β′′2 (t) = 8t− 4 ≤ 4.

(2.19)

It follows from (2.18) and (2.19) that

α
(i)
1 (t) ≤ α

(i)
2 (t) ≤ β

(i)
2 (t), α

(i)
1 (t) ≤ β

(i)
1 (t) ≤ β

(i)
2 (t), and α

(i)
2 (t) 6≤ β

(i)
1 (t)

for t ∈ [0, 1] and i = 0, 1. Moreover, from (2.16)–(2.19), it is easy to verify that
α1(t) and α2(t) are strict lower solutions of (2.14), (2.15) and β1(t) and β2(t) are
strict upper solutions of (2.14), (2.15). Hence, (H1) holds.
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In view of (2.18), we see that

|f(t, x0, x1, x2)| ≤ (1 + t−1/2 max
y∈[−9,9]

|h(y)|)(1 + x2
2)

on (0, 1) × [α1(t), β2(t)] × [α′1(t), β
′
2(t)]. Then, by Remark 2.3, (H3) holds. The

conclusion now follows from Theorem 2.4.

Remark 2.6. One example of a continuous function h satisfying (2.16) is

h(y) =


−34y/5− 232/5, y ∈ (−∞, 0),
136y/5− 232/5, y ∈ [0, 3],
−306y/25 + 1798/25, y ∈ (3,∞).

3. Proof of the Main Result

In this section, we give a proof to Theorem 2.4. Assume (H1)–(H4) hold. Let
α and β be strict lower and upper solutions of (1.1), (1.2), respectively, satisfying
(2.5). Let C = C(α, β) be given in Definition 2.2 and f satisfy a Nagumo condition
with respect to α and β. For u ∈ Cn−1[0, 1], define

ũ[i](α, β)(t) = max
{
α(i)(t),min

{
u(i)(t), β(i)(t)

}}
, i = 0, . . . , n− 2 (3.1)

and
ũ[n−1](α, β)(t) = max

{
− C(α, β), min

{
u(n−1)(t), C(α, β)

}}
. (3.2)

Then, for i = 0, . . . , n− 1, ũ[i](α, β)(t) is continuous on [0, 1],

α̃[i](α, β)(t) = α(i)(t), β̃[i](α, β)(t) = β(i)(t),

α(i)(t) ≤ ũ[i](α, β)(t) ≤ β(i)(t)
(3.3)

for t ∈ [0, 1] and i = 0, . . . , n− 2, and

−C(α, β) ≤ ũ[n−1](α, β)(t) ≤ C(α, β) on [0, 1]. (3.4)

Define a functional Fα,β : (0, 1)× Cn−1[0, 1] → R by

Fα,β(t, u(·)) = f
(
t, ũ[0](α, β)(t), ũ[1](α, β)(t), . . . , ũ[n−1](α, β)(t)

)
+

ũ[n−2](α, β)(t)− u(n−2)(t)
1 + (u(n−2)(t))2

.
(3.5)

Then, for u ∈ Cn−1[0, 1] and t ∈ (0, 1), Fα,β(t, u(·)) is continuous in u, and from
(2.8), (3.3), and (3.4), we see that

|Fα,β(t, u(·))| ≤ w(t) max
y∈[0,C(α,β)]

φ(y) + ‖α‖+ ‖β‖+ 1. (3.6)

Consider the BVP consisting of the equation

u(n) + Fα,β(t, u(·)) = 0, t ∈ (0, 1), (3.7)

and the BC

u(i)(0) = gi

(
ũ[i](α, β)(t1), . . . , ũ[i](α, β)(tm)

)
, i = 0, . . . , n− 2,

u(n−2)(1) = gn−1

(
ũ[n−2](α, β)(t1), . . . , ũ[n−2](α, β)(tm)

)
.

(3.8)

It is well known that the Green’s function for the BVP

−u′′(t) = 0 on (0, 1), u(0) = u(1) = 0,
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is

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Let G1(t, s) = G(t, s) and for j = 2, . . . , n− 1, recursively define

Gj(t, s) =
∫ t

0

Gj−1(v, s)dv. (3.9)

Lemma 3.1 below is taken from [5, Lemma 3.2] and Lemma 3.2 follows from [5,
Lemmas 3.4 and 3.5].

Lemma 3.1. The function u(t) is a solution of (3.7), (3.8) if and only if u(t) is a
solution of the integral equation

u(t) =
n−1∑
i=0

gi

(
ũ[i](α, β)(t1), . . . , ũ[i](α, β)(tm)

)
pi(t) +

∫ 1

0

Gn−1(t, s)Fα,β(s, u(·))ds,

where

pi(t) =
ti

i!
, i = 0, . . . , n− 3,

pn−2(t) =
tn−2

(n− 2)!
− tn−1

(n− 1)!
,

pn−1(t) =
tn−1

(n− 1)!
,

and Gn−1(t, s) is given by (3.9) with j = n− 1.

Lemma 3.2. If u(t) is a solution of (3.7), (3.8), then u(t) satisfies

α(i)(t) ≤ u(i)(t) ≤ β(i)(t) for t ∈ [0, 1] and i = 0, . . . , n− 2, (3.10)

and
|u(n−1)(t)| ≤ C(α, β) for t ∈ [0, 1]. (3.11)

Consequently, u(t) is a solution of (1.1), (1.2).

Proof of Theorem 2.4. Let Fα1,β2 be defined by (3.5) with (α, β) replaced by (α1, β2).
Define an operator Tα1,β2 : Cn−1[0, 1] → C[0, 1] by

Tα1,β2u(t) =
n−1∑
i=0

gi

(
ũ[i](α1, β2)(t1), . . . , ũ[i](α1, β2)(tm)

)
pi(t)

+
∫ 1

0

Gn−1(t, s)Fα1,β2(s, u(·))ds.

(3.12)

Then, by Lemma 3.1, u(t) is a solution of (3.7), (3.8) with (α, β) = (α1, β2) if
and only if u is a fixed point of Tα1,β2 . In the following, we show that Tα1,β2 is
compact. Clearly, Tα1,β2 is continuous. Let S ⊆ Cn−1[0, 1] be a bounded set; we
will show that Tα1,β2(S) is relatively compact. For u ∈ S, in view of (3.3) where
(α, β) = (α1, β2), there exists d > 0 such that

|gi

(
ũ[i](α1, β2)(t1), . . . , ũ[i](α1, β2)(tm)

)
| ≤ d for i = 0, . . . , n− 1. (3.13)

From (3.9), we see that

0 ≤ Gj(t, s) ≤ 1 for (t, s) ∈ [0, 1]× [0, 1] and j = 1, . . . , n− 1. (3.14)
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For pi(t) defined in Lemma 3.1, ‖pi‖ ≤ 1, i = 0, . . . , n − 1. From (3.6) with
(α, β) = (α1, β2) and (3.12)–(3.14), we obtain

|(Tα1,β2u)(j)(t)| ≤
n−1∑
i=0

|gi

(
ũ[i](α1, β2)(t1), . . . , ũ[i](α1, β2)(tm)

)
| |p(j)

i (t)|

+
∫ 1

0

Gn−1−j(t, s)|Fα1,β2(s, u(·))|ds

≤ nd +
∫ 1

0

|Fα1,β2(s, u(·))|ds

≤ nd + max
y∈[0,C(α1,β2)]

φ(y)
∫ 1

0

w(s)ds + ‖α‖+ ‖β‖+ 1 < ∞

(3.15)
for j = 0, . . . , n− 2, and

|(Tα1,β2u)(n−1)(t)| ≤
n−1∑
i=0

|gi

(
ũ[i](α1, β2)(t1), . . . , ũ[i](α1, β2)(tm)

)
| |p(j)

i (t)|

+
∫ t

0

s|Fα1,β2(s, u(·))|ds +
∫ 1

t

(1− s)|Fα1,β2(s, u(·))|ds

≤ nd +
∫ 1

0

|Fα1,β2(s, u(·))|ds

≤ nd + max
y∈[0,C(α1,β2)]

φ(y)
∫ 1

0

w(s)ds + ‖α‖+ ‖β‖+ 1 < ∞.

(3.16)

Then, Tα1,β2 is uniformly bounded on S and (Tα1,β2u)(j)(t) is equicontinuous on
[0, 1] for j = 0, . . . , n− 2. Moreover, since

(Tα1,β2u)(n−1)(t) = −gn−2

(
ũ[n−2](α1, β2)(t1), . . . , ũ[n−2](α1, β2)(tm)

)
+ gn−1

(
ũ[n−2](α1, β2)(t1), . . . , ũ[n−2](α1, β2)(tm)

)
+

∫ 1

t

Fα1,β2(s, u(·))ds−
∫ 1

0

sFα1,β2(s, u(·))ds,

the equicontinuity of (Tα1,β2u)(n−1)(t) follows from the absolute continuity of the
integrals. Thus, by the Arzelà-Ascola theorem, Tα1,β2 is compact.

Let M be large enough so that

M > max
{
C(α1, β2), nd + max

y∈[0,C(α1,β2)]
φ(y)

∫ 1

0

w(s)ds + ‖α‖+ ‖β‖+ 1
}
.

Define
Ω = {u ∈ Cn−1[0, 1] : ‖u‖ < M}.

For any u ∈ Ω, (3.15) and (3.16) still hold. Then

‖Tα1,β2u‖ ≤ nd + max
y∈[0,C(α1,β2)]

φ(y)
∫ 1

0

w(s)ds + ‖α‖+ ‖β‖+ 1 < M.

Thus,
deg(I − Tα1,β2 ,Ω, 0) = 1. (3.17)
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Let
Ωα2 = {u ∈ Ω : u(i)(t) > α

(i)
2 (t) for t ∈ [0, 1] and i = 0, . . . , n− 2}

and
Ωβ1 = {u ∈ Ω : u(i)(t) < β

(i)
1 (t) for t ∈ [0, 1] and i = 0, . . . , n− 2}.

Since α
(i)
2 (t) 6≤ β

(i)
1 (t), α

(i)
2 (t) ≥ α

(i)
1 (t) > −M , and β

(i)
1 (t) ≤ β

(i)
2 (t) < M for

t ∈ [0, 1] and i = 0, . . . , n− 2, it follows that

Ωα2 6= ∅ 6= Ωβ1 , Ωα2 ∩ Ωβ1 = ∅, Ω \ {Ωα2 ∪ Ωβ1} 6= ∅.

We claim that
(i) if u(t) is a solution of (3.7), (3.8) with (α, β) = (α1, β2) and satisfies

u(i)(t) ≥ α
(i)
2 (t) for t ∈ [0, 1] and i = 0, . . . , n− 2, (3.18)

then we have the strict inequalities

u(i)(t) > α
(i)
2 (t) for t ∈ [0, 1] and i = 0, . . . , n− 2; (3.19)

(ii) if u(t) is a solution of BVP (3.7), (3.8) with (α, β) = (α1, β2) and satisfies

u(i)(t) ≤ β
(i)
1 (t) for t ∈ [0, 1] and i = 0, . . . , n− 2,

then we have the strict inequalities

u(i)(t) < β
(i)
1 (t) for t ∈ [0, 1] and i = 0, . . . , n− 2.

We first prove (i). By Lemma 3.2, u(t) is a solution of (1.1), (1.2) satisfying (3.10)
where (α, β) = (α1, β2). Then, from (1.2), (2.2), (H4), and (3.18), we have

α
(i)
2 (0) < gi

(
α

(i)
2 (t1), . . . , α

(i)
2 (tm)

)
≤ gi

(
u(i)(t1), . . . , u(i)(tm)

)
= u(i)(0), i = 0, . . . , n− 2,

and

α
(n−2)
2 (1) < gn−1

(
α

(n−2)
2 (t1), . . . , α

(n−2)
2 (tm)

)
≤ gn−1

(
u(n−2)(t1), . . . , u(n−2)(tm)

)
= u(n−2)(1);

i.e.,
u(i)(0) > α

(i)
2 (0), i = 0, . . . , n− 2, u(n−2)(1) > α

(n−2)
2 (1). (3.20)

We now show that

u(n−2)(t) > α
(n−2)
2 (t) for t ∈ [0, 1]. (3.21)

If (3.21) does not hold, then, in view of (3.18) and (3.20) with i = n− 2, there
exists t∗ ∈ (0, 1) such that u(n−2)(t) − α

(n−2)
2 (t) has the minimum value 0 at t∗.

Thus, u(n−2)(t∗) = α
(n−2)
2 (t∗), u(n−1)(t∗) = α

(n−1)
2 (t∗), and u(n)(t∗) ≥ α

(n)
2 (t∗).

On the other hand, from (1.1), (2.1), (H2), and (3.18), we obtain that

u(n)(t∗) = −f
(
t∗, u(t∗), u′(t∗), . . . , u(n−1)(t∗)

)
≤ −f

(
t∗, α2(t∗), α′2(t

∗), . . . , α(n−1)
2 (t∗)

)
< α

(n)
2 (t),

which is a contradiction. Thus, (3.21) holds. Integrating (3.21) and using (3.20),
we see that u(t) satisfies (3.19). The proof for (ii) is similar and hence is omitted.
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Now, by the claim (see (3.18)–(3.19)), BVP (3.7), (3.8) has no solution on ∂Ωα2∪
∂Ωβ1 . Hence,

deg(I − Tα1,β2 ,Ω, 0) = deg(I − Tα1,β2 ,Ω \ {Ωα2 ∪ Ωβ1}, 0)

+ deg(I − Tα1,β2 ,Ωα2 , 0) + deg(I − Tα1,β2 ,Ωβ1 , 0).
(3.22)

Next, we show that

deg(I − Tα1,β2 ,Ωα2 , 0) = deg(I − Tα1,β2 ,Ωβ1 , 0) = 1. (3.23)

Let Fα2,β2 be defined by (3.5) with (α, β) replaced by (α2, β2). Define an operator
Tα2,β2 : Cn−1[0, 1] → C[0, 1] by

Tα2,β2u(t) =
n−1∑
i=0

gi

(
ũ[i](α2, β2)(t1), . . . , ũ[i](α2, β2)(tm)

)
pi(t)

+
∫ 1

0

Gn−1(t, s)Fα2,β2(s, u(·))ds.

Then, by Lemma 3.1, u(t) is a solution of (3.7), (3.8) with (α, β) = (α2, β2) if and
only if u is a fixed point of Tα2,β2 . It can also be shown that Tα2,β2 is compact.
Arguing as before, it follows that u(t) is a solution of (3.7), (3.8) with (α, β) =
(α2, β2) only if u ∈ Ωα2 . Then,

deg(I − Tα2,β2 ,Ω \ Ωα2 , 0) = 0.

Moreover, as in (3.15) and (3.16), it is easy to see that Tα2,β2(Ω) ⊆ Ω, which in
turn implies that

deg(I − Tα2,β2 ,Ω, 0) = 1.

Then,

deg(I − Tα1,β2 ,Ωα2 , 0) = deg(I − Tα2,β2 ,Ωα2 , 0)

= deg(I − Tα2,β2 ,Ω \ Ωα2 , 0) + deg(I − Tα2,β2 ,Ωα2 , 0)

= deg(I − Tα2,β2 ,Ω, 0) = 1.

Similarly, we can show that

deg(I − Tα1,β2 ,Ωβ1 , 0) = 1.

Thus, (3.23) holds. From (3.17), (3.22), and (3.23), we reach the conclusion that

deg(I − Tα1,β2 ,Ω \ {Ωα2 ∪ Ωβ1}, 0) = −1. (3.24)

From (3.23), (3.24), and Lemma 3.2, it follows that (1.1), (1.2) has three solutions
in Ωα2 , Ωβ1 , and Ω \ {Ωα2 ∪ Ωβ1}, respectively, satisfying (2.12) and (2.13). This
completes the proof of the theorem. �
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