Seventh Mississippi State - UAB Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conf. 17 (2009), pp. 159-170. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

BOUNDED SOLUTIONS: DIFFERENTIAL VS DIFFERENCE EQUATIONS

JEAN MAWHIN

Abstract

We compare some recent results on bounded solutions (over \mathbb{Z}) of nonlinear difference equations and systems to corresponding ones for nonlinear differential equations. Bounded input-bounded output problems, lower and upper solutions, Landesman-Lazer conditions and guiding functions techniques are considered.

1. Introduction

In this paper, we survey some recent results on bounded solutions (over \mathbb{Z}) of nonlinear difference equations or systems, and compare them to the corresponding situations for bounded solutions (over \mathbb{R}) of nonlinear differential equations or systems.

We first give some maximum and anti-maximum principles for bounded solutions of linear differential equations of the form

$$
u^{\prime}(t)+\lambda u(t)=f(t)
$$

and of corresponding linear difference equations of the form

$$
\Delta u_{m}+\lambda u_{m}=f_{m} \quad(m \in \mathbb{Z})
$$

Then we compare Landesman-Lazer conditions for bounded solutions of Duffing's differential equations

$$
x^{\prime \prime}+c x^{\prime}+g(x)=p(t)
$$

with those for bounded solutions of Duffing's difference equations

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+g\left(x_{m}\right)=p_{m} \quad(m \in \mathbb{Z})
$$

or

$$
\Delta^{2} x_{m-1}+c \Delta x_{m-1}+g\left(x_{m}\right)=p_{m} \quad(m \in \mathbb{Z})
$$

Finally, we compare the method of guiding functions for systems of ordinary differential equations

$$
x^{\prime}=f(t, x)
$$

[^0]and for systems of difference equations
$$
\Delta x_{m}=f_{m}\left(x_{m}\right)
$$
or corresponding discrete dynamical systems
$$
x_{m+1}=g_{m}\left(x_{m}\right)
$$

2. Bounded input-Bounded output Problem for first order linear EQUATIONS

2.1. Bounded solutions of linear ordinary differential equations. The bounded input-bounded output (BIBO) problem for the linear ordinary differential equation

$$
\begin{equation*}
u^{\prime}(t)+\lambda u(t)=f(t) \tag{2.1}
\end{equation*}
$$

consists in finding conditions upon λ under which, for each $f \in L^{\infty}(\mathbb{R})$, 2.1) has a unique solution $u \in A C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. We denote the usual norm of $v \in L^{\infty}(\mathbb{R})$ by $|u|_{\infty}$. Such a solution is simply called a bounded solution of 2.1). The BIBO problem was essentially solved as follows by Perron in 1930 [14]. If $\lambda=0$, we have no uniqueness for $f \equiv 0$, and no existence for $f(t) \equiv 1$. If $\lambda \neq 0$, the homogeneous problem

$$
\begin{equation*}
u^{\prime}(t)+\lambda u(t)=0 \tag{2.2}
\end{equation*}
$$

only has the trivial bounded solution. For $\lambda>0$,

$$
\begin{equation*}
u(t)=\int_{-\infty}^{t} e^{-\lambda(t-s)} f(s) d s \tag{2.3}
\end{equation*}
$$

is a bounded solution of 2.1), and hence the unique one. For $\lambda<0$,

$$
\begin{equation*}
u(t)=-\int_{t}^{+\infty} e^{-\lambda(t-s)} f(s) d s \tag{2.4}
\end{equation*}
$$

is a bounded solution of 2.1), and hence the unique one. We summarize the results in the following

Proposition 2.1. Equation 2.1 has a unique solution $u \in A C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for each $f \in L^{\infty}(\mathbb{R})$ if and only if $\lambda \in \mathbb{R} \backslash\{0\}$.
2.2. A maximum principle for bounded solutions of differential equations. The following definition is modelled upon the one given in [5] in a different context.

Definition 2.2. Given $\lambda \in \mathbb{R} \backslash\{0\}$, the linear operator $d / d t+\lambda I: A C(\mathbb{R}) \cap$ $L^{\infty}(\mathbb{R}) \rightarrow L^{\infty}(\mathbb{R})$ satisfies a maximum principle (MP) if, for each $f \in L^{\infty}(\mathbb{R})$, 2.1) has a unique solution u and if $f(t) \geq 0(t \in \mathbb{R})$ implies that $\lambda u(t) \geq 0(t \in \mathbb{R})$. The MP is strong if, furthermore, $f(t) \geq 0(t \in \mathbb{R})$ and $\int_{\mathbb{R}} f>0$ imply that $\lambda u(t)>0$ $(t \in \mathbb{R})$).

A direct consideration of formulas (2.3) and 2.4 immediately implies the following

Proposition 2.3. If $f \in L^{\infty}(\mathbb{R})$, the BIBO problem for 2.1) has a MP if and only if $\lambda \in]-\infty, 0[\cup] 0,+\infty[$, and the MP is not strong.
2.3. Bounded solutions of linear difference equations. Let $l^{\infty}(\mathbb{Z})=\{u=$ $\left.\left(u_{m}\right)_{m \in \mathbb{Z}}: \sup _{m \in \mathbb{Z}}\left|u_{m}\right|<\infty\right\}$. Endowed with the norm $|u|_{\infty}:=\sup _{m \in \mathbb{Z}}\left|u_{m}\right|$, $l^{\infty}(\mathbb{Z})$ is a Banach space. We denote by $\Delta u_{m}=u_{m+1}-u_{m}(m \in \mathbb{Z})$ the forward difference operator acting on sequences $\left(u_{m}\right)_{m \in \mathbb{Z}}$. The bounded input-bounded output (BIBO) problem we address is to find the values of λ such that, for each $\left(f_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, the linear difference equation

$$
\begin{equation*}
\Delta u_{m}+\lambda u_{m}=f_{m} \quad(m \in \mathbb{Z}) \tag{2.5}
\end{equation*}
$$

has a unique solution $\left(u_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$. We refer those solutions as bounded solutions.

Easy computations show that, for $\lambda=0$, existence or uniqueness may fail. Namely, for $f_{m}=0(m \in \mathbb{Z})$, any constant sequence is a solution in $l^{\infty}(\mathbb{Z})$, and, for $f_{m}=1(m \in \mathbb{Z})$, the solutions given by $u_{m}=u_{0}+m(m \in \mathbb{Z})$ are all unbounded. Similarly, for $\lambda=2$, any alternating sequence $(-1)^{m} c$ is a solution of (2.5) with $f_{m}=0(m \in \mathbb{Z})$, and, for $f_{m}=(-1)^{m}(m \in \mathbb{Z})$ none of the solutions $u_{m}=(-1)^{m} u_{0}+m(-1)^{m+1}(m \in \mathbb{Z})$ is bounded.

Now, for $\lambda \in \mathbb{R} \backslash\{0,2\}$, it is easy to see that the homogeneous difference equation

$$
\begin{equation*}
\Delta u_{m}+\lambda u_{m}=0 \tag{2.6}
\end{equation*}
$$

only has the trivial solution in $l^{\infty}(\mathbb{Z})$. On the other hand, if $\left.\lambda \in\right] 0,2[$,

$$
\begin{equation*}
u_{m}=\sum_{k=-\infty}^{m-1}(1-\lambda)^{m-k-1} f_{k} \quad(m \in \mathbb{Z}) \tag{2.7}
\end{equation*}
$$

is a solution of 2.5 belonging to $l^{\infty}(\mathbb{Z})$, and hence the unique one. Similarly, if $\lambda \in]-\infty, 0[\cup] 2,+\infty[$,

$$
\begin{equation*}
u_{m}=-\sum_{k=m}^{\infty}(1-\lambda)^{m-k-1} f_{k} \quad(m \in \mathbb{Z}) \tag{2.8}
\end{equation*}
$$

is the unique solution of (2.5) belonging to $l^{\infty}(\mathbb{Z})$. We summarize the results in the following proposition.
Proposition 2.4. Equation 2.5 has a unique solution $\left(u_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ for each $\left(f_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $\lambda \in \mathbb{R} \backslash\{0,2\}$.
2.4. A maximum principle for bounded solutions of difference equations. The following definition is modelled upon the one given in [5] in a different context.

Definition 2.5. Given $\lambda \in \mathbb{R} \backslash\{0\}$, the linear operator $\Delta+\lambda I: l^{\infty}(\mathbb{Z}) \rightarrow l^{\infty}(\mathbb{Z})$ satisfies a maximum principle (MP) if for each $\left(f_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, the equation (2.5) has a unique solution and if $f_{m} \geq 0(m \in \mathbb{Z})$ implies that $\lambda u_{m} \geq 0(m \in \mathbb{Z})$. The maximum principle is said to be strong if, in addition, $f_{m} \geq 0(m \in \mathbb{Z})$, and $\sup _{m \in \mathbb{Z}} f_{m}>0$ imply that $\left.\lambda u_{m}>0(m \in \mathbb{Z})\right)$.

Notice that, in the more classical terminology modelled on the one for second order elliptic operators, the above definition corresponds to a maximum principle when $\lambda<0$, and to an anti-maximum principle in the sense of Clément-Pelletier [6] when $\lambda>0$. The following result can be read directly upon formulas (2.7) and 2.8.

Proposition 2.6. The $B I B O$ problem for (2.5 has a $M P$ if and only if $\lambda \in$] $\infty, 0[\cup] 0,1]$, and this $M P$ is not strong;
2.5. BIBO problem: linear differential vs linear difference equations. It follows from Propositions 2.3 and 2.6 that the ranges of values for which a maximum principle hold are different in the differential and the difference cases. The following simple propositions help to understand the reason of this difference. Given a linear operator L between Banach spaces, let $\sigma(L)$ denotes its (complex) spectrum and $\mathcal{R}(L)=\mathbb{C} \backslash \sigma(L)$ denote its resolvent set. The following propositions are analogous to those proved in [5] is a different context.

Proposition 2.7. If the BIBO problem for $L+\lambda I$, with $L=\Delta$ or $d / d t$ has a $M P$ for some $\lambda \neq 0$, then

$$
\begin{equation*}
|u|_{\infty} \leq \frac{|f|_{\infty}}{|\lambda|} \tag{2.9}
\end{equation*}
$$

Proof. If $u \in L^{\infty}(\mathbb{R})$ is the solution of 2.1 and $v=\frac{|f|_{\infty}}{\lambda} \in L^{\infty}(\mathbb{R})$ the solution of

$$
L v+\lambda v=|f|_{\infty}
$$

then $v-u \in L^{\infty}(\mathbb{R})$ is the solution of

$$
L(v-u)+\lambda(v-u)=|f|_{\infty}-f
$$

and the MP implies that $\lambda(v-u) \geq 0$, i.e. that

$$
\lambda u \leq|f|_{\infty}
$$

Similarly, we have

$$
L(v+u)+\lambda(v+u)=|f|_{\infty}+f
$$

and hence, by the MP, $\lambda(v+u) \geq 0$, i.e. $\lambda u \geq-|f|_{\infty}$.
In the ordinary differential equation case, the estimate 2.9 can also be obtained directly for any $\lambda \in \mathbb{R} \backslash\{0\}$. Indeed, it follows from (2.3) that if $\lambda>0$, then

$$
|u(t)| \leq|f|_{\infty} \int_{-\infty}^{t} e^{-\lambda(t-s)} d s=\frac{1}{\lambda}|f|_{\infty}
$$

Similarly, if $\lambda<0$, we get

$$
|u(t)| \leq|f|_{\infty} \int_{t}^{+\infty} e^{-\lambda(t-s)} d s=-\frac{1}{\lambda}|f|_{\infty}
$$

In the DE case, the following estimates can be obtained directly from the formulas (2.7) and 2.8)

$$
\begin{gathered}
|u|_{\infty} \leq \frac{|f|_{\infty}}{|\lambda|} \quad \text { if } \lambda<0, \quad|u|_{\infty} \leq \frac{|f|_{\infty}}{|\lambda|} \quad \text { if } 0<\lambda \leq 1 \\
|u|_{\infty} \leq \frac{|f|_{\infty}}{2-\lambda} \quad \text { if } 1<\lambda<2, \quad|u|_{\infty} \leq \frac{|f|_{\infty}}{\lambda-2} \quad \text { if } 2<\lambda
\end{gathered}
$$

Proposition 2.8. If the BIBO problem for $L+\lambda I$, with $L=\Delta$ or $d / d t$ has a $M P$ for some $\lambda \neq 0$, then

$$
\begin{equation*}
\mathcal{R}(L) \supset\{\mu \in \mathbb{C}:|\mu-\lambda|<|\lambda|\} . \tag{2.10}
\end{equation*}
$$

Proof. We have, for $\mu \in \mathbb{C}$,

$$
\begin{aligned}
L u+\mu u=f & \Leftrightarrow L u+\lambda u+(\mu-\lambda) u=f \\
& \Leftrightarrow u+(\mu-\lambda)(L+\lambda)^{-1} u=(L+\lambda)^{-1} f,
\end{aligned}
$$

and, using Proposition 2.7

$$
\left|(\mu-\lambda)(L+\lambda)^{-1} u\right|_{\infty} \leq|\mu-\lambda| \frac{|u|_{\infty}}{|\lambda|}
$$

so that, for $\frac{|\mu-\lambda|}{|\lambda|}<1$, equation $L u+\mu u=f$ has a unique bounded solution.
It is easy to check that, for the BIBO problem in the ordinary differential equation case, the spectrum $\sigma(L)$ of $L: A C(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \rightarrow L^{\infty}(\mathbb{R})$ is equal to $i \mathbb{R}$.

Figure 1. ODE spectrum
Therefore, for any $\lambda \in \mathbb{R}$, the set $\{\mu \in \mathbb{C}:|\mu-\lambda|<|\lambda|\}$ is always contained in the resolvent set $\mathcal{R}(L)$.

Similarly, for the BIBO problem in the difference equation case, the spectrum $\sigma(L)$ of $L: l^{\infty}(\mathbb{Z}) \rightarrow l^{\infty}(\mathbb{Z})$ is the circle $\left\{1+e^{i \theta}: \theta \in[0,2 \pi]\right\}$. Hence, for any $\lambda<0$, the set $\{\mu \in \mathbb{C}:|\mu-\lambda|<|\lambda|\}$ is contained in $\mathcal{R}(L)$, but, for $\lambda>0$, this is only true for $\lambda \in] 0,1]$. This, together with Proposition 2.8, sheds some light on the fact that the maximum principle for the BIBO problem in the difference case only holds for $\lambda \in]-\infty, 0[\cup] 0,1]$. Notice also that the estimate $|u|_{\infty} \leq \frac{|f|_{\infty}}{|\lambda|}$ only holds for those values of λ.

Figure 2. DE spectrum

3. Bounded input-BOUnded output problems for some Duffing's EQUATIONS

3.1. Linear equations. It is a standard result that the second order linear ordinary differential equation

$$
\begin{equation*}
x^{\prime \prime}+c x^{\prime}+a x=f(t) \tag{3.1}
\end{equation*}
$$

has a unique solution $x \in A C^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for any $f \in L^{\infty}(\mathbb{R})$ if and only if $a<0$.
3.2. Duffing's equations. Duffing's differential equations are nonlinear second order differential equations of the form

$$
\begin{equation*}
x^{\prime \prime}+c x^{\prime}+g(x)=p(t) \tag{3.2}
\end{equation*}
$$

where $c \in \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ and $p: \mathbb{R} \rightarrow \mathbb{R}$ are continuous.
Correspondingly, we call Duffing difference equations the second order nonlinear difference equations of the form

$$
\begin{equation*}
\Delta^{2} x_{m-1}+c \Delta x_{m}+g\left(x_{m}\right)=p_{m} \quad(m \in \mathbb{Z}) \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta^{2} x_{m-1}+c \Delta x_{m-1}+g\left(x_{m}\right)=p_{m} \quad(m \in \mathbb{Z}) \tag{3.4}
\end{equation*}
$$

where

$$
\Delta^{2} x_{m-1}=x_{m+1}-2 x_{m}+x_{m-1} \quad(m \in \mathbb{Z})
$$

$g \in C(\mathbb{R}, \mathbb{R})$, and $c \in \mathbb{R}$.
The bounded input-bounded output (BIBO) problem for (3.2) consists, for given g, in determining the inputs $p \in L^{\infty}(\mathbb{R})$ for which equation $(3.2$ has at least one solution $u \in A C^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. This problem was first considered by Ahmad [1], and then by Ortega [12], Ortega-Tineo [13], and Mawhin-Ward [10].

Similarly, the bounded input-bounded output (BIBO) problem for (3.3) or (3.4) consists, for given g, in determining the inputs $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ for which 3.3) or (3.4) has at least one solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$. See [3, 9].
3.3. Bounded lower and upper solutions. We develop a method of lower and upper solutions for the bounded solutions of (3.3) and (3.4). We first need a limiting lemma 9.

Lemma 3.1. Let $f_{m} \in C(\mathbb{R}, \mathbb{R})(m \in \mathbb{Z}), c \in \mathbb{R}$ Assume that, for each $n \in \mathbb{N}^{*}$, there exists $\left(x_{m}^{n}\right)_{-n-1 \leq m \leq n+1}$ such that

$$
\Delta^{2} x_{m-1}^{n}+c \Delta x_{m}^{n}+f_{m}\left(x_{m}^{n}\right)=0 \quad(-n \leq m \leq n)
$$

and such that $\alpha_{m} \leq x_{m}^{n} \leq \beta_{m}(|m| \leq n+1)$ for some $\left(\alpha_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z}),\left(\beta_{m}\right)_{m \in \mathbb{Z}} \in$ $l^{\infty}(\mathbb{Z})$. Then there exists $\left(\widehat{x}_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that

$$
\Delta^{2} \widehat{x}_{m-1}+c \Delta \widehat{x}_{m}+f_{m}\left(\widehat{x}_{m}\right)=0, \alpha_{m} \leq \widehat{x}_{m} \leq \beta_{m} \quad(m \in \mathbb{Z})
$$

The same result for

$$
\Delta^{2} \widehat{x}_{m-1}+c \Delta \widehat{x}_{m-1}+f_{m}\left(\widehat{x}_{m}\right)=0(m \in \mathbb{Z}) .
$$

The proof is based upon Borel-Lebesgue lemma and Cantor diagonalization process.

We now define the concept of bounded lower and upper solutions for second order difference equations [9]. Let $f_{m} \in C(\mathbb{R}, \mathbb{R})(m \in \mathbb{Z}), c \in \mathbb{R}$.

Definition 3.2. $\left(\alpha_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})\left(\right.$ resp. $\left.\left(\beta_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})\right)$ is a bounded lower solution (resp. upper solution) for

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+f_{m}\left(x_{m}\right)=0 \quad(m \in \mathbb{Z})
$$

if

$$
\begin{gathered}
\Delta^{2} \alpha_{m-1}+c \Delta \alpha_{m}+f_{m}\left(\alpha_{m}\right) \geq 0 \\
\left(\text { resp. } \quad \Delta^{2} \beta_{m-1}+c \Delta \beta_{m}+f_{m}\left(\beta_{m}\right) \leq 0\right) \quad(m \in \mathbb{Z})
\end{gathered}
$$

A similar definition holds for

$$
\Delta^{2} x_{m-1}+c \Delta x_{m-1}+f_{m}\left(x_{m}\right)=0 \quad(m \in \mathbb{Z})
$$

We have the associated existence theorem.
Theorem 3.3. If $c \geq 0$ (resp. $c \leq 0$) and

$$
\begin{gathered}
\Delta^{2} x_{m-1}+c \Delta x_{m}+f_{m}\left(x_{m}\right)=0 \quad(m \in \mathbb{Z}) \\
\left(\text { resp. } \quad \Delta^{2} x_{m-1}+c \Delta x_{m-1}+f_{m}\left(x_{m}\right)=0 \quad(m \in \mathbb{Z})\right)
\end{gathered}
$$

has a lower solution $\left(\alpha_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and an upper solution $\left(\beta_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that $\alpha_{m} \leq \beta_{m}(m \in \mathbb{Z})$, then it has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}}$ such that $\alpha_{m} \leq x_{m} \leq$ $\beta_{m}(m \in \mathbb{Z})$
Proof. The proof is based upon the existence theorem for lower and upper solutions for the Dirichlet problem

$$
\begin{gathered}
\Delta^{2} x_{m-1}+c \Delta x_{m}+f_{m}\left(x_{m}\right)=0 \quad(-n \leq m \leq n) \\
x_{-n-1}=\alpha_{-n-1}, \quad x_{n+1}=\alpha_{n+1}
\end{gathered}
$$

for each n and the limiting Lemma 3.1.
An important special case is that of constant lower and upper solutions.
Corollary 3.4. If $c \geq 0$ and if $\exists \alpha \leq \beta$ such that $f_{m}(\beta) \leq 0 \leq f_{m}(\alpha)(m \in \mathbb{Z})$, then

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+f_{m}\left(x_{m}\right)=0 \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}}$ such that $\alpha \leq x_{m} \leq \beta(m \in \mathbb{Z})$.
Example 3.5. If $c \geq 0$ and $a>0$, then for each $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}-a x_{m}=p_{m} \quad(m \in \mathbb{Z})
$$

has a unique solution $\left(u_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.
Similar results hold if $c \leq 0$ for the equations

$$
\begin{array}{cc}
\Delta^{2} x_{m-1}+c \Delta x_{m-1}+f_{m}\left(x_{m}\right)=0 & (m \in \mathbb{Z}) \\
\Delta^{2} x_{m-1}+c \Delta x_{m-1}-a x_{m}=p_{m} & (m \in \mathbb{Z})
\end{array}
$$

In the ordinary differential equation case, a similar result holds for all $c \in \mathbb{R}$ for the equations

$$
\begin{gathered}
x^{\prime \prime}+c x^{\prime}+f(t, x)=0 \\
x^{\prime \prime}+c x^{\prime}-a x=p(t) \quad\left(a>0, \quad p \in L^{\infty}(\mathbb{R})\right)
\end{gathered}
$$

(see 4, 11]).
3.4. Second order linear equations. The following result can be proved like Proposition 2.4.
Proposition 3.6. If $c \notin\{-2,0\}$

$$
\Delta x_{m-1}+c x_{m}=h_{m} \quad(m \in \mathbb{Z})
$$

has a unique solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ for each $\left(h_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.
Before dealing with second order difference equations, we introduce some notions and results for sequences with bounded primitive. The corresponding concepts for functions upon \mathbb{R} were introduced in [12].

Definition 3.7. The Δ-primitive $\left(H_{m}^{\Delta}\right)_{m \in \mathbb{Z}}$ of $\left(h_{m}\right)_{m \in \mathbb{Z}}$ is any sequence $\left(H_{m}^{\Delta}\right)_{m \in \mathbb{Z}}$ such that $\Delta H_{m}^{\Delta}=h_{m}(m \in \mathbb{Z})$.

Such a Δ-primitive is for example given by

$$
H_{m}^{\Delta}=\left\{\begin{array}{ll}
\sum_{k=0}^{m-1} h_{k} & \text { if } m \geq 1 \\
0 & \text { if } m=0 \\
-\sum_{k=m}^{-1} h_{k} & \text { if } m \leq-1
\end{array} \quad(m \in \mathbb{Z})\right.
$$

We define the space $B P(\mathbb{Z})$ as the set

$$
\left\{\left(h_{m}\right)_{m \in \mathbb{Z}}:\left(H_{m}^{\Delta}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})\right\}
$$

It is easy to check that $B P(\mathbb{Z}) \subsetneq l^{\infty}(\mathbb{Z})$. The situation is different in the continuous case, where $B P(\mathbb{R}) \not \subset B C(\mathbb{R})$, and $B C(\mathbb{R}) \not \subset B P(\mathbb{R})$.

We have now the following result for the BIBO problem for some linear second order difference equations.

Proposition 3.8. If $c \notin\{-2,0\}$,

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}=h_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $h \in B P(\mathbb{Z})$.
Proposition 3.9. If $c \notin\{0,2\}$,

$$
\Delta^{2} x_{m-1}+c \Delta x_{m-1}=h_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $h \in B P(\mathbb{Z})$.
The corresponding results for ordinary differential equations were proved by Ortega in 12.
Proposition 3.10. If $c \neq 0$, equation

$$
x^{\prime \prime}+c x^{\prime}=h(t)
$$

has a solution $x \in A C(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ if and only if $h \in B P(\mathbb{R})$.
We now introduce concepts of generalized mean values to bounded sequences.
Definition 3.11. The lower (resp. upper) mean value of $\left(p_{j}\right)_{j \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ is the real number defined by

$$
\begin{gathered}
\qquad \widehat{p}:=\lim _{n \rightarrow \infty} \inf _{m-k \geq n}\left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_{j}\right) \\
\left(\text { resp. } \widetilde{p}:=\lim _{n \rightarrow \infty} \sup _{m-k \geq n}\left(\frac{1}{m-k} \sum_{j=k+1}^{m} p_{j}\right)\right)
\end{gathered}
$$

Lemma 3.12. The following statements are equivalent:
(i) $\alpha<\widehat{p} \leq \widetilde{p}<\beta$.
(ii) there exists $\left(p_{m}^{*}\right)_{m \in \mathbb{Z}} \in B P(\mathbb{Z}),\left(p_{m}^{* *}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that $p_{m}=p_{m}^{*}+p_{m}^{* *}$ $(m \in \mathbb{Z})$ and $\alpha<\inf _{k \in \mathbb{Z}} p_{k}^{* *} \leq \sup _{k \in \mathbb{Z}} p_{k}^{* *}<\beta$.

Corollary 3.13. If $\widehat{p}=\widetilde{p}=0$, then, for each $\epsilon>0$ there exists $\left(p_{m}^{*}\right)_{m \in \mathbb{Z}} \in B P(\mathbb{Z})$, $\left(p_{m}^{* *}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ such that $p_{m}=p_{m}^{*}+p_{m}^{* *}(m \in \mathbb{Z})$, $\sup _{k \in \mathbb{Z}}\left|p_{k}^{* *}\right|<\epsilon$.

In the continuous case those results and concepts are due to Ortega-Tineo [13].
3.5. Duffing difference equations. We can now prove the following result for the existence of bounded solutions of Duffing difference equations.

Theorem 3.14. Assume that the following conditions hold.
(1) $c>0, g \in C(\mathbb{R}, \mathbb{R}),\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$
(2) There exists $r_{0}>0$ and $\delta_{-}<\delta_{+}$such that

$$
g(y) \geq \delta_{+} \quad \text { for } y \leq-r_{0}, \quad g(y) \leq \delta_{-} \quad \text { for } y \geq r_{0}
$$

(3) $\delta_{-}<\widehat{p} \leq \widetilde{p}<\delta_{+}$.

Then

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+g\left(x_{m}\right)=p_{m} \quad(m \in \mathbb{Z})
$$

has at least one solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.
Proof. Write $p_{m}=p_{m}^{*}+p_{m}^{* *}(m \in \mathbb{Z})$ with $\left(p_{m}^{*}\right)_{m \in \mathbb{Z}} \in B P(\mathbb{Z}),\left(p_{m}^{* *}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $\delta_{-}<\inf _{k \in \mathbb{Z}} p_{k}^{* *} \leq \sup _{k \in \mathbb{Z}} p_{k}^{* *}<\delta_{+}$. By Proposition 3.8.

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}=p_{m}^{*} \quad(m \in \mathbb{Z})
$$

has a solution $\left(u_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$. Letting $x_{m}=u_{m}+z_{m}(m \in \mathbb{Z})$, we obtain the equivalent problem

$$
\begin{equation*}
\Delta^{2} z_{m-1}+c \Delta z_{m}+g\left(u_{m}+z_{m}\right)-p_{m}^{* *}=0 \quad(m \in \mathbb{Z}) \tag{3.5}
\end{equation*}
$$

Then $\alpha=-r_{0}-\sup _{k \in \mathbb{Z}} u_{k}$ is a lower solution and $\beta=r_{0}-\inf _{k \in \mathbb{Z}} u_{k}$ an upper solution for 3.5 , and we conclude using Corollary 3.4 .
3.6. Landesman-Lazer condition. Theorem 3.14 gives existence conditions of the Landesman-Lazer type.

Corollary 3.15. If $c>0, g \in C(\mathbb{R}, \mathbb{R}),\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$, and

$$
\begin{equation*}
\varlimsup_{y \rightarrow+\infty} g(y)<\widehat{p} \leq \widetilde{p}<\underline{\lim }_{y \rightarrow-\infty} g(y) \tag{3.6}
\end{equation*}
$$

then

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+g\left(x_{m}\right)=p_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.
Remark 3.16. If, for all $x \in \mathbb{R}$,

$$
-\infty<\varlimsup_{y \rightarrow+\infty} g(y)<g(x)<\underline{\lim }_{y \rightarrow-\infty} g(y)<+\infty
$$

then $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $\sqrt{3.6}$ is necessary for the existence of a bounded solution.
Similar results hold for

$$
\Delta^{2} x_{m-1}+c \Delta x_{m-1}+g\left(x_{m}\right)=p_{m} \quad(c<0) \quad(m \in \mathbb{Z})
$$

In the ordinary differential equation case, similar results hold for

$$
x^{\prime \prime}+c x^{\prime}+g(x)=p(t) \quad(c \neq 0)
$$

(see [10]).
Example 3.17. 1. If $c>0, b>0$,

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}-b \frac{x_{m}}{1+\left|x_{m}\right|}=p_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $-b<\widehat{p} \leq \widetilde{p}<$ b.
2. If $c>0, b>0$, and $0 \leq a<1$,

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}-b \frac{x_{m}}{1+\left|x_{m}\right|^{a}}=p_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.
It remains an open problem to prove or disprove that if $c>0$ and $b>0$,

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+\frac{b x_{m}}{1+\left|x_{m}\right|}=p_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ and $-b<\widehat{p} \leq \widetilde{p}<$ b.

Similarly it is an open problem to prove or disprove that if $c>0, b>0$, and $0 \leq a<1$,

$$
\Delta^{2} x_{m-1}+c \Delta x_{m}+\frac{b x_{m}}{1+\left|x_{m}\right|^{a}}=p_{m} \quad(m \in \mathbb{Z})
$$

has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$ if and only if $\left(p_{m}\right)_{m \in \mathbb{Z}} \in l^{\infty}(\mathbb{Z})$.
The corresponding results are true in the ordinary differential equation case [1, 12, 13].
4. GUiding functions for bounded solutions of systems of difference EQUATIONS
4.1. Guiding functions for ordinary differential equations. Consider the system

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{4.1}
\end{equation*}
$$

where $f \in C\left(\mathbb{R} \times \mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
Definition 4.1. A guiding function for 4.1) is a function $V \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ such that, for some $\rho_{0}>0$,

$$
\langle\nabla V(x), f(t, x)\rangle \leq 0
$$

when $\|x\| \geq \rho_{0}$.
The following theorem was first proved by Krasnosel'skii-Perov in 1958 8]. A simpler proof has been given by Alonso-Ortega in 1995 [2].

Theorem 4.2. If (4.1) has a guiding function V such that $\lim _{\|x\| \rightarrow \infty} V(x)=+\infty$, then (4.1) has a solution x bounded over \mathbb{R}.

A natural question is to know if a corresponding result holds for a difference system

$$
x_{n+1}-x_{n}=f_{n}\left(x_{n}\right) \quad(n \in \mathbb{Z})
$$

or, equivalently for a discrete dynamical system

$$
x_{n+1}=g_{n}\left(x_{n}\right) \quad(n \in \mathbb{Z})
$$

4.2. Guiding function for difference equations. Let us consider the system

$$
\begin{equation*}
x_{m+1}=g_{m}\left(x_{m}\right) \quad(m \in \mathbb{Z}) \tag{4.2}
\end{equation*}
$$

where $g_{m} \in C\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)(m \in \mathbb{Z})$.
Definition 4.3. A guiding function for 4.2) is a function $V \in C\left(\mathbb{R}^{n}, \mathbb{R}\right)$, such that, for some $\rho_{0}>0, V\left(g_{m}(x)\right) \leq V(x)$ when $\|x\| \geq \rho_{0}(m \in \mathbb{Z})$.

The result corresponding to Theorem 4.2 would be : if $x_{m+1}=g_{m}\left(x_{m}\right)(m \in \mathbb{Z})$ has a guiding function V such that $\lim _{\|x\| \rightarrow \infty} V(x)=+\infty$, then it has a bounded solution.

The following example, given in [3], shows that this result is false. Consider the maps $g_{m} \in C(\mathbb{R}, \mathbb{R})$ defined by

$$
g_{m}(x)= \begin{cases}1 & \text { if } x \leq-2, \\ m x+2 m+1 & \text { if }-2<x<-1, \\ m+1 & \text { if }-1 \leq x \leq 1, \quad(m \in \mathbb{Z}) \\ -m x+2 m+1 & \text { if } 1<x<2, \\ 1 & \text { if } x \geq 2 .\end{cases}
$$

Figure 3. Graph of $g_{m}(x)$
Notice that $g_{0}(x)=1(x \in \mathbb{R})$, and hence $x_{1}=g_{0}\left(x_{0}\right)=1, x_{2}=g_{1}(1)=2$, $x_{3}=g_{2}(3)=1, x_{4}=g_{3}(1)=4, \ldots, x_{2 k-1}=1, x_{2 k}=2 k\left(k \in \mathbb{N}_{0}, x_{0} \in \mathbb{R}\right)$. Hence, all the solutions of

$$
\begin{equation*}
x_{m+1}=g_{m}\left(x_{m}\right) \quad(m \in \mathbb{Z}) \tag{4.3}
\end{equation*}
$$

are unbounded in the future, and no bounded solution exists. On the other hand, $V(x)=|x|$ with $\rho_{0}=3$ is a coercive guiding function for 4.3).

But the following existence theorem can be proved [3]. It uses another limiting lemma, due, for ordinary differential equations, to Krasnosel'skii [7], and whose proof is similar to that of Lemma 3.1.
Lemma 4.4. Assume that $g_{m} \in C\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)(m \in \mathbb{Z})$ and that there exists $\rho>0$ such that, for each $k \in \mathbb{N}^{*}$

$$
x_{m+1}=g_{m}\left(x_{m}\right) \quad(-k \leq m \leq k)
$$

has a solution $\left(x_{m}^{k}\right)_{-k \leq m \leq k+1}$, satisfying

$$
\max _{-k \leq m \leq k+1}\left\|x_{m}^{k}\right\| \leq \rho
$$

Then there exists a solution $\left(\widehat{x}_{m}\right)_{m \in \mathbb{Z}}$ of 4.2 such that $\sup _{m \in \mathbb{Z}}\left\|\widehat{x}_{m}\right\| \leq \rho$.

Theorem 4.5. Let $g_{m} \in C\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)(m \in \mathbb{Z})$. If 4.2) has a guiding function V with constant ρ_{0} such that $\lim _{\|x\| \rightarrow \infty} V(x)=+\infty$ and such that

$$
\begin{equation*}
\sup _{m \in \mathbb{Z}} \max _{\| x \leq \rho_{0}}\left\|g_{m}(x)\right\|<\infty \tag{4.4}
\end{equation*}
$$

then 4.2 has a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in\left(l^{\infty}(\mathbb{Z})\right)^{n}$.
Proof. Take $\rho_{1}>\max \left\{\rho_{0}, \sup _{m \in \mathbb{Z}} \max _{\|x\| \leq \rho_{0}}\left\|g_{m}(x)\right\|\right\}$. Define

$$
V_{1}:=\max _{\|x\| \leq \rho_{1}} V(x)
$$

Take $\rho_{2}>\rho_{1}$ such that

$$
B_{\rho_{0}} \subset B_{\rho_{1}} \subset S_{1}:=\left\{x \in \mathbb{R}^{n}: V(x) \leq V_{1}\right\} \subset B_{\rho_{2}}
$$

Then it is easy to show that S_{1} is positively invariant under the flow 4.2). For $n \in \mathbb{N}$ fixed and $\left(x^{n}\right)_{m \geq-n}$ the solution such that $x_{-n}^{n}=0$ is such that

$$
x_{m}^{n} \in S_{1} \subset B_{\rho_{2}} \quad(m \geq-n, n \in \mathbb{N})
$$

Finally, use Lemma 4.4 to obtain a solution $\left(x_{m}\right)_{m \in \mathbb{Z}} \in\left(l^{\infty}(\mathbb{Z})\right)^{n}$.
Remark 4.6. Inequality (4.4) trivially holds if $g_{m}=g(m \in \mathbb{Z})$.

References

[1] S. Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc. 323 (1991), 857-875.
[2] J.M. Alonso and R. Ortega, Global asymptotic stability of a forced Newtonian system with dissipation, J. Math. Anal. Appl. 196 (1995), 965-986.
[3] J.B. Baillon, J. Mawhin, Bounded solutions of some nonlinear difference equations, in preparation.
[4] I. Barbalat, Applications du principe topologique de T. Wazewski aux équations différentielles du second ordre, Ann. Polon. Math. 5 (1958), 303-317.
[5] J. Campos, J. Mawhin, and R. Ortega, Maximum principles around an eigenvalue with constant eigenfunctions, Communic. Contemporary Math., to appear.
[6] Ph. Clément, L.A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (1979), 218-229.
[7] M.A. Krasnosel'skii, Translation along trajectories of differential equations, (Russian), Nauka, Moscow, 1966. English translation Amer. Math. Soc., Providence, 1968.
[8] M.A. Krasnosel'skii and A.I. Perov, On a certain principle of existence of bounded, periodic and almost periodic solutions of systems of ordinary differential equations, (Russian), Dokl. Akad. Nauk SSSR 123 (1958), 235-238.
[9] J. Mawhin, Bounded solutions of some second order difference equations, Georgian Math. J. 14 (2007), 315-324.
[10] J. Mawhin and J.R. Ward Jr., Bounded solutions of some second order nonlinear differential equations, J. London Math. Soc. (2) 58 (1998), 733-747.
[11] Z. Opial, Sur les intégrales bornées de l'équation $u^{\prime \prime}=f\left(t, u, u^{\prime}\right)$, Ann. Polon. Math. 4 (1958), 314-324.
[12] R. Ortega, A boundedness result of Landesman-Lazer type, J. Differential Integral Equations 8 (1995), 729-734.
[13] R. Ortega and A. Tineo, Resonance and non-resonance in a problem of boundedness, Proc. Amer. Math. Soc. 124 (1996), 2089-2096.
[14] O. Perron, Die Stabilitätfrage bei Differentialgleichungen, Math. Z. 32 (1930), 703-728.
Jean Mawhin
Département de mathématique, Université Catholique de Louvain, B-1348 Louvain-laNeuve, Belgium

E-mail address: jean.mawhin@uclouvain.be

[^0]: 2000 Mathematics Subject Classification. 39A11, 39A12.
 Key words and phrases. Difference equations; bounded solutions; lower-upper solutions;
 Landesman-Lazer conditions; guiding functions.
 (C) 2009 Texas State University - San Marcos.

 Published April 15, 2009.

