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FOURTH-ORDER PARTIAL DIFFERENTIAL EQUATIONS FOR
EFFECTIVE IMAGE DENOISING

SEONGJAI KIM, HYEONA LIM

Abstract. This article concerns mathematical image denoising methods in-

corporating fourth-order partial differential equations (PDEs). We introduce

and analyze piecewise planarity conditions (PPCs) with which unconstrained
fourth-order variational models in continuum converge to a piecewise planar

image. It has been observed that fourth-order variational models holding PPCs

can restore better images than models without PPCs and second-order mod-
els. Numerical schemes are presented in detail and various examples in image

denoising are provided to verify the claim.

1. Introduction

During the previous decade or so, mathematical frameworks employing powerful
tools of partial differential equations (PDEs) and functional analysis have emerged
and successfully applied to various image processing (IP) tasks, particularly for
image restoration [1, 3, 4, 8, 11, 13, 17, 18, 21]; see also [2, 5]. Those PDE-based
models have allowed researchers and practitioners not only to introduce effective
models but also to improve traditional algorithms in image denoising. However,
these PDE-based models tend to either converge to a piecewise constant image
or introduce image blur (undesired dissipation), partially because the models are
derived by minimizing a functional of the image gradient. As a consequence, the
conventional PDE-based models may lose interesting fine structures during the
denoising. In order to reduce the artifact, researchers have studied various math-
ematical and numerical techniques which either incorporate diffusion modulation,
constraint terms, and iterative refinement [9, 11, 12, 14] or minimize a functional of
second derivatives of the image [10, 16, 20]. These new mathematical models may
preserve fine structures better than conventional ones; however, more advanced
models and appropriate numerical procedures are yet to be developed.

In this article, we will introduce and analyze piecewise planarity conditions
(PPCs) with which unconstrained fourth-order variational models in continuum
converge to a piecewise planar image. Although such a mathematical theory may
not hold for discrete data (images) in the same way as in continuum, it will provide

2000 Mathematics Subject Classification. 35K55, 65M06, 65M12.
Key words and phrases. Variational approach; PDE-based restoration model;

fourth-order PDEs; piecewise planarity condition.
c©2009 Texas State University - San Marcos.

Published April 15, 2009.

107



108 S. KIM, H. LIM EJDE/CONF/17

a mathematical background for the advancement of the state-of-the-art methods
for PDE-based image denoising. It has been observed that fourth-order variational
models holding the PPCs can restore images better than second-order models and
other fourth-order ones. Fourth-order models have proved to restore texture regions
favorably, while second-order models tend to restore edges of large contrasts more
clearly.

In the next section, we briefly review variational approaches for second-order and
fourth-order PDE-based models in image denoising. Section 3 considers the PPCs
for fourth-order variational models. In Section 4, we present difference schemes
for fourth-order models, a variable constraint parameter, and a timestep size for a
stable simulation. Section 5 contains numerical experiments along with comparisons
among various fourth-order models and a second-order model. Our development
and experiments are concluded in Section 5.

2. Preliminaries

This section reviews briefly variational approaches for second-order and fourth-
order PDE-based models.

2.1. Second-order PDEs. Let the observed image (u0) be given as

u0 = u + v,

where u is the desired image and v denotes a Gaussian noise of mean zero. Then,
second-order denoising models [8, 9, 12, 17, 18] can be obtained by minimizing an
energy functional of the image gradient,

u = arg min
u

[ ∫
Ω

ρ(|∇u|) dx +
λ

2

∫
Ω

(u0 − u)2 dx
]
, (2.1)

where Ω is the image domain, λ ≥ 0 denotes the constraint parameter, and ρ is a
function having the properties:

ρ(s) ≥ 0, s ≥ 0; ρ′(s) > 0, s > 0. (2.2)

In this article, we will call ρ a modulator.
It is often convenient to transform the minimization problem (2.1) into a dif-

ferential equation, called the Euler-Lagrange equation, by applying the variational
calculus [19] and parameterizing the energy descent direction by an artificial time
t:

∂u

∂t
= ∇ ·

(
ρ′(|∇u|) ∇u

|∇u|

)
+ λ (u0 − u). (2.3)

For example, the model (2.3) is reduced to the total variation (TV) model [18] for
ρ(s) = s and the Perona-Malik (PM) model [17] when ρ(s) = 1

2K2 ln(1 + s2/K2),
for some K > 0, and λ = 0. For the PM model, the modulator ρ is strictly convex
for s < K and strictly concave for s > K. (K is a threshold.) Thus the model can
enhance image content having large gradient magnitudes such as edges; however,
it will flatten slow transitions. For a later frequent use, we define

ρ
P M

(s) :=
K2

2
ln

(
1 +

s2

K2

)
, K > 0. (2.4)

Most of conventional variational restoration models have a tendency to converge
to a piecewise constant image. Such a phenomenon is called the staircasing effect.
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Although these results are important for understanding of the current diffusion-
like models, the resultant signals may not be desired in applications where the
preservation of both slow transitions and fine structures is important. In order to
suppress the staircasing effect and improve the restorability of second-order PDE
models, variants have been suggested incorporating diffusion modulation, different
constraint terms, and iterative refinement [9, 11, 12, 14]; see also [21]. For example,
for an effective suppression of staircasing, Marquina-Osher [11] have suggested to
scale the stationary part of the TV model by |∇u|:

∂u

∂t
= |∇u|∇ ·

( ∇u

|∇u|

)
+ λ |∇u| (u0 − u), (2.5)

which is called the improved total variation (ITV) model [15].

2.2. Fourth-order PDEs. An approach which derives a fourth-order PDE is to
minimize an energy functional of the image Laplacian [20]:

u = arg min
u

∫
Ω

ρ(|∆u|) dx, (2.6)

where ∆ denotes the Laplacian operator. It is not difficult to check that the asso-
ciated Euler-Lagrange equation reads

∂u

∂t
= −∆

(
ρ′(|∆u|) ∆u

|∆u|

)
. (2.7)

As in You-Kaveh [20], one can prove that when the modulator ρ = ρ
P M

, the solution
of (2.7) converges to a piecewise harmonic image, i.e., ∆u → 0 locally, as t → ∞.
(Although the authors used the term “piecewise planar”, it must be understood as
“piecewise harmonic”.)

Figure 1. A locally smooth surface on the domain of (4 × 4)
subdomains. Let the height on boundary subdomains be zero for
simplicity. A locally harmonic surface can be defined on the whole
domain for an arbitrary height at x0.

The You-Kaveh model [20] often introduces speckles in an objectionable level.
The authors claimed it was due to a less masking capability of (2.7) than second-
order models. However, the local harmonicity is not sufficient for an effective de-
noising. To see this, we consider a simple cartoon image as in Figure 1, where a
locally harmonic surface can be formed on the image domain for an arbitrary value
at the point x0. Thus, for a given perturbation (due to noise), the You-Kaveh
model can result in a locally harmonic surface possibly keeping the noise perturba-
tion, instead of suppressing it. This is why the You-Kaveh model tends to introduce
speckles, as shown in Figure 6 below.

Other approaches incorporating fourth-order PDEs can be found in [10]:

u = arg min
u

{∫
Ω

|Du| dx +
λ

2

∫
Ω

(u0 − u)2 dx
}

, (2.8)
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where λ ≥ 0 denotes a constraint parameter and

|Du| =

{
|Σu| := |uxx|+ |uyy|, or
|Θu| := (u2

xx + u2
xy + u2

yx + u2
yy)1/2.

The corresponding Euler-Lagrange equations read respectively

∂u

∂t
= −

( uxx

|uxx|

)
xx
−

( uyy

|uyy|

)
yy

+ λ(u0 − u),

∂u

∂t
= −

( uxx

|Θu|

)
xx
−

( uxy

|Θu|

)
yx
−

( uyx

|Θu|

)
xy
−

( uyy

|Θu|

)
yy

+ λ(u0 − u).
(2.9)

These fourth-order PDE-based models have proved to be superior to (2.7) for an
appropriate choice of λ. Note that the functional in (2.8) is convex (ρ(s) = s).
Thus, when λ = 0, the minimization will converge to a globally planar image.

In this article, we will first find conditions for which non-constrained fourth-
order PDE-based restoration models converge to a piecewise planar image. Then, a
comparison study will be performed for various differential operators (D) and mod-
ulators (ρ). Properties of a variational model are combined effects of the differential
operator, the modulator, and the constraint term.

3. Piecewise Planarity Conditions

We first define a vector-valued second-order differential operator

Πζ = (∂xx, ζ∂xy, ζ∂yx, ∂yy)T , ζ ≥ 0, (3.1)

where the superscript T denotes the transpose. Since |Π0u| ≤ |Σu| ≤
√

2 |Π0u|, the
minimization problem with |Du| = |Σu| is equivalent to the one with |Du| = |Π0u|.
Thus in this section we will focus on second-order differential operators Πζ , ζ ≥ 0.

Consider a minimization problem of the form

u = arg min
u

∫
Ω

ρ(|Du|) dx, D = Πζ , ζ ≥ 0. (3.2)

Then, the associated evolutionary Euler-Lagrange equation reads

∂u

∂t
= −D ·

(
ρ′(|Du|) Du

|Du|

)
. (3.3)

Note that |Πζu| = 0, ζ > 0, if and only if the solution u is globally planar. On
the other hand, |Π0u| = 0 when u is globally bilinear. Since

|∆u| ≤
√

2 |Πζu|, ζ ≥ 0, (3.4)

it is easy to see that a minimizer of (3.2) is also a minimizer of (2.6). However, the
reverse is not true; a minimizer of (2.6) may not be a minimizer of (3.2).

The following theorem proves that for selected modulators ρ, piecewise planar
images are the only minimizers of (3.2) (equivalently, the only stationary states of
(3.3)), when the restored image is to be continuous and piecewise smooth.

Theorem 3.1. Suppose that u is continuous and piecewise smooth. Let ρ satisfy
(2.2) and

ρ(0) = 0, lim
s→∞

ρ(s)
s

= 0. (3.5)
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Then u is piecewise planar if and only if∫
Ω

ρ(|Du|) dx = 0, D = Πζ , ζ > 0. (3.6)

Proof. (⇒) Let u be piecewise planar. Consider the corresponding partition of
Ω: {Ωj}M

j=1, for some M > 0, on each of which the image is planar. Let us
denote the interior and the boundary of Ωj by Ω0

j and ∂Ωj , respectively. Define
Γjk = ∂Ωj ∩ ∂Ωk, the edge between neighboring subregions Ωj and Ωk. Then, it is
easy to see that Γjk are straight line segments. Let uj = u|Ωj

. Then, for D = Πζ ,
ζ > 0,

|Duj(x)| ≡ 0, ∀x ∈ Ω0
j , j = 1, . . . ,M. (3.7)

On the other hand, ∇uj are constant vectors on each Ωj , j = 1, . . . ,M . Without
loss of generality, we may assume that

∇uj 6= ∇uk, ∀x ∈ Γjk, j, k = 1, . . . ,M. (3.8)

So we have |Du(x)| = ∞, ∀x ∈ ∪jkΓjk.
In order to deal with the integral of the infinite on a set of measure zero, let

Ωε
jk be the ε-rectangle of Γjk that has the same length as Γjk and a width of ε

in a normal direction of Γjk, with Γjk being centered. Define S
(ε)
jk on Ωε

jk to have

the property that ∇S
(ε)
jk becomes a linear transition between ∇uj and ∇uk. Then,

|DS
(ε)
jk | is a constant on Ωε

jk: |DS
(ε)
jk | = c1/ε, for some c1 > 0. Thus, by denoting

the length of Γjk by cjk, we have∫
Ωε

jk

ρ(|DS
(ε)
jk |) dx = ρ(c1/ε) · cjkε. (3.9)

It therefore follows from (3.5) and (3.9) that∫
Γjk

ρ(|Du|) dx = lim
ε→0

∫
Ωε

jk

ρ(|DS
(ε)
jk |) dx = 0. (3.10)

Note that the above holds for all Γjk, j, k = 1, . . . ,M ; (3.6) follows from (3.7) and
(3.10).
(⇐) Let u be continuous and piecewise smooth and satisfy (3.6). Then, since
ρ(0) = 0 and ρ(s) > 0 for s > 0, the quantity |Du| must be zero at least at all
interior points of the subregions in which u is smooth; which implies that u is
piecewise planar. This completes the proof. �

Remarks. From the above theorem we have few remarks:
• The PPCs are (3.5) and D = Πζ for ζ > 0. The choice D = ∆ or D = Π0

is not a part of PPCs. The model with (3.5) and D = Π0 would converge
to a piecewise bilinear image.

• The conditions in (3.5) implies that the modulator ρ must be non-convex,
at least for large values of s. Non-convex modulators are, for example,

ρ(s) = ρα(s) :=
1
α

sα, 0 < α < 1; ρ(s) = ρ
P M

(s). (3.11)

• Minimizers of (3.6) are not unique; each of all piecewise planar images is a
minimizer. Thus it is a good idea to incorporate a constraint term in order
for the resulting model to converge to a desirable piecewise planar image,
closer to the given image, that preserves fine structures satisfactorily.
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• The diffusion magnitude |Du| never approaches the infinity for (bounded)
discrete data. Thus the minimization process in (3.2) may not completely
avoid a tendency of converging to a globally planar image. However, the
tendency will be weaker than the convex minimization as in (2.8). By
incorporating a proper constraint term, non-convex fourth-order PDEs can
restore better images, as numerically verified in Section 5.

4. Difference Schemes

We rewrite the models in (2.7) and (3.3), incorporating a constraint term, as

∂u

∂t
= −D ·

( Du

P(u)

)
+ λ (u0 − u), D = ∆, Πζ , ζ ≥ 0, (4.1)

where

P(u) =
|Du|

ρ′(|Du|)
.

Note that one can apply a (linearized) implicit time-stepping scheme to the above
model when the nonlinear part P(u) is evaluated from the previous time level. In
that case, the models with D = Π0 are separable such that they can be efficiently
simulated by the alternating direction implicit (ADI) method [6, 7, 8]. In this
article, for simplicity, we will employ the explicit time-stepping procedure for all
models in (4.1).

Let ∆tn be the nth timestep size, tn =
∑n−1

k=0 ∆tk, and gn = g(·, tn) for a function
of time (and the spatial variables). Given u0 = u0, u1, . . . , un, the explicit scheme
computes un+1 explicitly as

un+1 − un

∆tn
= −An

Dun + λn (u0 − un),

An
Dun := Dh ·

( Dhun

Ph(un)

)
,

(4.2)

or equivalently

un+1 = [I −∆tn(An
D + λnI)]un + λn ∆tnu0, (4.3)

where the subscript h indicates spatial approximations, for which we will consider
difference schemes in the following.

4.1. Spatial schemes for D = Πζ. Let (ij) and xij denote the (ij)th pixel in the
image and gij = g(xij , ·). We will drop the superscript n for a simpler presentation.
Then, a central finite difference scheme for the x-directional diffusion operator can
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be formulated as( uxx

P(u)

)
xx

(xij) ≈
( uxx

P(u)

)
i−1,j

− 2
( uxx

P(u)

)
i,j

+
( uxx

P(u)

)
i+1,j

≈ 1
P(u)i−1,j

(ui−2,j − 2ui−1,j + ui,j)

− 2
P(u)i,j

(ui−1,j − 2ui,j + ui+1,j)

+
1

P(u)i+1,j
(ui,j − 2ui+1,j + ui+2,j)

=
1

P(u)i−1,j
ui−2,j −

( 2
P(u)i−1,j

+
2

P(u)i,j

)
ui−1,j

+
( 1
P(u)i−1,j

+
4

P(u)i,j
+

1
P(u)i+1,j

)
ui,j

−
( 2
P(u)i,j

+
2

P(u)i+1,j

)
ui+1,j +

1
P(u)i+1,j

ui+2,j ,

(4.4)

where

P(u)ij =
|Dhuij |

ρ′(|Dhuij |)
.

For the boundary condition, we will simply consider the flat extension of the bound-
ary pixel values in the outer normal direction.

The y-directional diffusion operator can be approximated analogously :( uyy

P(u)

)
yy

(xij) ≈
1

P(u)i,j−1
ui,j−2 −

( 2
P(u)i,j−1

+
2

P(u)i,j

)
ui,j−1

+
( 1
P(u)i,j−1

+
4

P(u)i,j
+

1
P(u)i,j+1

)
ui,j

−
( 2
P(u)i,j

+
2

P(u)i,j+1

)
ui,j+1 +

1
P(u)i,j+2

ui,j+2.

(4.5)

The mixed-derivative can be approximated as

(uxy)ij ≈ Qhuij :=
ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4
. (4.6)

Note that the approximation of uxy is the same as that of uyx. Thus, we have( uxy

P(u)

)
yx

(xij) ≈ Qh

( Qhu

Ph(u)

)
ij
≈

( uyx

P(u)

)
xy

(xij). (4.7)

4.2. Spatial schemes for D = ∆. Define the discrete Laplacian ∆h as

∆huij = ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij . (4.8)

Let

Rij =
∆huij

P(u)ij
, P(u)ij =

|∆huij |
ρ′(|∆huij |)

. (4.9)

Then, the diffusion operator can be discretized as

∆
( ∆u

P(u)

)
(xij) ≈ ∆hRij , (4.10)

which is a difference scheme of 13-point stencil.
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4.3. A variable constraint parameter {λn
ij}. Now, we will present a strategy

for λ which is variable. Multiply the stationary part of (4.1) by (u0−u) and average
the resulting equation locally to obtain

λ(x)σ2
x ≈

1
|Ωx|

∫
Ωx

(u0 − u)D ·
( Du

P(u)

)
dx, (4.11)

where Ωx is a neighborhood of x (e.g., the window of (3× 3) pixels centered at x)
and σ2

x denotes the local noise variance measured over Ωx. Then, the right side of
the above equation can be approximated, in the nth time level, as in

λn(x) ≈ 1
σ2
x

‖u0 − un‖x ‖An
Dun‖x , (4.12)

where An
Dun is defined as in (4.2) and ‖g‖x denotes a local average of |g| over Ωx.

Notice that the constraint parameter in (4.12) is proportional to both the abso-
lute residual |u0 − un| and the diffusion magnitude |An

Dun|, which can effectively
suppress undesired dissipation that may arise on fast transitions. It also should be
noticed that the approximation (4.12) of (4.11) is based on the assumption that
|u0 − un| and |An

Dun| are relatively independent, although they may not be. In
practice, one can find an effective constraint parameter as follows:

λn
ij =

β1

σ̃2
|u0,ij − un

ij |
∣∣An
Dun

ij

∣∣ , (4.13)

where σ̃2 denotes an estimation of σ2 and β1 is a positive constant (0 < β1 ≤ 1).
In this article, we will set σ̃2 = σ2, the true noise variance, when the fourth-order
models are compared with the second-order ones.

4.4. Choice of ∆tn. The explicit scheme for fourth-order PDEs in (4.3) is numer-
ically stable only if the timestep size is sufficiently small. In the literature, the
timestep size has often been chosen heuristically. However, for efficiency reasons,
it is desirable to set ∆tn as large as possible, provided that the algorithm is stable.
We will consider an effective strategy for the selection of the timestep size in this
subsection.

Note that some coefficients of neighboring values of un
ij in the right side of (4.3)

are always negative and the coefficient of un
ij itself is conditionally nonnegative;

it is hard to analyze mathematical stability for numerical schemes of fourth-order
models. It has been observed that the algorithm occasionally diverges when the
timestep size is set so as to make the coefficient of un

ij nonnegative:

∆tn ≤ min
ij

1
An
D,ij + λn

ij

, (4.14)

where An
D,ij is the coefficient of un

ij in An
Dun(xij). Thus we will try to choose the

timestep size slightly smaller than the one in (4.14):

∆tn = min
ij

γ

An
D,ij + λn

ij

, 0 < γ < 1. (4.15)

(It has been verified that when γ ≥ 0.6, the resulting algorithm becomes occasion-
ally unstable. We will set γ = 0.5 in practice.)

For D = ∆, the coefficient An
D,ij of un

ij in An
Dun

ij can be found as

An
∆,ij =

1
P(u)i−1,j

+
1

P(u)i+1,j
+

1
P(u)i,j−1

+
1

P(u)i,j+1
+

16
P(u)i,j

,
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while An
Πζ ,ij , ζ ≥ 0, reads

An
Πζ ,ij =

1
P(u)i−1,j

+
1

P(u)i+1,j
+

1
P(u)i,j−1

+
1

P(u)i,j+1
+

8
P(u)i,j

+
ζ

8

( 1
P(u)i+1,j+1

+
1

P(u)i−1,j−1
+

1
P(u)i−1,j+1

+
1

P(u)i+1,j−1

)
.

5. Numerical Experiments

In this section, we will verify effectiveness of fourth-order image denoising models
considered in previous sections. The computation is carried out on a 3.20 GHz
desktop having a Linux operating system. The explicit scheme (4.3) is implemented
for 15 different models: combinations of five differential operators (∆, Σ, Π0, Π1/4,
and Π1) and three modulators (ρ1, ρ0.6, and ρ

P M
). The input images are first scaled

by 1/255 to have real values between 0 and 1 and then, after denoising, they are
scaled back for the 8-bit display in which the pixel values are integers between 0
and 255. When ρ = ρα, 0 < α ≤ 1, we have P(u) = |Du|2−α. To prevent the
denominators in (4.4), (4.5), (4.7), and (4.9) from approaching zero, a relaxation
parameter ε is incorporated:

P(u) ≈ (|Du|2 + ε2)(2−α)/2, ε > 0.

Many of algorithm parameters are chosen heuristically; we set ε = 0.01, K = 0.03
in (2.4), and γ = 0.5 in (4.15). (When γ = 0.6 ∼ 0.9, the explicit scheme has
occasionally diverged.) The restoration quality is measured by the signal-to-noise
ratio (SNR) and the peak signal-to-noise ratio (PSNR), which are defined as

SNR ≡
∑

ij g2
ij∑

ij(gij − hij)2
, PSNR ≡ 10 log10

( ∑
ij 2552∑

ij(gij − hij)2
)
,

where g is the original image, h denotes the compared image, and the unit of PSNR
is decibel (dB).

(a) (b) (c)

Figure 2. Lenna: (a) The original image g and noisy images
perturbed by an additive Gaussian noise of (b) PSNR=24.77
(SNR=81.00) and (c) PSNR=15.23 (SNR=9.00).

First, we apply the 15 fourth-order models to the restoration of the Lenna im-
age shown in Figure 2; the noisy images in Figures 2(b) and 2(c) are obtained
by perturbing the original image by an additive Gaussian noise of PSNR=24.77
(SNR=81.00) and PSNR=15.23 (SNR=9.00), respectively. We have observed that
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it is difficult to set an appropriate stopping criterion for the 15 different models to
be compared fairly. Thus the PSNR is computed after each iteration of the explicit
scheme (4.3); the models will be compared for the best PSNRs they can achieve for
the restored image.

Table 1. A PSNR analysis. Set β1 = 0 (unconstrained).

ρ = ρ1 ρ = ρ0.6 ρ = ρ
P M

PSNR D Iter PSNR Iter PSNR Iter PSNR
24.77 ∆ 83 30.68 279 30.60 220 30.44

Σ 40 31.09 104 31.46 119 31.40
Π0 46 31.08 129 31.49 78 31.45

Π1/4 36 31.21 87 31.63 61 31.52
Π1 28 31.07 71 31.44 50 31.34

15.23 ∆ 502 25.45 2015 25.48 2492 25.39
Σ 205 25.58 526 26.01 802 26.05
Π0 239 25.59 617 26.06 533 26.05

Π1/4 151 25.62 434 26.07 336 25.90
Π1 111 25.51 350 25.89 289 25.61

Table 1 shows the best PSNRs and the corresponding iteration counts for the
15 models with no constraint term (β1 = 0). For the unconstrained problem, the
model with D = Π1/4 and ρ = ρ0.6 has performed the best in PSNR, for both noise
levels. The lowest PSNRs are observed for the models incorporating D = ∆. Note
that the models incorporating D = Π1 have performed not better than the models
having D = Π0 (and D = Π1/4). When D = Π1, the involvement of cross derivatives
into the models is too strong. In order for a non-convex model to hold the PPCs,
the model should incorporate D = Πζ , ζ > 0; however, ζ should not be too large
for an effective denoising. (The models work reasonably well when ζ = 0.1 ∼ 0.35.)
As one can see from the table (and also from constrained problems in Tables 2
and 3), the models with D = Πζ converge faster, as ζ approaches 1. Such a faster
convergence of Π1 seems due to a balanced incorporation of cross derivatives, which
in turn makes the finite difference scheme involve a larger number of pixels in
various directions in a balanced fashion. For all differential operators (D), the non-
convex models (ρ = ρ0.6 and ρ = ρ

P M
) have outperformed over the convex models

(ρ = ρ1).
In Table 2, we experiment the same as in Table 1 except for β1 = 0.4 in (4.13).

For the constrained model, we have observed similar performances as in the un-
constrained one. Here the PSNRs are slightly higher, and the PSNR differences
between non-convex models and convex ones are smaller than those for the uncon-
strained models in Table 1. For the high noise level, the constrained model with
D = Σ and ρ = ρ0.6 has performed the best in PSNR.

In Figure 3, we present the best restored images (measured in PSNR) from the
ITV model (2.5) and the fourth-order models, for the high noise level. For the ITV
model, the diffusion term is approximated as in [9] and the constraint parameter is
set analogously as in Section 4.3; we select a spatially variable timestep size defined
as

∆tnij =
γ

An
ITV,ij + λn

ij

, (5.1)
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Table 2. A PSNR analysis. Set β1 = 0.4 (constrained).

ρ = ρ1 ρ = ρ0.6 ρ = ρ
P M

PSNR D Iter PSNR Iter PSNR Iter PSNR
24.77 ∆ 113 30.96 347 30.80 265 30.62

Σ 59 31.52 137 31.81 147 31.69
Π0 65 31.45 166 31.78 97 31.74

Π1/4 50 31.53 111 31.90 76 31.83
Π1 38 31.38 91 31.73 63 31.67

15.23 ∆ 944 26.75 3273 26.55 3709 26.34
Σ 477 27.32 969 27.44 1200 27.21
Π0 521 27.22 1052 27.37 813 27.25

Π1/4 331 27.25 745 27.41 514 27.26
Π1 251 27.13 619 27.25 475 27.05

(a) (b)

Figure 3. Lenna: Restored images (best in PSNR) by (a) the
ITV model and (b) a fourth-order model, that shows PSNR=26.88
(SNR=131.51, CPU time=0.28 seconds) and PSNR=27.44
(SNR=149.63, CPU time=42.88 seconds), respectively.

where An
ITV,ij is the coefficient of un

ij in the approximation of the diffusion term
of the ITV model, which is 4 independently on un; see [9] for details. The ITV
model shows its best PSNR (=26.88) in 30 iterations, while the fourth-order model
with D = Σ and ρ = ρ0.6 requires 969 iterations to reach its best PSNR (=27.44).
(When the fourth-order models employ the variable timestep size in (5.1), they
converge 2-3 times faster, but their best PSNRs are often lowered by an observable
amount; fourth-order models have shown higher sensitivity to numerical schemes
and parameter choices.) As one can see from the figure, the fourth-order model
restores texture regions better than the second-order model, while edges of relatively
big contrasts are preserved more clearly by the ITV model. Thus, for untextured
images, the second-order model may restore better images than the fourth-order
models. The second-order model converges fast without sacrificing the restoration
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quality, when the variable timestep size (5.1) is employed. Also, for the second-
order model, it is relatively easy to set an appropriate stopping criterion. However,
all the fourth-order models except involving D = ∆ have restored better images
than the second-order model.

Another example is given in order to verify the effectiveness of fourth-order mod-
els on textured images. We first perturb the original Texture image (Figure 4(a))
by an additive Gaussian noise of PSNR=15.24 (SNR=11.51); see Figure 4(b).

(a) (b)

(c) (d)

Figure 4. Texture: (a) The original image g, (b) noisy im-
age perturbed by an additive Gaussian noise of PSNR=15.24
(SNR=11.51), and the restored images by (c) the ITV model,
PSNR=18.21 (SNR=22.80) and (d) the fourth-order model,
PSNR=19.22 (SNR=28.78).

Figure 4(c) represents recovered image using the ITV model with the spatially
variable timestepsize (5.1) and Figure 4(d) is a denoised image using the fourth-
order model (D = Π1/4 and ρ = ρ0.6). After results are measured in PSNR and
visual verification, the ITV model shows its best recovered image after only 3 itera-
tions (PSNR= 18.21, CPU time=0.33 seconds). The fourth-order model reaches its
best PSNR (=19.22) after 353 iterations (CPU time=65.05 seconds). As one can
see from the figures, the fourth-order model preserves textures better than the ITV
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model. Although ITV model gives the results faster than the fourth-order model,
the difference is not significant.

(a) (b) (c)

Figure 5. Test images: (a) Bamboo, (b) Elaine, and (c) Poker Chips.

We select a set of images as in Figure 5, for more tests and comparisons.
Table 3 presents a PSNR analysis, showing the best PSNRs and the correspond-

ing iteration counts, for the 15 different constrained fourth-order models applied
to the restoration of three images in Figure 5. As one can see from the table, we
have again reached the same conclusions: (a) the models incorporating D = Π1

converge fastest and (b) non-convex models outperform over convex models. When
the ITV model (2.5) is applied, the best PSNRs turn out to be 32.44, 28.10, and
24.68 respectively for Bamboo, Elaine, and Poker Chips; the fourth-order models
holding the PPCs restore better images than the second-order model for all cases.

Table 3. A PSNR analysis. Set β1 = 0.4 (constrained).

ρ = ρ1 ρ = ρ0.6 ρ = ρ
P M

Image (PSNR) D Iter PSNR Iter PSNR Iter PSNR
Bamboo ∆ 1186 32.04 3597 31.71 3326 31.34
(16.81) Σ 778 32.66 1251 32.82 1126 32.32

Π0 724 32.45 1186 32.60 787 32.33
Π1/4 523 32.86 844 33.14 534 32.82
Π1 406 33.29 678 33.56 491 33.29

Elaine ∆ 802 28.06 2627 27.85 2706 27.58
(16.81) Σ 416 28.46 748 28.54 912 28.48

Π0 414 28.43 864 28.56 602 28.51
Π1/4 282 28.45 570 28.59 407 28.50
Π1 219 28.32 468 28.43 371 28.30

Poker Chips ∆ 383 24.59 1581 24.57 1965 24.45
(16.82) Σ 184 25.15 491 25.55 776 25.44

Π0 194 24.97 565 25.44 501 25.48
Π1/4 144 25.16 418 25.66 319 25.64
Π1 110 25.19 361 25.61 276 25.54

Figure 6 depicts a noisy image of Elaine and restored images by two constrained
fourth-order models: D = ∆ and D = Π1/4. For both models, we set ρ = ρ0.6
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(a) (b) (c)

Figure 6. Elaine: (a) A noisy image of PSNR=16.82
(SNR=15.29) and restored images by (b) D = ∆ and (c) D = Π1/4.
For both models, we set ρ = ρ0.6 and β1 = 0.4.

and β1 = 0.4. The restored image with D = ∆ incorporates speckles, which is
objectionable, as in Figure 6(b). On the other hand, the model of D = Π1/4 has
restored edges and fine structures more clearly. It is apparent that fourth-order
models holding the PPCs can suppress speckles effectively and result in better
images than models without PPCs.

Conclusions

Properties of a variational model in image denoising are combined effects of the
differential operator, the modulator, and the constraint term. In this article, we
have introduced piecewise planarity conditions (PPCs) for fourth-order variational
denoising models in continuum. For an efficient simulation of fourth-order varia-
tional models, we have considered effective numerical methods such as a variable
constraint parameter and a stable timestep size. Although the PPCs may not be
satisfied by discrete data (images) in the same way as in continuum, they may
serve as a valuable mathematical tool for the advancement of the state-of-the-art
methods for PDE-based denoising. Models with the PPCs have proved to be able
to restore better images measured in PSNR (and visual inspection) than models
without PPCs. Also, it has been observed that fourth-order variational models
can restore better images than second-order ones, particularly when they hold the
PPCs. Fourth-order models have restored texture regions favorably, while second-
order models tend to restore edges of large contrasts more clearly.
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