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STATIONARY RADIAL SOLUTIONS FOR A QUASILINEAR
CAHN-HILLIARD MODEL IN N SPACE DIMENSIONS

PETER TAKÁČ

Abstract. We study the Neumann boundary value problem for stationary
radial solutions of a quasilinear Cahn-Hilliard model in a ball BR(0) in RN .

We establish new results on the existence, uniqueness, and multiplicity (by
“branching”) of such solutions. We show striking differences in pattern forma-

tion produced by the Cahn-Hilliard model with the p-Laplacian and a C1,α

potential (0 < α ≤ 1) in place of the regular (linear) Laplace operator and a
C2 potential. The corresponding energy functional exhibits one-dimensional

continua (“curves”) of critical points as opposed to the classical case with the

Laplace operator. These facts offer a different explanation of the “slow dynam-
ics” on the attractor for the dynamical system generated by the corresponding

time-dependent parabolic problem.

1. Introduction

The Cahn-Hilliard equation is one of the well-known models for phase transitions
in a material with two phases, such as glass, metal alloys, and polymers. One
observes a material in the state of melting; a binary mixture having temperature
at which both phases can coexist. The model we treat in our present article is a
generalization of the classical model discovered by J. W. Cahn and J. E. Hilliard
[7] half a century ago. This model, in its full generality, may be written as

ut = ∆
[
−εp∇ ·

(
|∇u|p−2∇u

)
+ W ′(u)

]
for (x, t) ∈ Ω× (0,∞) , (1.1)

subject to the Neumann (i.e., no-flux) boundary conditions

|∇u|p−2(ν · ∇)u = (ν · ∇)
[
−εp∇ ·

(
|∇u|p−2∇u

)
+ W ′(u)

]
= 0

at x ∈ ∂Ω for t > 0 ,
(1.2)

where 1 < p < ∞, ε > 0, and W : R → R is a given potential function of
class C1 whose first derivative W ′ might be only continuous (or Hölder-continuous
at most). The material occupies a bounded domain Ω ⊂ RN with a sufficiently
smooth boundary ∂Ω. As usual, the vector field ν ∈ ∂Ω → RN denotes the unit
outer normal to the boundary of Ω. We refer to the monograph by Temam [19],
Chapt. III, §4.2, pp. 147–158, for a weak formulation of this initial-boundary value
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problem in the semilinear case p = 2. The novelty in the work reported here is
that we allow p 6= 2 and W does not have to be of class C2 or even smoother (of
class C3 or C4 assumed in [1, 8, 12]). This means that we consider also singular
or degenerate diffusion which corresponds to 1 < p < 2 or 2 < p < ∞, respectively.
We abbreviate by ∆pu

def= ∇ ·
(
|∇u|p−2∇u

)
the well-known p-Laplace operator; of

course, ∆2 ≡ ∆ is the (linear) Laplace operator. We will consider ∆p with the
(homogeneous) Neumann boundary conditions (ν · ∇)u = 0 on ∂Ω throughout this
article.

Clearly, if W is of class C2 then the boundary conditions (1.2) are equivalent
with the Navier boundary conditions

(ν · ∇)u = (ν · ∇)(∆pu) = 0 at x ∈ ∂Ω for t > 0 . (1.3)

The classical choice of W is the double-well potential W (s) = (1−s2)2 for s ∈ R
which attains global minimum at two points, s1 = −1 and s2 = 1 (see Cahn and
Hilliard [7], Gunton and Droz [14], and Langer [15]). These points of minimum
are nondegenerate, with W ′(±1) = 0 and W ′′(±1) = 8 > 0. This hypothesis gives
us an entirely different behavior of the stationary solutions satisfying

−εp ∆pu + W ′(u) = 0, x ∈ Ω; (1.4)

(ν · ∇)u = 0, x ∈ ∂Ω, (1.5)

for the classical linear diffusion (p = 2) and the degenerate nonlinear diffusion (p >
2). The latter case exhibits a much greater variety of these stationary solutions.
Notice that, in this case, W ′(s) = 4s(s2− 1) for s ∈ R. On the other hand, one can
observe the same phenomenon for the classical linear diffusion if the potential W
is modified to W (s) = |1− s2|α for s ∈ R, where α is a constant, 1 < α < 2. In the
work reported here we focus on problem (1.4), (1.5) with arbitrary p, α > 1. Note
that this is the boundary value problem for all stationary solutions of the so-called
(generalized) bi-stable equation

ut = εp ∆pu−W ′(u) for (x, t) ∈ Ω× (0,∞) , (1.6)

subject to the boundary conditions

(ν · ∇)u = 0 at x ∈ ∂Ω for t > 0 . (1.7)

The term “generalized” refers to allowing p ∈ (1,∞) rather than setting p = 2 (the
classical semilinear equation with the linear Laplace operator).

The stationary problem (1.4), (1.5) is rather difficult to solve in an arbitrary
bounded domain Ω ⊂ RN even for p = α = 2. Besides the two constant solutions
u ≡ ±1 in Ω, it may exhibit various other nonconstant solutions describing transi-
tion layers between the two phases; see, e.g., Alikakos and Fusco [2, 3] and Bates
and Fusco [4]. Therefore, throughout this article, we restrict ourselves to the case of
radially symmetric solutions of the Neumann boundary value problem (1.4), (1.5)
in a ball of radius R (0 < R < ∞),

Ω = BR(0) = {x ∈ RN : |x| < R} ,

but with any p ∈ (1,∞). Notice that, after replacing ε (ε > 0) by ε/R, we may
(and sometimes will) assume R = 1 without loss of generality. Equivalently, setting
u(x) = u(|x|) with r = |x| for

x ∈ BR(0) = {x ∈ RN : |x| ≤ R} ,



EJDE-2009/CONF/17 A QUASILINEAR MODEL FOR PHASE TRANSITIONS 229

we consider the (one-dimensional) two-point boundary value problem for the ordi-
nary differential equation

− εp r−(N−1)
(
rN−1 |ur|p−2ur

)
r
+ W ′(u) = 0, 0 < r < R, (1.8)

subject to the Neumann boundary conditions

ur(0) = ur(R) = 0. (1.9)

In the work reported here we focus on problem (1.8), (1.9) with arbitrary p, α > 1
and even with a potential W having a more general form then just W (s) = (1−s2)α

for s ∈ R. We will see that for N ≥ 2, problem (1.8), (1.9) is quite different from the
one-dimensional case (N = 1) treated in the recent work of Drábek, Manásevich,
and Takáč [11].

In one space dimension, i.e., when Ω ⊂ R is a bounded open interval, the semi-
linear case p = 2 with a sufficiently smooth potential W (of class at least C3, but
mostly C4) has been extensively investigated in the works of Alikakos, Bates, and
Fusco [1], Carr and Pego [8], Fusco and Hale [12], and many others, mostly in the
context of the gradient flow determined by the initial-boundary value problem for
the bi-stable equation (1.6) subject to the Neumann boundary conditions (1.7).

nonperiodic

1

x0 x
periodic

−1

Figure 1. 1 < p ≤ α < +∞, W (s) = (1− s2)2.

The following facts are known about the case N = 1 and Ω = (0, 1), among other
numerous interesting results. If p = α = 2, the only solutions of problem (1.4), (1.5)
(i.e., problem (1.8), (1.9) where N = 1) are the constant solutions u ≡ −1, u ≡ 0,
and u ≡ 1, and nonconstant solutions that can be extended to periodic functions
on R (depending on the size of ε > 0) which always satisfy −1 < u(x) < 1 for all
x ∈ [0, 1]; see [8] and [12]. A later work in [1] contains a more detailed analysis
of these solutions, including numerical simulations. In a recent work, Drábek,
Manásevich, and Takáč [11] have shown that the set of all solutions is qualitatively
the same whenever 1 < p ≤ α < ∞, cf. Figure 1. In contrast, if 1 < α < p < ∞,
the structure of this set is much richer and becomes more complicated as ε ↘ 0, cf.
Figure 2. As shown in [11], this phenomenon is a result of the loss of uniqueness in
the initial value problem for the first integral

p− 1
p

εp |ux(x)|p −W (u(x)) = const, 0 ≤ x ≤ 1, (1.10)
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Figure 2. 1 < α < p < +∞, W (s) = (1− s2)2.

of (1.4). If p = α = 2, functions similar to the solutions for the case 1 < α < p < ∞
have been used to explain the “slow dynamics” on the attractor for the time-
dependent problem (1.6), (1.7); see e.g. [1, 2, 3, 8, 12]. One of the main contribu-
tions of the work in [11] is the fact that for 1 < α < p < ∞, the simple form of
all stationary solutions to problem (1.6), (1.7) provides a rather simple explanation
for the slow dynamics on the attractor in this time-dependent problem. This re-
sult suggests that one should consider a more general type of (nonlinear) diffusion
and/or more general behavior of the potential W near its points of minimum. Such
a model seems to have a somewhat different dynamical behavior on the attrac-
tor than classical semilinear models studied so far which are typically represented
by the Cahn-Hilliard or bi-stable equation. It also has the following interesting
features:

• The initial-boundary value problem (1.6), (1.7), with prescribed initial val-
ues in W 1,p(0, 1) at t = 0, has a unique weak solution for α ≥ 2 and p > 1.

• The boundary value problem (1.4), (1.5) exhibits continua of (multiple)
nonconstant solutions for 1 < α < p < ∞ and ε > 0 small enough. Conse-
quently, the functional

Jε(u) def=
∫ 1

0

(εp

p
|ux|p + W (u)

)
dx, u ∈ W 1,p(0, 1), (1.11)

representing the total free energy, has a much richer structure of the set of
critical points than for 1 < p ≤ α < ∞.

For N ≥ 2 we investigate the solutions of the boundary value problem (1.8),
(1.9) in the phase plane (ξ, η) where ξ = u and η = |ur|p−2ur. As N ≥ 2, we
cannot take advantage of the first integral (1.10) anymore, because the function

r 7−→ p− 1
p

εp |ux(r)|p −W (u(r)) : (0, R) → R

is no longer independent of the variable r ∈ (0, R). Nevertheless, we will take
advantage of the fact that this function is monotonically decreasing , cf. eqs. (2.7)
and (2.8) in the next section (Section 2). We will be able to provide the phase plane
portrait and the description of the set of all solutions to problem (1.8), (1.9). A
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typical feature of equation (1.8), when considered for r ∈ R+ with prescribed initial
data u(r0) = ±1 and ur(r0) = 0 at some point r0 ∈ R+, is the nonuniqueness of
solutions to this initial value problem for 1 < α < p < ∞; see Part (IV) of Theorems
3.4 (for W (s) = |1− s2|α) and 3.7 (for W (s) general) in Section 3.

This article is organized as follows. The main hypotheses, notation, and some
preliminaries are given in Section 2. Our main results (for N ≥ 2) are stated in
Section 3: in §3.1 for the special potential W (s) = |1−s2|α (Theorem 3.1 for p ≤ α
and Theorem 3.4 for p > α) and in §3.2 for a general potential W (s) (Theorem 3.5
for p ≤ α and Theorem 3.7 for p > α). In order to prove these theorems, we need
rather technical results on local uniqueness and nonuniqueness (and existence, as
well) of solutions to the initial value problem for the ordinary differential equation
(1.8) starting from an arbitrary initial point r0 ∈ R+ = [0,∞). We prove these
results in Section 4. The proofs of our theorems need also some global existence
(and uniqueness) results for this initial value problem, which are proved in Section 5.
Finally, the proofs of our main results are completed in Section 6. The appendix
(Appendix 7) contains an auxiliary lemma on a comparison of weighted averages.

2. Hypotheses, notation, and preliminaries

Throughout this article we assume that W : R → R is a C1 function with
W (s) → +∞ as |s| → ∞. Furthermore, we assume

Hypotheses.
(H1) If s0 ∈ R is a critical point of W (i.e., W ′(s0) = 0), than either

(a) W attains a local maximum at s0, or else
(b) W attains a local minimum at s0 and, moreover, W is convex in an

open interval containing s0 and there exist constants α > 1, γ1 > 0,
γ2 > 0, and ζ > 0, such that

γ1|s− s0|α ≤ W (s)−W (s0) ≤ γ2|s− s0|α for all s ∈ (s0 − ζ, s0 + ζ) . (2.1)

(H2) If 1 < α < p in (H1), Part (b) above, then we require that both limits

cs0+
def= lim

s→s0+

(
|s− s0|1−(α/p) d

ds
[(W (s)−W (s0))1/p]

)
, (2.2)

cs0−
def= − lim

s→s0−

(
|s− s0|1−(α/p) d

ds
[(W (s)−W (s0))1/p]

)
(2.3)

exist and satisfy cs0+, cs0− ∈ (0,∞).

To simplify our notation, we begin with a normalization of the (radial) stationary
equation (1.8). Replacing the variable r by r̃ = ε−1r and dropping the tilde in r̃
we arrive at

−r−(N−1)
(
rN−1 |u′|p−2u′

)′
+ W ′(u) = 0 for 0 < r < ∞, (2.4)

where ′ ≡ d
dr stands for the radial space derivative. This equation is equivalent to

the first-order system

u′ = |v|p
′−2v, v′ = − N − 1

r
v + W ′(u) in (0,∞), (2.5)

where p′ = p/(p − 1) denotes the conjugate exponent of p. Trajectories for the
differential equation (2.4) in the phase plane (ξ, η) are (continuous) parametric
curves (ξ, η) = (u(r), v(r)), which are parametrized by r ∈ J from a nondegenerate
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interval J ⊂ R+, such that (u, v) is a solution of (2.5) in J . As usual, we have
denoted R+ = [0,∞).

Notice that if N = 1 then system (2.5) has the first integral (conservation law)

1
p′
|v|p

′
= W (u)− C in R, (2.6)

where C ∈ R is a constant. This fact was exploited in the work of Drábek,
Manásevich, and Takáč [11] in an essential way. For N ≥ 2 we need to replace
the first integral by the equation

1
p′
|v|p

′
= W (u)− Z(r) for r ∈ R+, (2.7)

where Z : R+ → R is a C1 function that satisfies

Z ′(r) =
N − 1

r
|v|p

′
for r > 0. (2.8)

The last equation for Z ′ is easily obtained by first differentiating (2.7) with respect
to the variable r and then applying (2.5). We will make essential use of the fact
that Z is a monotonically increasing function. The shifts of the potential W by
a constant C in Figure 3 suggest the behavior of a trajectory (ξ, η) = (u(r), v(r))
parametrized by r ∈ J , such that (u, v) is a solution of (2.5) in J .

1
p′ |u′|p = W (u)− C

u

(−1, 0) (1, 0)

Figure 3. Shifts of the potential W (s) = |1− s2|α by a constant C.

Moreover, if u(0) = s0 is a local minimizer for W and v(0) = 0, then also the
functions

r 7→ r−1 |v(r)| and r 7→ r−p′
(Z(r)− Z(0)) : (0, δ) → R+
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are monotonically increasing, for some δ > 0 small enough, provided (2.7) and
(2.8) hold for 0 < r < δ. (Here, we take advantage of W being convex in an open
interval containing s0.) In particular, from these facts we will derive the following
important inequalities,

1
N [W (u(r))−W (u(0))] ≤ W (u(r))− Z(r) ≤ W (u(r))−W (u(0)) (2.9)

for all r ∈ [0, δ), where Z(0) = W (u(0)) = W (s0). These inequalities will enable us
to apply the same simple method that has been used in [11, Section 3] (and even
earlier in Dı́az and Hernández [10]) for N = 1 with the first integral (2.6) where
C = W (s0), owing to the following simple consequence: Applying u′ = |v|p′−2v and
(2.9) to (2.7), we arrive at

p′

N
[W (u(r))−W (u(0))] ≤ |u′(r)|p ≤ p′ [W (u(r))−W (u(0))] (2.10)

for all r ∈ [0, δ). This means nothing else than the uniqueness or nonuniqueness
of a local solution u to the initial value problem for equation (2.4) with the initial
conditions u(0) = s0 (where s0 is a local minimizer for W ) and u′(0) = 0 at r = 0,
depending on whether the integral∫ s0+ζ

s0

|W (s)−W (s0)|−1/p ds (2.11)

is infinite (forcing uniqueness) or finite (forcing nonuniqueness), respectively. Now
thanks to (2.1), this alternative corresponds to whether p ≤ α (infinite integral) or
p > α (finite integral). Hence, in the former case (i.e., when the integral is infinite)
one gets u(r) = s0 for every r ∈ [0, δ) which implies uniqueness. As a canonical
example for both cases, one may take W (s) = |1 − s2|α for s ∈ R, α > 1, and
s0 = ±1.

3. Main results for N ≥ 2

We assume N ≥ 2. (An interested reader is referred to [11] for the case N = 1.)
We formulate our main results first for the special case W (s) = |1 − s2|α, s ∈ R,
where α > 1 is a constant, and then for the general case when W satisfies Hypothe-
ses (H1) and (H2) stated at the beginning of the previous section (Section 2).

3.1. The special potential W (s) = |1−s2|α. Throughout this paragraph we take
W (s) = |1− s2|α for s ∈ R. We begin with a generalization of the semilinear case
p = α = 2.

Theorem 3.1. Assume 1 < p ≤ α < ∞ and let ε > 0 and θ ∈ R.
(I) Assume |θ| ≤ 1. Then the initial value problem

−εp r−(N−1)
(
rN−1 |u′|p−2u′

)′
+ W ′(u) = 0, 0 < r < ∞, (3.1)

u(0) = −θ, u′(0) = 0, (3.2)

has a unique (global) solution u ∈ C1(R+) with |u′|p−2u′ ∈ C1(R+). In particular,
if θ ∈ {−1, 0, 1} then u ≡ −θ is a constant function. If 0 < |θ| < 1 then the solution
u satisfies |u(r)| < |θ| for every r > 0.

(II) Now assume |θ| > 1. Then the initial value problem (3.1), (3.2) has a unique
solution u ∈ C1([0, R)) with |u′|p−2u′ ∈ C1([0, R)) defined on a maximal interval
of existence [0, R) for some R ≡ R(ε, θ) > 0. This solution satisfies θ u′(r) < 0 for
all r ∈ (0, R).
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(III) Finally, let 0 < |θ| < 1 and fix any R ∈ (0,∞). In addition, assume
p ≥ 2N

N+1 . Then the (unique global) solution u : R+ → R of the initial value problem
(3.1), (3.2) satisfies u′(R) = 0 if and only if ε = εn ≡ εn(θ, R) for some n ∈ N,
where ε1 > ε2 > ε3 > . . . (> 0) is a (strictly decreasing) sequence of “nonlinear
eigenvalues” for the Neumann boundary value problem (1.8), (1.9). Moreover, εn →
0 as n →∞.

Of course, N = {1, 2, 3, . . . }. In order to treat the case 1 < α < p < ∞, we
need the following lemma. This lemma is an anlogue of [11, Lemma 3.4] which was
established there for N = 1.

Lemma 3.2. Assume 1 < α < p < ∞ and let ε > 0 and r0 ∈ R+. Then the initial
value problem

−εp r−(N−1)
(
rN−1 |u′|p−2u′

)′
+ W ′(u) = 0, 0 < r < ∞, (3.3)

u(r0) = −1, u′(r0) = 0, (3.4)

possesses a unique pair of (local) solutions

U+ : J+ → [−1,−1 + ζ) and U− : J− → [−1,−1− ζ)

with the following properties, where we use the sign symbol ν = ± in Uν , Jν , etc.:
(i) ζ > 0 is a sufficiently small number and Jν = (r0 − ϑν , r0 + ϑν) ∩ R+ is a

relatively open interval in R+, where ϑν > 0 is some number (small enough,
depending on ζ).

(ii) −1 < U+(r) < −1 + ζ holds for every r ∈ J+ \ {r0}, whereas −1 − ζ <
U−(r) < −1 for every r ∈ J− \ {r0}, respectively.

(iii) The function Uν satisfies eq. (3.3) in the interval Jν together with the initial
conditions (3.4).

An analogous result is valid if the first initial condition in (3.4), u(r0) = −1, is
replaced by u(r0) = 1 in which case property (ii) has to be replaced by

(ii′) 1 < U+(r) < 1+ ζ holds for every r ∈ J+ \{r0}, whereas 1− ζ < U−(r) < 1
for every r ∈ J− \ {r0}, respectively.

Remark 3.3. The conclusion of Lemma 3.2 actually means nonuniqueness for the
initial value problem (3.3), (3.4). The graphs of the three (local) solutions, U+,
U−, and u ≡ −1 (the constant solution), touch each other only at the initial point
r = r0, all of them with vanishing first derivative at r = r0.

Lemma 3.2 forces the following changes in Part (I) of Theorem 3.1. The “degen-
erate case” θ = ±1 is singled out as Part (IV) below.

Theorem 3.4. Assume 1 < α < p < ∞ and let ε > 0 and θ ∈ R.
(I) Assume |θ| < 1. Then the conclusion of Part (I) of Theorem 3.1 remains valid:

The initial value problem (3.1), (3.2) has a unique (global) solution u ∈ C1(R+)
with |u′|p−2u′ ∈ C1(R+). In particular, if θ = 0 then u ≡ 0 is a constant function.
If θ 6= 0 then the solution u satisfies |u(r)| < |θ| for every r > 0 and, moreover,
both u(r) → 0 and u′(r) → 0 as r →∞.

(II) Part (II) of Theorem 3.1 is valid (with |θ| > 1 being assumed).
(III) Also Part (III) of Theorem 3.1 remains valid (with 0 < |θ| < 1 and R ∈

(0,∞)). Again, also p ≥ 2N
N+1 is assumed.

(IV) Finally, let θ = −1, the case θ = 1 being analogous. Then every solution
u ∈ C1([0, R)), with |u′|p−2u′ ∈ C1([0, R)), of the initial value problem (3.1), (3.2)
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defined on a maximal interval of existence [0, R), for some R ≡ R(ε) > 0, must
take one of the following three forms: either u ≡ −1 on the whole of R+, or else
for ν = ±,

u(r) =

{
−1 if 0 ≤ r ≤ r0;
Uν(r) if r0 ≤ r < R,

(3.5)

where r0 ≥ 0 is some number and the continuation from the interval [r0, r0 + ϑν)
to [r0, R) of the solution Uν obtained in Lemma 3.2 is unique. Furthermore, the
solution u(r) = U+(r) continues to exist for all r ≥ r0 and satisfies |u(r)| < 1 for
every r > r0 (i.e., R = ∞ also in this case); it is unique for r > r0.

3.2. A general potential W (s). The results from the previous paragraph (§3.1)
are valid for a wider class of potentials than just W (s) = |1− s2|α (s ∈ R) consid-
ered in §3.1. Throughout this paragraph we assume that the potential W satisfies
Hypotheses (H1) and (H2) stated at the beginning of Section 2.

Theorem 3.1 can be generalized as follows.

Theorem 3.5. Assume 1 < p ≤ α < ∞ and let ε > 0 and θ ∈ R. In addition,
assume that W is even about zero (i.e., W (s) = W (−s) for every s ∈ R) and
satisfies W ′(0) = W ′(S) = 0 for some 0 < S < ∞, W ′(s) = −W ′(−s) < 0 for all
s ∈ (0, S), and

(a) there exist constants β > 0, 0 < γ̂1 ≤ γ̂2 < ∞, and ζ̂ ∈ (0, S), such that

γ̂1s
β ≤ −W ′(s) = W ′(−s) ≤ γ̂2s

β whenever 0 ≤ s ≤ ζ̂ , (3.6)

together with Hypothesis (H1), Part (b), that is,

(b) W is convex in an open interval containing S and there exist constants
α > 1, 0 < γ1 ≤ γ2 < ∞, and ζ ∈ (0, S), such that

γ1|s− S|α ≤ W (s)−W (S) ≤ γ2|s− S|α for all s ∈ (S − ζ, S + ζ) . (3.7)

Then the following statements hold.
(I) Assume |θ| ≤ S. Then the initial value problem (3.1), (3.2) has a unique

(global) solution u ∈ C1(R+) with |u′|p−2u′ ∈ C1(R+). In particular, if θ ∈
{−S, 0, S} then u ≡ −θ is a constant function. If 0 < |θ| < S then the solution u
satisfies |u(r)| < |θ| for every r > 0.

(II) Now assume S < |θ| < S + ζ. Then the initial value problem (3.1), (3.2)
has a solution u ∈ C1([0, R)) with |u′|p−2u′ ∈ C1([0, R)) defined on a maximal
interval of existence [0, R) for some R ≡ R(ε, θ) > 0. This solution is unique in
some subinterval [0, δ) ⊂ [0, R), where 0 < δ ≤ R, and satisfies θ u′(r) < 0 for all
r ∈ (0, δ). Moreover, one can take δ = R if θ u′(r) < 0 holds for all r ∈ (0, R).

(III) Finally, let 0 < |θ| < S and fix any R ∈ (0,∞). In addition, assume p ≥
(1+β)N

N+β . Then the (unique global) solution u : R+ → R of the initial value problem
(3.1), (3.2) satisfies u′(R) = 0 if and only if ε = εn ≡ εn(θ, R) for some n ∈ N,
where ε1 > ε2 > ε3 > . . . (> 0) is a (strictly decreasing) sequence of “nonlinear
eigenvalues” for the Neumann boundary value problem (1.8), (1.9). Moreover, εn →
0 as n →∞.

In order to treat the case 1 < α < p < ∞, we need the following lemma. This
lemma is an analogue of [11, Lemma 3.4] which was established there for N = 1.
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Lemma 3.6. Let u0 ∈ R be a local minimizer for W . Assume 1 < α < p < ∞ and
let ε > 0 and r0 ∈ R+. Then the initial value problem

−εp r−(N−1)
(
rN−1 |u′|p−2u′

)′
+ W ′(u) = 0, 0 < r < ∞, (3.8)

u(r0) = u0, u′(r0) = 0, (3.9)

possesses a unique pair of (local) solutions

U+ : J+ → [u0, u0 + ζ) and U− : J− → [u0, u0 − ζ)

with the following properties, where we use the sign symbol ν = ± in Uν , Jν , etc.:
(i) ζ > 0 is a sufficiently small number and Jν = (r0 − ϑν , r0 + ϑν) ∩ R+ is a

relatively open interval in R+, where ϑν > 0 is some number (small enough,
depending on ζ).

(ii) u0 < U+(r) < u0 + ζ holds for every r ∈ J+ \ {r0}, whereas u0 − ζ <
U−(r) < u0 for every r ∈ J− \ {r0}, respectively.

(iii) The function Uν satisfies eq. (3.8) in the interval Jν together with the initial
conditions (3.9).

Lemma 3.6 forces the following changes in Part (I) of Theorem 3.5. The “degen-
erate case” θ = ±S is singled out as Part (IV) below.

Theorem 3.7. Assume 1 < α < p < ∞ and let ε > 0 and θ ∈ R. In addition,
assume that W has the same properties as in Theorem 3.5, including (a) and (b)
for some 0 < S < ∞, together with Hypothesis (H2) where s0 = S is taken.

Then the following statements hold.
(I) Assume |θ| < S. Then the conclusion of Part (I) of Theorem 3.5 remains

valid: The initial value problem (3.1), (3.2) has a unique (global) solution u ∈
C1(R+) with |u′|p−2u′ ∈ C1(R+). In particular, if θ = 0 then u ≡ 0 is a constant
function. If θ 6= 0 then the solution u satisfies |u(r)| < |θ| for every r > 0 and,
moreover, both u(r) → 0 and u′(r) → 0 as r →∞.

(II) Part (II) of Theorem 3.5 is valid (with S < |θ| < S + ζ being assumed).
(III) Also Part (III) of Theorem 3.5 remains valid (with 0 < |θ| < S and R ∈

(0,∞)). Again, also p ≥ (1+β)N
N+β is assumed.

(IV) Finally, let θ = −S, the case θ = S being analogous. Then every solution
u ∈ C1([0, R)), with |u′|p−2u′ ∈ C1([0, R)), of the initial value problem (3.1), (3.2)
defined on a maximal interval of existence [0, R), for some R ≡ R(ε) > 0, must
take one of the following three forms: either u ≡ −S on the whole of R+, or else
for ν = ±,

u(r) =

{
−S if 0 ≤ r ≤ r0;
Uν(r) if r0 ≤ r < R,

(3.10)

where r0 ≥ 0 is some number and the continuation from the interval [r0, r0 + ϑν)
to [r0, R) of the solution Uν obtained in Lemma 3.6 is unique. Furthermore, the
solution u(r) = U+(r) continues to exist for all r ≥ r0 and satisfies |u(r)| < S for
every r > r0 (i.e., R = ∞ also in this case); it is unique for r > r0.

4. Local uniqueness and nonuniqueness

The results in this section will be needed in Section 6 in order to prove our main
results stated in Section 3. After the scaling r̃ = ε−1r and dropping the tilde in r̃, it
suffices to consider equation (2.4) or, equivalently, the first-order system (2.5). With
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the same effect, one may replace the potential W (s) by εpW (s) instead. As we are
interested in the local existence and uniqueness of a solution to the corresponding
initial value problems, in this section we investigate the initial value problem for
equation (2.4), i.e.,

−r−(N−1)
(
rN−1 |u′|p−2u′

)′
+ W ′(u) = 0 for r ∈ J0 \ {0} ; (4.1)

u(r0) = u0 , u′(r0) = u]
0 , (4.2)

or equivalently for the first-order system (2.5), i.e.,

u′ = |v|p
′−2v, v′ = − N − 1

r
v + W ′(u) for r ∈ J0 \ {0} ; (4.3)

u(r0) = u0 , v(r0) = v0 = |u]
0|p−2u]

0 . (4.4)

Here, r0 ∈ R+ and J0 ⊂ R+ is an interval, such that J0 = [0, δ) for some δ ∈ (0,∞)
if r0 = 0, whereas J0 = (r0 − δ, r0 + δ) for some δ ∈ (0, r0) if r0 > 0. The initial
values u0, u

]
0 ∈ R are arbitrary, except for the case r0 = 0 when we take u]

0 = 0.
We always set v0 = |u]

0|p−2u]
0.

Below we use system (4.3), (4.4) to state the results we need. For reader’s
convenience we begin with a local existence result due to Reichel and Walter [17,
p. 49], Theorem 1 and its Corollary.

Proposition 4.1. Let 1 < p < ∞ and r0 ∈ R+. Assume that W : R → R is
a C1 function. Then the initial value problem (4.3), (4.4) has a C1 solution pair
(u, v) : J0 → R2 defined on some interval J0 ⊂ R+ as described above, for some
δ > 0.

If the number δ > 0 is chosen small enough, the following local uniqueness result
is valid; see [17, Theorem 4, p. 57].

Lemma 4.2. Let 1 < p < ∞ and r0 ∈ R+. Assume that W : R → R is a
C1 function. If at least one of the following three conditions is satisfied, then the
initial value problem (4.3), (4.4) has a unique C1 solution pair (u, v) : J0 → R2

defined on some interval J0 ⊂ R+ provided δ > 0 is small enough:

(i) u]
0 6= 0 (hence, r0 > 0).

(ii) u]
0 = 0, W ′(u0) 6= 0, and W ′ is monotonically increasing in an interval

(u0 − ζ, u0 + ζ), for some ζ > 0.
(iii) u]

0 = 0, W ′(u0) = 0, and (s − u0) W ′(s) < 0 holds for every s ∈ (u0 −
ζ, u0 + ζ) \ {u0}, for some ζ > 0.

Case (i) follows from Part (α)(i) of [17, Theorem 4, p. 57]. Case (ii) follows
from Parts (β)(i) and (β)(ii), respectively, depending on whether W ′(u0) > 0 or
W ′(u0) < 0. Finally, Case (iii) follows from Part (δ)(ii) of [17, Theorem 4, p. 57].

Besides the work of Reichel and Walter [17, Theorem 4, p. 57], a closely related
uniqueness/nonuniqueness problem for a nonautonomous ordinary differential equa-
tion was studied also in McKenna, Reichel, and Walter [16, Appendix] and del Pino,
Manásevich, and Murúa [9, Appendix]. However, our analytical tools employed in
this section resemble to those used in the work of Dı́az and Hernández [10] investi-
gating the (nonnegative) “dead core” solutions to an analogous quasilinear elliptic
problem in one space dimension. Such tools (the first integral (1.10) of eq. (1.4) and
a subsequent separation of variables in an initial value problem for the first integral)



238 P. TAKÁČ EJDE/CONF/17

have been applied to study also bifurcation phenomena for spectral problems with
the p-Laplace operator in Guedda and Veron [13] (in one space dimension).

Now it remains to treat the most difficult case

(iv) u]
0 = 0, W ′(u0) = 0, and (s− u0) W ′(s) ≥ 0 for every s ∈ (u0 − ζ, u0 + ζ),

for some ζ > 0.

This case occurs if the potential W attains a local minimum at u0 and W satisfies
Hypothesis (H1), Part (b), and Hypothesis (H2) from the beginning of Section 2.
Then, by Part (b) of (H1), W must be convex in an open interval containing u0,
i.e., W ′ is monotonically increasing in this interval. We will find out that the result
depends on whether 1 < p ≤ α < ∞ or 1 < α < p < ∞. This fact is an immediate
consequence of the following proposition.

Given r0 ∈ R+, we denote by Iδ ⊂ R+ an interval that takes one of the following
forms,

Iδ =

{
[0, δ) if r0 = 0, for some δ ∈ (0,∞);
[r0, r0 + δ) or (r0 − δ, r0] if r0 > 0, for some δ ∈ (0, r0).

(4.5)

Proposition 4.3. Let 1 < p, α < ∞ and r0 ∈ R+. Assume that W : R → R is a C1

function that satisfies Hypothesis (H1) and assume that s0 ∈ R is a local minimizer
for W . Let (u, v) : Iδ → R2 be any C1 solution pair for the initial value problem
(4.3), (4.4) with the initial values (u0, v0) = (s0, 0) on some interval Iδ ⊂ R+, where
Iδ takes one of the forms from (4.5). Then, on a suitable subinterval Iδ′ ⊂ Iδ of
the same form, where 0 < δ′ ≤ δ, we have either (u, v) ≡ (s0, 0) is constant on Iδ′ ,
or else the following inequalities hold:

W (u(r)) > W (s0) for all r ∈ Iδ′ \ {r0} (4.6)

together with one of the following three statements,

1
N
≤ |u′(r)|p

p′[W (u(r))−W (s0)]
≤ 1 for r ∈ Iδ′ \ {0} = (0, δ′) ; (4.7)

1
1 + η

≤ |u′(r)|p

p′[W (u(r))−W (s0)]
≤ 1 for r ∈ Iδ′ \ {r0} = (r0, r0 + δ′) ; (4.8)

1 ≤ |u′(r)|p

p′[W (u(r))−W (s0)]
≤ 1

1− η
for r ∈ Iδ′ \ {r0} = (r0 − δ′, r0) . (4.9)

Inequalities (4.7) hold if r0 = 0, whereas (4.8) or else (4.9) apply if r0 > 0, with
some number η = η(δ′) ∈ (0, 1) satisfying η(ξ)/ξ → (N − 1)p′/r0 as ξ → 0+.

Before giving the proof of this proposition let us observe that, when inequalities
(2.1) are applied to (4.6) through (4.9), the proposition has the following simple
consequence. The constants α > 1 and γ2 ≥ γ1 > 0 below come from inequalities
(2.1).

Corollary 4.4. Under the hypotheses of Proposition 4.3, if (u, v) is not constant
on any subinterval Iϑ ⊂ Iδ, where 0 < ϑ ≤ δ, then p > α and there is a suitable
subinterval Iδ′ ⊂ Iδ, where 0 < δ′ ≤ δ, such that the following inequalities hold:

|u(r)− s0| > 0 for all r ∈ Iδ′ \ {r0} (4.10)
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together with one of the following three statements,

(p′γ1

N

)1/p ≤ |u′(r)|
|u(r)− s0|α/p

≤ (p′γ2)1/p (4.11)

for 0 < r < δ′ if Iδ′ = [0, δ′), r0 = 0 ;( p′γ1

1 + η

)1/p ≤ |u′(r)|
|u(r)− s0|α/p

≤ (p′γ2)1/p (4.12)

for r0 < r < r0 + δ′ if Iδ′ = [r0, r0 + δ′), r0 > 0 ;

(p′γ1)1/p ≤ |u′(r)|
|u(r)− s0|α/p

≤
( p′γ2

1− η

)1/p (4.13)

for r0 − δ′ < r < r0 if Iδ′ = (r0 − δ′, r0], r0 > 0 .

In particular, if p ≤ α then (u, v) ≡ (s0, 0) is constant on Iϑ for some ϑ ∈ (0, δ).

In analogy with the abbreviation ∆pu
def= ∇ ·

(
|∇u|p−2∇u

)
for the p-Laplace

operator, 1 < p < ∞, from now on we employ another commonly used abbreviation,
the function φp(s)

def= |s|p−2s of the variable s ∈ R. Hence, d
ds (|s|p) = p φp(s) for

every s ∈ R. The inverse function of φp is equal to φ′p, by (p− 1)(p′ − 1) = 1.

Proof of Proposition 4.3. To simplify our notation, without any loss of generality,
we replace the function W (s) of the variable s ∈ R by W̃ (s̃) = W (s̃ + s0)−W (s0)
for s̃ ∈ R. In other words, dropping the tilde in s̃ and W̃ , we may assume both
s0 = 0 and W (s0) = 0.

Let us recall equation (2.7) with the function Z satisfying (2.8): The former one
holds for r ∈ Iδ, the latter for r ∈ Iδ \ {0}. Hence, Z(r0) = W (s0) = 0 with s0 = 0.
Clearly, the function Z : Iδ → R is continuously differentiable in Iδ \ {0}. It will
be shown below, by a standard application of L’Hôspital’s rule for r → 0+, that
Z ′(0) = limr→0+ Z ′(r) = 0 in case Iδ = [0, δ). Thus, Z is C1 on Iδ.

First, we claim that if a solution curve (u, v) : r 7→ (u(r), v(r)) : Iδ → R2 for sys-
tem (4.3), parametrized by r ∈ Iδ, passes through the initial point (u(r0), v(r0)) =
(0, 0) at another parameter value r1 ∈ Iδ, r1 6= r0, that is, (u(r1), v(r1)) = (0, 0),
then (u, v) ≡ (0, 0) is constant on J , where J denotes the closed interval with the
endpoints r0 and r1. Notice that J = Iδ′ where δ′ = |r1 − r0| > 0. To prove our
claim, it suffices to use Z(r1) = 0 = Z(r0). But eq. (2.8) shows that Z is mono-
tonically increasing, thus forcing Z(r) = Z(r0) for every r ∈ J . We conclude that
v ≡ 0 is constant on J , i.e., (u, v) ≡ (0, 0) on J = Iδ′ .

From now on, let us consider the opposite case, (u(r), v(r)) 6= (0, 0) for every
r ∈ Iδ \ {r0}. Here, we may choose δ > 0 small enough, such that |u(r)| < ζ for
every r ∈ Iδ, where the number ζ > 0 is chosen in the following way, by Part (b) of
Hypothesis (H1) on W : W is convex in the interval (−ζ, ζ) and satisfies inequalities
(2.1). As a consequence, we have sW ′(s) > 0 whenever 0 < |s| < ζ. We infer from
Lemma 4.2, Cases (i) and (ii), that if (ũ, ṽ) : J → R2 is another solution pair
of system (4.3) in some open interval J ⊂ Iδ \ {r0}, such that (ũ(r1), ṽ(r1)) =
(u(r1), v(r1)) at some point r1 ∈ J , then (ũ, ṽ) = (u, v) throughout J . In other
words, if (ũ, ṽ) : Iδ̃ → R2 is another solution pair of system (4.3) in some interval
Iδ̃ of the same form as Iδ, where 0 < δ̃ < ∞, that is not identical with (u, v) in
J = Iδ ∩ Iδ̃, but (ũ(r1), ṽ(r1)) = (u(r1), v(r1)) at some point r1 ∈ J , then we must
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have r1 = r0, J = Iϑ with ϑ = min{δ, δ̃} > 0, and (ũ(r), ṽ(r)) 6= (u(r), v(r)) for
each r ∈ Iϑ \ {r0}.

Next, we show that either u(r) > 0 holds for all r ∈ Iδ \{r0}, or else u(r) < 0 for
all r ∈ Iδ \ {r0}. On the contrary, suppose that u(r1) = 0 for some r1 ∈ Iδ \ {r0}.
Hence, v(r1) 6= 0 in the case being considered, i.e., u′(r1) 6= 0. This forces r1 > 0.

Case u′(r1) > 0. From (4.1) we deduce that the function

r 7→ rN−1 φp(u′(r)) = rN−1 |u′(r)|p−2u′(r) : Iδ → R (4.14)

is strictly monotonically increasing for r ∈ [r1,∞) ∩ Iδ, by W ′(u(r)) > 0, and
strictly monotonically decreasing for r ∈ (−∞, r1]∩ Iδ, by W ′(u(r)) < 0. It follows
that

rN−1 φp(u′(r)) ≥ rN−1
1 φp(u′(r1)) > 0 holds for all r ∈ Iδ .

But this contradicts u(r1) = 0 = u(r0) for r1 6= r0.
Case u′(r1) < 0. Again, from (4.1) we deduce that the function in (4.14) is

strictly monotonically decreasing for r ∈ [r1,∞)∩ Iδ, by W ′(u(r)) < 0, and strictly
monotonically increasing for r ∈ (−∞, r1] ∩ Iδ, by W ′(u(r)) > 0. It follows that

rN−1 φp(u′(r)) ≤ rN−1
1 φp(u′(r1)) < 0 holds for all r ∈ Iδ .

This contradicts u(r1) = 0 = u(r0) for r1 6= r0.
We have verified that |u(r)| > 0 holds for all r ∈ Iδ \ {r0}. By inequalities (2.1),

this is equivalent with (4.6). In order to prove inequalities (4.7), (4.8), and (4.9),
we first notice that the inequalities

|u′(r)|p ≤ p′W (u(r)) for r ∈ Iδ \ {r0} = (r0, r0 + δ) ;

|u′(r)|p ≥ p′W (u(r)) for r ∈ Iδ \ {r0} = (r0 − δ, r0) ,

follow immediately from (2.7) and (2.8) combined with Z(0) = W (u(r0)) = W (0) =
0. It remains to prove the first inequality in (4.7) and (4.8), and the second one in
(4.9), respectively:

|u′(r)|p ≥ p′

N
W (u(r)) for 0 < r < δ′ if Iδ′ = [0, δ′), r0 = 0 ; (4.15)

|u′(r)|p ≥ p′

1 + η
W (u(r)) for r0 < r < r0 + δ′ if Iδ′ = [r0, r0 + δ′), r0 > 0 ;

(4.16)

|u′(r)|p ≤ p′

1− η
W (u(r)) for r0 − δ′ < r < r0 if Iδ′ = (r0 − δ′, r0], r0 > 0 .

(4.17)

As we have already chosen δ > 0 small enough, we do not need to pass to a smaller
number δ′ ∈ (0, δ] any more in our proofs of inequalities (4.15) and (4.16); we
will get η = η(δ) ∈ (0, 1) and, thus, we may keep δ′ = δ. Only in our proof
of inequality (4.17) we need to pass to a smaller number δ′ ∈ (0, δ] in order to
guarantee η = η(δ′) ∈ (0, 1).

Case r0 = 0. We begin with an interval Iδ of the form Iδ = [0, δ) with δ > 0
small enough. Then the initial value problem (4.1), (4.2), with (u0, u

]
0) = (0, 0), is
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equivalent with the following initial value problem for an integro-differential equa-
tion,

rN−1 φp(u′(r)) =
∫ r

0
W ′(u(r̂)) r̂N−1 dr̂ for r ∈ (0, δ) ; (4.18)

u(0) = 0 . (4.19)

Notice that, by L’Hôspital’s rule,

v(0) = φp(u′(0)) = lim
r→0+

φp(u′(r))

= lim
r→0+

( 1
rN−1

∫ r

0

W ′(u(r̂)) r̂N−1 dr̂
)

=
1

N − 1
· lim

r̂→0+
(r̂ W ′(u(r̂))) = 0 .

Making use of this result and employing L’Hôspital’s rule again, we get also

d
dr

φp(u′(r))
∣∣∣
r=0

= lim
r→0+

φp(u′(r))
r

= lim
r→0+

( 1
rN

∫ r

0

W ′(u(r̂)) r̂N−1 dr̂
)

=
1
N
· lim

r̂→0+
W ′(u(r̂)) =

1
N
·W ′(u(0)) =

1
N
·W ′(0) = 0 .

(4.20)

Our next claim is that the function

r 7→ r−1 v(r) = r−1 φp(u′(r)) = r−1 |u′(r)|p−2u′(r) : (0, δ) → R (4.21)

is positive and monotonically increasing if u(r) > 0 for 0 < r < δ, and negative
and monotonically decreasing if u(r) < 0 for 0 < r < δ. We verify this claim in the
former case and leave to the interested reader an easy modification of our proof in
the latter case.

Thus, let us assume u(r) > 0 for 0 < r < δ. Recall that 0 < u(r) < ζ for
0 < r < δ. Hence, W ′(r) > 0, by Part (b) of Hypothesis (H1) on W : W is convex
in the interval (−ζ, ζ) and satisfies inequalities (2.1). Eq. (4.18) yields u′(r) > 0
for 0 < r < δ. Furthermore, after the substitution r̂ = tr in the integral on the
right-hand side of eq. (4.18), for 0 ≤ t ≤ 1, we arrive at

r−1 φp(u′(r)) =
∫ 1

0
W ′(u(tr)) tN−1 dt for r ∈ (0, δ) . (4.22)

Since both functions r 7→ u(tr) : (0, δ) → (0, ζ) and W ′ : (0, ζ) → (0,∞) are
monotonically increasing, with t ∈ (0, 1] fixed in the former one, so is the integrand
r 7→ W ′(u(tr)) : (0, δ) → (0,∞). From eq. (4.22) we thus deduce that the function
in (4.21) is positive and monotonically increasing as claimed.

Now we know that the function

r 7→ r−1 |v(r)| = r−1 |u′(r)|p−1 : (0, δ) → R (4.23)

is positive and monotonically increasing. The monotonicity yields∣∣u′(r̂)/u′(r)
∣∣p−1 ≤ r̂/r for 0 < r̂ ≤ r < δ .

Consequently, recalling p′ = p/(p− 1), we get also∫ r

0

∣∣u′(r̂)
u′(r)

∣∣p dr̂

r̂
≤

∫ r

0

( r̂

r

)p/(p−1) dr̂

r̂
=

∫ 1

0

tp
′−1 dt = 1/p′
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or, equivalently, by (2.8),

Z(r)− Z(0) =
∫ r

0

Z ′(r̂) dr̂ = (N − 1)
∫ r

0

|u′(r̂)|p dr̂

r̂
≤ N − 1

p′
|u′(r)|p (4.24)

for all r ∈ [0, δ). Finally, we combine (2.7) and (4.24) with Z(0) = W (u(0)) =
W (0) = 0, thus arriving at

1
p′
|u′(r)|p = W (u(r))− Z(r) ≥ W (u(r))− N − 1

p′
|u′(r)|p

for all r ∈ [0, δ). This inequality yields (4.15) for Iδ = [0, δ), as desired.
Case r0 > 0 and Iδ = [r0, r0 + δ). This case is treated analogously. The only

technical difference is that, under the integral sign
∫ 1

0
. . . on the right-hand side in

(4.22), one has to insert the “Heaviside” factor H(tr − r0),

r−1 φp(u′(r)) =
∫ 1

0

H(tr − r0) W ′(u(tr)) tN−1 dt for r ∈ Iδ , (4.25)

where H : R → R stands for the Heaviside function defined by

H(ξ) def=

{
1 for ξ > 0 ;
0 for ξ ≤ 0 .

Clearly, (4.25) is equivalent with (4.18) in Iδ. Observe that, for each fixed t ∈
[0, 1], the function r 7→ H(tr − r0) : Iδ → [0, 1] is nonnegative and monotonically
increasing. This fact guarantees that, again, the function

r 7→ r−1 v(r) = r−1 φp(u′(r)) : Iδ = [r0, r0 + δ) → R (4.26)

is nonnegative and monotonically increasing if u(r) > 0 for r0 < r < r0 + δ, and
nonpositive and monotonically decreasing if u(r) < 0 for r0 < r < r0 + δ.

In analogy with the case Iδ = [0, δ) we obtain

|u′(r̂)/u′(r)|p−1 ≤ r̂/r for r0 < r̂ ≤ r < r0 + δ ,

which yields∫ r

r0

∣∣u′(r̂)
u′(r)

∣∣p dr̂

r̂
≤

∫ r

r0

( r̂

r

)p/(p−1) dr̂

r̂

=
∫ 1

r0/r

tp
′−1 dt = (1/p′)[1− (r0/r)p′

] <
1
p′

[
1−

( r0

r0 + δ

)p′]
or, equivalently, by (2.8),

Z(r)− Z(r0) =
∫ r

r0

Z ′(r̂) dr̂ = (N − 1)
∫ r

r0

|u′(r̂)|p dr̂

r̂

≤ N − 1
p′

[
1−

( r0

r0 + δ

)p′]
|u′(r)|p for all r ∈ [r0, r0 + δ) .

(4.27)

Finally, denoting

η = η(δ) def= (N − 1)
[
1−

( r0

r0 + δ

)p′]
, 0 < η < 1 ,

we combine (2.7) and (4.27) with Z(r0) = W (u(r0)) = W (0) = 0, thus arriving at
1
p′
|u′(r)|p = W (u(r))− Z(r) ≥ W (u(r))− η

p′
|u′(r)|p

for all r ∈ [r0, r0 + δ). This inequality yields (4.16) for Iδ = [r0, r0 + δ), r0 > 0.
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Case r0 > 0 and Iδ = (r0 − δ, r0]. In this case, the integral and the “Heaviside”
factor in eq. (4.25) have to be replaced by

∫∞
1

. . . and −H(r0 − tr), respectively,

r−1 φp(u′(r)) = −
∫ ∞

1

H(r0 − tr)W ′(u(tr)) tN−1 dt for r ∈ Iδ . (4.28)

This equation is equivalent with (4.18) in Iδ. For each fixed t ∈ [0, 1], the function
r 7→ H(r0−tr) : Iδ → [0, 1] is nonnegative and monotonically decreasing. In analogy
with the previous two cases, we treat only the case u(r) > 0 for r0 − δ < r < r0,
leaving to the reader an easy modification of our proof for the other case, u(r) < 0
for r0 − δ < r < r0. First, observe that the function u : (r0 − δ, r0) → (0, ζ) is
strictly monotonically decreasing, by (4.28) combined with W ′(s) > 0 for 0 < s < ζ.
Second, the function r 7→ u(tr) : (r0−δ, r0) → (0, ζ) being monotonically decreasing
and W ′ : (0, ζ) → (0,∞) monotonically increasing, with t ∈ (0, 1] fixed in the former
one, the function r 7→ W ′(u(tr)) : (r0 − δ, r0) → (0,∞) must be monotonically
decreasing. Finally, it follows that the integrand on the right-hand side in (4.28),

r 7→ H(r0 − tr) W ′(u(tr)) : Iδ = (r0 − δ, r0] → R ,

is nonnegative and monotonically decreasing, and so is the function

r 7→ −r−1 v(r) = − r−1 φp(u′(r)) : Iδ = (r0 − δ, r0] → R . (4.29)

Notice that, if u(r) < 0 for r0 − δ < r < r0 then this function is nonpositive and
monotonically increasing.

In analogy with the case Iδ = [r0, r0 + δ) we obtain

|u′(r̂)/u′(r)|p−1 ≤ r̂/r for r0 − δ < r ≤ r̂ < r0 ,

which yields∫ r0

r

∣∣u′(r̂)
u′(r)

∣∣p dr̂

r̂
≤

∫ r0

r

∣∣ r̂
r

∣∣p/(p−1) dr̂

r̂
=

∫ r0/r

1

tp
′−1 dt

= (1/p′)[(r0/r)p′
− 1] <

1
p′

[( r0

r0 − δ

)p′

− 1
]

or, equivalently, by (2.8),

Z(r0)− Z(r) =
∫ r0

r

Z ′(r̂) dr̂ = (N − 1)
∫ r0

r

|u′(r̂)|p dr̂

r̂

≤ N − 1
p′

[( r0

r0 − δ

)p′

− 1
]
|u′(r)|p for all r ∈ (r0 − δ, r0] .

(4.30)

Finally, denoting

η = η(δ) def= (N − 1)
[( r0

r0 − δ

)p′

− 1
]
, 0 < η < ∞ ,

we combine (2.7) and (4.30) with Z(r0) = W (u(r0)) = W (0) = 0, thus arriving at
1
p′
|u′(r)|p = W (u(r))− Z(r) ≤ W (u(r)) +

η

p′
|u′(r)|p

for all r ∈ (r0 − δ, r0]. This inequality yields (4.17) for Iδ′ = (r0 − δ′, r0] where
δ′ ∈ (0, δ] is such that η(δ′) < 1.

Our choice of η = η(ξ) for r0 > 0 involves the expression
(
1 ± ξ

r0

)−p′

which
yields the asymptotic behavior η(ξ)/ξ → (N −1)p′/r0 as ξ → 0+. The proof of the
proposition is finished. �
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The problem of existence and uniqueness of a nonconstant solution pair (u, v) :
Iδ → R2 for the initial value problem (4.3), (4.4) with the initial values (u0, v0) =
(s0, 0) on some interval Iδ ⊂ R+, considered in Proposition 4.3, is completely
answered in the next proposition.

Proposition 4.5. Let 1 < α < p < ∞, r0 ∈ R+, and let Iδ ⊂ R+ be an interval
of type (4.5). Assume that W satisfies Hypothesis (H1) and s0 ∈ R is a local
minimizer for W . Then, in a suitable subinterval Iδ′ ⊂ Iδ of the same form, where
0 < δ′ ≤ δ, the initial value problem (4.3), (4.4), with the initial values (u0, v0) =
(s0, 0), possesses a C1 solution pair (u+, v+) : Iδ′ → R2, such that u+(r) > s0 for
every r ∈ Iδ′ \ {r0}, and another C1 solution pair (u−, v−) : Iδ′ → R2, such that
u−(r) < s0 for every r ∈ Iδ′ \ {r0}. In particular, both these solution pairs satisfy
inequalities (4.6) through (4.9) (in Proposition 4.3) and (4.10) through (4.13) (in
Corollary 4.4). Finally, if W satisfies also Hypothesis (H2) then the solution pairs
(u+, v+) and (u−, v−) characterized above are unique.

Proof. As in the proof of Proposition 4.3 above, we may assume s0 = 0 and W (s0)
= 0. Again, recall that every C1 solution pair (u, v) of system (4.3) in Iδ \ {0}
verifies equation (2.7) with the function Z satisfying (2.8): The former one holds
for r ∈ Iδ, the latter for r ∈ Iδ \ {0}. Hence, Z(r0) = W (s0) = 0 with s0 = 0.
In the proof of Proposition 4.3 we have already shown that Z is C1 on Iδ with
Z ′(0) = limr→0+ Z ′(r) = 0 in case Iδ = [0, δ).

We treat only the case r0 = 0, i.e., Iδ = [0, δ), which is the most difficult one. We
leave the remaining two cases with r0 > 0, i.e., Iδ = [r0, r0 + δ) and Iδ = (r0− δ, r0]
for some δ ∈ (0, r0), to the interested reader. The necessary changes in the proof
are analogous to those in the proof of Proposition 4.3.

We continue the a priori setting from the proof of Proposition 4.3, case r0 = 0,
with δ > 0 small enough. Again, we treat only the case u(r) > 0 for 0 < r < δ,
leaving an easy modification of the other case, u(r) < 0 for 0 < r < δ, to the
reader. More precisely, we will show that a C1 solution pair (u, v) of system (4.3)
in Iδ\{0}, with the initial values (u0, v0) = (s0, 0) = (0, 0), considered in the proof of
Proposition 4.3 with u(r) > 0 for 0 < r < δ, exists and is unique. Consequently, we
look for a pair (u, v) such that also u′(r) > 0 for 0 < r < δ with the function in (4.21)
being monotonically increasing. It follows that u′ is monotonically increasing in
[0, δ), i.e., u is convex. In other words, we look for a C1 solution u : [0, δ) → R of the
initial value problem (4.1), (4.2) in (0, δ), with the initial values (u0, u

]
0) = (0, 0) at

r0 = 0, such that u ∈ U , where U denotes the class of all C1 functions U : [0, δ) → R
with the following properties:

(i) U(0) = U ′(0) = 0 and 0 < U(r) < ζ for every r ∈ (0, δ);
(ii) U satisfies both inequalities in (4.7) for every r ∈ (0, δ), with u replaced by

U , and s0 = 0 and W (s0) = 0.
We recall that for an arbitrary function u ∈ U , eq. (4.1) in (0, δ) is equivalent with
the integro-differential equation (4.18) in (0, δ).

We begin by constructing a pointwise orderded pair of solutions u, u : [0, δ) →
[0, ζ) to the initial value problem (4.18), (4.19), such that 0 < u 5 u 5 u holds in
(0, δ) for every solution u : [0, δ) → [0, ζ) to problem (4.18), (4.19) that satisfies
u(r) > 0 for 0 < r < δ; hence, u, u, u ∈ U . We call u (u, respectively) the mini-
mal (maximal) positive solution to problem (4.18), (4.19). We employ a standard
technique using monotone iterations.
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To construct u, we start with the unique positive solution u1 : [0, δ) → [0, ζ) of
the initial value problem

|u′1(r)|p = (p′/N) W (u1(r)) for r ∈ (0, δ) ; (4.31)

u1(0) = 0 , (4.32)

cf. (4.7) with s0 = 0 and W (s0) = 0. (More precise details about the existence and
uniqueness of u1 will be given below in the proof of the uniqueness for u, i.e., u ≡ u
in (0, δ).) We claim that u1 is a strict subsolution to problem (4.18), (4.19), that
is, by eq. (4.22),

r−1 φp(u′1(r)) <

∫ 1

0

W ′(u1(tr)) tN−1 dt for r ∈ (0, δ) . (4.33)

Indeed, combining (4.18), where we first replace W by (1/N)W , then take N = 1,
with eq. (4.31) we arrive at

r−1 φp(u′1(r)) = N−1

∫ 1

0

W ′(u1(tr)) dt <

∫ 1

0

W ′(u1(tr)) tN−1 dt

for r ∈ (0, δ). The last inequality has been deduced from Lemma 7.1, ineq. (7.2),
stated in the appendix (Appendix 7).

Similarly, to construct u, we start with the unique positive solution w1 : [0, δ) →
[0, ζ) of the initial value problem

|w′1(r)|p = p′W (w1(r)) for r ∈ (0, δ) ; (4.34)

w1(0) = 0 , (4.35)

cf. (4.7) with s0 = 0 and W (s0) = 0. Note that u1, w1 ∈ U and u1(r) =
w1(N−1/p r) < w1(r) for every r ∈ (0, δ). We claim that w1 is a strict super-
solution to problem (4.18), (4.19), that is, by eq. (4.22),

r−1 φp(w′1(r)) >

∫ 1

0

W ′(w1(tr)) tN−1 dt for r ∈ (0, δ) . (4.36)

Indeed, combining (4.18), where we take N = 1, with eq. (4.34) we arrive at

r−1 φp(w′1(r)) =
∫ 1

0

W ′(w1(tr)) dt >

∫ 1

0

W ′(w1(tr)) tN−1 dt

for r ∈ (0, δ). We remark that we take δ > 0 small enough, such that 0 < w1(r) < ζ
holds for every r ∈ (0, δ).

Next, we construct a sequence of pairs of functions uk, wk : [0, δ) → [0, ζ) recur-
sively for each k = 2, 3, 4, . . . by requiring

r−1 φp(u′k(r)) =
∫ 1

0
W ′(uk−1(tr)) tN−1 dt for r ∈ (0, δ) ;

uk(0) = 0 ,

and

r−1 φp(w′k(r)) =
∫ 1

0
W ′(wk−1(tr)) tN−1 dt for r ∈ (0, δ) ;

wk(0) = 0 .

In particular, we have 0 < u1 < u2 ≤ w2 < w1 in (0, δ), by inequalities (4.33)
and (4.36). Recall that W ′ is monotonically increasing on the interval [0, ζ). By
induction on k, from u1 < u2 ≤ w2 < w1 in (0, δ) we derive uk ≤ uk+1 ≤ wk+1 ≤ wk

in (0, δ) also for every k = 2, 3, 4, . . . .
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Summarizing the properties of uk’s and wk’s, we have

0 < u1 < u2 ≤ · · · ≤ uk ≤ uk+1 ≤ · · · ≤ wk+1 ≤ wk ≤ · · · ≤ w2 < w1

in (0, δ), for all k ≥ 2. Standard arguments for monotone iteration schemes now
guarantee that both sequences {uk}∞k=1 and {wk}∞k=1 must converge pointwise on
the interval [0, δ), say, to u and u, respectively. Furthermore, both u and u verify
the initial value problem (4.18), (4.19), together with

0 < u1 < u2 ≤ · · · ≤ uk ≤ uk+1 ≤ · · · ≤ u

≤ u ≤ · · · ≤ wk+1 ≤ wk ≤ · · · ≤ w2 < w1
(4.37)

in (0, δ), for all k ≥ 2. Hence, u, u ∈ U . In addition, every function u ∈ U satisfies
u1 ≤ U ≤ w1 in [0, δ), by the inequalities in (4.7) and our definitions of u1 and
w1. If u ∈ U verifies also the initial value problem (4.18), (4.19) then we obtain
uk ≤ u ≤ wk in (0, δ) for every k = 1, 2, 3, . . . , by induction on k again. We
conclude that u ≤ u ≤ u in (0, δ).

Finally, from the initial value problem (4.18), (4.19) for u and u in place of u,
combined with u 5 u in [0, δ), we deduce φp(u′)) ≤ φp(u′) in (0, δ), which shows
that the difference u(r) − u(r) is a monotonically increasing function of r ∈ [0, δ),
i.e.,

0 ≤ u(r̂)− u(r̂) ≤ u(r)− u(r) for all 0 ≤ r̂ ≤ r < δ . (4.38)

Consequently, if u(r∗) = u(r∗) for some r∗ ∈ (0, δ), then u = u holds on the entire
interval [0, r∗]. But this forces also u = u on the whole of [0, δ), by the arguments
we have used at the beginning of our proof of Proposition 4.3 (cf. Lemma 4.2, Cases
(i) and (ii)). We conclude that, in order to prove the uniqueness for problem (4.18),
(4.19), that is to say, to verify u = u in [0, δ), it suffices to prove that there is some
r∗ ∈ (0, δ) such that u(r∗) = u(r∗).

We begin our proof of uniqueness by considering an arbitrary solution u ∈ U to
problem (4.18), (4.19) in (0, δ). Recall that here we assume also Hypothesis (H2).
Notice that, given any ε > 0, if we replace the variable r by r̃ = ε−1r and define
the function ũ(r̃) def= u(εr̃) for 0 ≤ r̃ < ε−1δ, then ũ satisfies the integro-differential
equation

ε−p r̃−1 φp(ũ′(r̃)) =
∫ 1

0

W ′(ũ(tr̃)) tN−1 dt for r̃ ∈ (0, ε−1δ) , (4.39)

by eq. (4.22). Of course, ũ(0) = ũ′(0) = 0. Consequently, if ε < 1 (ε > 1, respec-
tively) then ũ is a strict subsolution (supersolution) of the initial value problem
(4.18), (4.19) in the interval (0, ε−1δ), by

r̃−1 φp(ũ′(r̃)) < (>) ε−p r̃−1 φp(ũ′(r̃)) =
∫ 1

0

W ′(ũ(tr̃)) tN−1 dt (4.40)

for r̃ ∈ (0, ε−1δ). In particular, if the inequality u(εr̃) ≤ u(r̃) holds for all r̃ ∈ (0, δ′),
where ε ∈ (0, 1) and δ′ ∈ (0, δ] are some constants, then it must hold for all
r̃ ∈ (0, δ), by ineq. (4.40) with u in place of u and eq. (4.22) with u in place of u.
We may take ε ∈ (0, 1) arbitrarily close to 1 if

lim
r→0+

u(r)
u(r)

= 1 . (4.41)
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Then u(εr̃) ≤ u(r̃) for all r̃ ∈ (0, δ) will force also u(r̃) ≤ u(r̃) for all r̃ ∈ (0, δ), by
letting ε → 1− . Thus, we have reduced the proof of uniqueness, which is equivalent
to u = u in [0, δ), to verifying the limit in (4.41).

To verify (4.41), first, recall that u ∈ U is an arbitrary solution to problem (4.18),
(4.19) in (0, δ). We insert eq. (2.8) into (2.7) to get

Z ′(r) +
(N − 1)p′

r
Z(r)− (N − 1)p′

r
W (u(r)) = 0 for 0 < r < δ . (4.42)

This differential equation is supplemented by two initial conditions, namely, Z(0) =
W (u(0)) = W (0) = 0 and Z ′(0) = 0. Equation (4.42) is equivalent with

d
dr

(rν Z(r)) = ν rν−1 W (u(r)) , 0 < r < δ ,

where we have abbreviated ν
def= (N − 1)p′; hence, ν ≥ p′ > 1 owing to N ≥ 2.

This equation, supplemented by the initial condition Z(0) = 0, is equivalent with
the integral equation

rν Z(r) = ν

∫ r

0

W (u(r̂)) r̂ν−1 dr̂ , 0 < r < δ . (4.43)

We substitute (2.8) for Z ′(r) and (4.43) for Z(r) in (4.42) to obtain

1
p′
|u′(r)|p + ν

∫ r

0

W (u(r̂))
( r̂

r

)ν dr̂

r̂
= W (u(r)) (4.44)

for 0 < r < δ. This integro-differential equation for the unknown function u :
[0, δ) → [0, ζ) is supplemented by the condition u ∈ U . Note that

ν

∫ r

0

( r̂

r

)ν dr̂

r̂
= ν

∫ 1

0

tν−1 dt = 1 (4.45)

for 0 < r < δ, after the substitution r̂ = tr.
To solve (4.44), we introduce the function % : (−ζ, ζ) → R by

%(s) def=
∫ s

0

dŝ

(p′W (ŝ))1/p
for |s| < ζ . (4.46)

This is a continuous, strictly monotonically increasing function which is C2 on
(−ζ, ζ) \ {0}. Let σ : (−ϑ−, ϑ+) → (−ζ, ζ) denote the inverse function for %, where
the number ϑν > 0 is given by the formula

ϑν
def=

∣∣ ∫ νζ

0

ds

(p′W (s))1/p

∣∣
with the sign symbol ν = ± in ϑν and νζ. It is easy to see that also σ is continuous
and strictly monotonically increasing and, moreover, it is continuously differentiable
on (−ϑ−, ϑ+) with the derivative σ′(0) = 0 at zero. Note that

σ′(r) =
1

%′(σ(r))
= (p′ (W ◦ σ)(r))1/p > 0 for all r ∈ (−ϑ−, ϑ+) \ {0} . (4.47)

Moreover, both functions σ : (−ϑ−, ϑ+) → (−ζ, ζ) and W : [0, ζ) → R+ = [0,∞)
being strictly monotonically increasing, so is the function σ′ : [0, ϑ+) → R+. It
follows that σ : [0, ϑ+) → [0, ζ) is strictly convex with σ(0) = σ′(0) = 0. In
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addition, the asymptotic behavior as r → 0+ of the logarithmic derivative of the
composition W ◦ σ : (−ϑ−, ϑ+) → R+ of σ and W , that is, of the function

r 7−→ d
dr

(log ◦W ◦ σ)(r) =
(W ◦ σ)′(r)
(W ◦ σ)(r)

: (−ϑ−, ϑ+) \ {0} → R ,

is determined by Hypothesis (H2). This logarithmic derivative is defined on both
open intervals (−ϑ−, 0) and (0, ϑ+), with the limit limr→0(log ◦W ◦ σ)(r) = −∞ ,
and satisfies

d
dr

(log ◦W ◦ σ)(r) =
(W ◦ σ)′(r)
(W ◦ σ)(r)

=
W ′(σ(r))
W (σ(r))

σ′(r)

=
W ′(σ(r))
W (σ(r))

(p′W (σ)(r))1/p = p
d
ds

(p′W (s))1/p
∣∣∣
s=σ(r)

,

(4.48)
by eq. (4.47). The last derivative is defined for s in both open intervals (−ζ, 0) and
(0, ζ), by Hypothesis (H2) where s0 = 0 and W (s0) = 0 are taken.

Dividing (4.44) by W (u(r)) and using (4.47), we arrive at

|%′(u(r))|p |u′(r)|p + ν

∫ r

0

(W ◦ u)(r̂)
(W ◦ u)(r)

( r̂

r

)ν dr̂

r̂
= 1

for 0 < r < δ, or, equivalently,∣∣ d
dr

(% ◦ u)(r)
∣∣p + ν

∫ r

0

(W ◦ u)(r̂)
(W ◦ u)(r)

( r̂

r

)ν dr̂

r̂
= 1

for 0 < r < δ. Next, we substitute R
def= % ◦ u : [0, δ) → [0, ϑ+), which yields

u = σ ◦R : [0, δ) → [0, ζ), thus obtaining∣∣dRdr
∣∣p + ν

∫ r

0

(W ◦ σ)(R(r̂))
(W ◦ σ)(R(r))

( r̂

r

)ν dr̂

r̂
= 1 (4.49)

for 0 < r < δ. This integro-differential equation for the unknown function R :
[0, δ) → [0, ϑ+) is supplemented by the initial condition R(0) = 0. We look for a
C1 solution R : [0, δ) → [0, ϑ+) to this initial value problem that satisfies

1
N
≤

∣∣dR

dr

∣∣p ≤ 1 in Iδ \ {0} = (0, δ) , (4.50)

according to inequalities (4.7). More precisely, combining (4.47) with u ∈ U , we
have

R′(r) =
d
dr

(% ◦ u)(r) = %′(u(r))u′(r) =
u′(r)

(p′W (u(r))1/p
> 0

for 0 < r < δ and, therefore, the inequalities in (4.50) read

N−1/p ≤ dR

dr
≤ 1 in (0, δ) . (4.51)

Let us denote by R the class of all continuous functions R : [0, δ) → R with the
following properties:

(i) R(0) = 0 and 0 < R(r) < ϑ+ for every r ∈ (0, δ);
(ii) R is C1 in (0, δ) and satisfies both inequalities in (4.51) for every r ∈ (0, δ).

Now we are ready to verify (4.41). We set

R
def= % ◦ u , R

def= % ◦ u : [0, δ) → [0, ϑ+) .
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First, by L’Hôspital’s rule and (4.47), we calculate

lim
r→0+

u(r)
u(r)

= lim
r→0+

u′(r)
u′(r)

= lim
r→0+

σ′(R(r))R
′
(r)

σ′(R(r))R′(r)

= lim
r→0+

[( (W ◦ σ)(R(r))
(W ◦ σ)(R(r))

)1/p R
′
(r)

R′(r)

]
=

(
lim

r→0+

(
W ◦ σ)(R(r))
(W ◦ σ)(R(r))

)1/p

· lim
r→0+

R
′
(r)

R′(r)
,

(4.52)

where the fact that

lim
r→0+

(W ◦ σ)(R(r))
(W ◦ σ)(R(r))

= 1 (4.53)

follows immediately from the asymptotic condition (2.2) in Hypothesis (H2), where
s0 = 0 and W (s0) = 0 are taken, combined with the following claim,

lim
r→0+

R(r)
R(r)

= lim
r→0+

R
′
(r)

R′(r)
= 1 . (4.54)

More precisely, we are going to show that

R′(0) def= lim
r→0+

R′(r) =
(
1 + ν

( 1
α
− 1

p

))−1/p

∈ (N−1/p, 1) (4.55)

holds for R = % ◦ u : [0, δ) → [0, ϑ+), where u ∈ U is an arbitrary solution to
problem (4.18), (4.19) in (0, δ).

Indeed, taking advantage of the asymptotic condition (2.2) in Hypothesis (H2)
again, we obtain

lim
s→0+
0<ŝ≤s

[W (ŝ)
W (s)

/( ŝ

s

)α
]

= 1 ,

lim
r→0+
0<r̂≤r

[σ(r̂)
σ(r)

/( r̂

r

)p/(p−α)
]

= 1 ,

which yields

lim
r→0+
0<r̂≤r

[ (W ◦ σ)(R(r̂))
(W ◦ σ)(R(r))

/(R(r̂)
R(r)

)αp/(p−α)]
= 1 , (4.56)

lim
r→0+
0<r̂≤r

[R(r̂)
R(r)

/ r̂

r

]
= 1 . (4.57)

Finally, we insert the last two limits into eq. (4.49), thus arriving at

lim
r→0+

[
|R′(r)|p + ν

∫ r

0

( r̂

r

)αp/(p−α)( r̂

r

)ν dr̂

r̂

]
= lim

r→0+

[
|R′(r)|p + ν

∫ r

0

(W ◦ σ)(R(r̂))
(W ◦ σ)(R(r))

( r̂

r

)ν dr̂

r̂

]
= 1 .

(4.58)

This yields (4.55) as desired, by

lim
r→0+

|R′(r)|p + ν

∫ 1

0

tαp/(p−α) tν
dt

t
= 1

where ν = (N−1)p′ = (N−1)p/(p−1). The proof of the proposition is finished. �
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5. Global existence and uniqueness

The results in this section will be needed in the proofs of our main results in
the next section (Section 6). We continue with the problem setting from the previ-
ous section (Section 4). Throughout this section we assume that the potential W
satisfies Hypotheses (H1) and (H2) stated at the beginning of Section 2. Here, we
investigate the global existence of a solution to the initial value problem for equa-
tion (2.4), i.e., to (4.1) and (4.2), or equivalently for the first-order system (2.5),
i.e., to (4.3) and (4.4). This means that we assume that u : [r0, R) → R is a C1

solution, with |u′|p−2u′ ∈ C1([r0, R)), of the following initial value problem,

− r−(N−1)
(
rN−1 |u′|p−2u′

)′
+ W ′(u) = 0, r0 < r < R, (5.1)

u(r0) = −θ, u′(r0) = 0, (5.2)

where θ ∈ R is a given number. Furthermore, we assume that the solution u is
defined on a maximal interval of existence of type Jmax = [r0, R) ⊂ R+ for some
R ∈ (r0,∞) or R = ∞.

We have the following global existence result.

Proposition 5.1. Let 1 < p, α < ∞ and r0 ∈ R+. Assume that W : R → R is
a C1 function that has the same properties as in Theorem 3.5, including (a) and
(b) for some 0 < S < ∞, together with Hypothesis (H2) where s0 = S is taken.
Let u : Jmax → R be any solution of the initial value problem (5.1), (5.2), where
0 < θ ≤ S and Jmax = [r0, R) is a maximal interval of existence, for some R
with r0 < R ≤ ∞. If p ≤ α then assume also 0 < θ < S, whereas if p > α and
θ = S, then assume that there is δ > 0 such that u(r) > u(r0) = −S holds for every
r ∈ (r0, r0 + δ). Then u has the following properties:

(i) R = ∞ and |u(r)| < θ for every r > 0 and, moreover, both u(r) → 0 and
u′(r) → 0 as r →∞.

(ii) (N − 1)
∫∞

r0
|u′(r̂)|p r̂−1 dr̂ = W (0)−W (θ) .

(iii) In addition, assume p ≥ (1+β)N
N+β .

Then there exist two sequences of positive real numbers, (0 ≤ r0 < ) r1 < r2 < · · · <
rn < . . . and (0 ≤ r0 < ) %1 < %2 < · · · < %n < . . . , such that rn−1 < %n < rn and
u′(rn) = u(%n) = 0 hold for each n = 1, 2, 3, . . . , together with rn →∞ as n →∞.
These two sequences can be chosen to be maximal in the following sense: for each
r ∈ (r0,∞) one has also

u′(r) = 0 =⇒ r = rn for some n ∈ N ,

u(r) = 0 =⇒ r = %n for some n ∈ N .

Proof. To prove properties (i) and (ii), let us recall that W is assumed to be even
about zero and satisfying W ′(0) = W ′(±S) = 0 and W ′(s) = −W ′(−s) < 0 for
all s ∈ (0, S). Here, 0 < S < ∞ is some number. According to our hypotheses
on θ and u, we may assume that there is some δ′ ∈ (0, R − r0) such that (−S ≤)
−θ = u(r0) < u(r) ≤ 0 holds for all r ∈ (r0, r0 + δ′]. From (5.1) we deduce that
also u′(r) > 0 must hold for all r ∈ (r0, r0 + δ′]. Now it is an easy consequence of
(2.7) and (2.8) that |u(r)| < θ (≤ S) holds for all r ∈ (r0, R). Notice that Z(r̂)
is a strictly monotonically increasing function of r̂ near any point r ∈ (r0, R) at
which u′(r) 6= 0. Combining these facts with Proposition 4.1 on local existence, we
conclude that R = ∞, i.e., Jmax = [r0,∞) is the maximal interval of existence.



EJDE-2009/CONF/17 A QUASILINEAR MODEL FOR PHASE TRANSITIONS 251

Next, we claim that either there exists some r1 ∈ (r0,∞) such that u′(r1) = 0
and u′(r) > 0 for all r ∈ (r0, r1), or else the function u is strictly monotonically
increasing on the entire interval [r0,∞) with a monotone limit u∞ = limr→∞ u(r) <
θ (≤ S). The strict inequality follows from (2.7) and (2.8) again.

In the latter alternative we must have u∞ = 0; the case u∞ 6= 0 is excluded
as it would entail W ′(u∞) 6= 0 which is impossible. This proves property (i) for
the latter alternative. Then property (ii) is derived easily from (2.7) and (2.8) by
letting r →∞.

The additional hypothesis in property (iii), p ≥ (1+β)N
N+β , excludes also the case

u∞ = 0 which leaves us with the former alternative only, i.e., u′(r1) = 0 and
u′(r) > 0 for all r ∈ (r0, r1), where r1 ∈ (r0,∞) is some number. This can be
proved by combining eq. (5.1), where r > r0 is large enough, with inequalities
(3.6).

Now we may repeat the two alternatives considered above in the interval [r1,∞)
in place of [r0,∞). According to our hypotheses on θ and u, we may assume that
there is some δ′ ∈ (0,∞) such that 0 ≤ u(r) < u(r1) (< θ ≤ S) holds for all
r ∈ (r1, r1 + δ′]. From eq. (5.1) we deduce that also u′(r) < 0 must hold for
all r ∈ (r1, r1 + δ′]. Now it is an easy consequence of eqs. (2.7) and (2.8) that
|u(r)| < u(r1) (< θ ≤ S) holds for all r ∈ (r1,∞). Notice that Z(r̂) is a strictly
monotonically increasing function of r̂ near any point r ∈ (r1,∞) at which u′(r) 6= 0.

Next, we claim that either there exists some r2 ∈ (r1,∞) such that u′(r2) = 0
and u′(r) < 0 for all r ∈ (r1, r2), or else u is strictly monotonically decreasing
on the entire interval [r1,∞) with a monotone limit u∞ = limr→∞ u(r) > −u(r1)
(> −θ ≥ −S). The strict inequality follows from (2.7) and (2.8) again.

As above, in the latter alternative we must have u∞ = 0; the case u∞ 6= 0 is
excluded as it would entail W ′(u∞) 6= 0 which is impossible. This proves property
(i) for the latter alternative. Then property (ii) is derived easily from eqs. (2.7)
and (2.8) by letting r →∞.

The additional hypothesis in property (iii), p ≥ (1+β)N
N+β , excludes also the case

u∞ = 0 which leaves us with the former alternative only, i.e., u′(r2) = 0 and
u′(r) < 0 for all r ∈ (r1, r2), where r2 ∈ (r1,∞) is some number. This can be
proved by combining eq. (5.1), where r > r0 is large enough, with inequalities
(3.6).

This recursion process may stop after a finite number n ∈ N of such steps, thus
leaving us with a finite collection of numbers (0 ≤ ) r0 < r1 < r2 < . . . rn < ∞
such that u′(r) > 0 for every r ∈ (rk−1, rk) if k is odd, and u′(r) < 0 for every
r ∈ (rk−1, rk) if k is even, and the monotone limit u∞ = limr→∞ u(r) = 0. This
proves property (i). Then property (ii) is derived easily from eqs. (2.7) and (2.8)
by letting r →∞.

If the recursion process does not stop after a finite number of steps, we obtain
a sequence {rk}∞k=1 characterized in property (iii). This is the case if p ≥ (1+β)N

N+β .
The other sequence, {%k}∞k=1, is obtained easily using the fact that u′(r) ≷ 0 for all
r ∈ (rk−1, rk); k = 1, 2, 3, . . . . The proposition is proved. �

6. Proofs of the main results

Now we are ready to give proofs of our main results stated in Section 3. We
remark that the results stated in §3.1 (Theorems 3.1 and 3.4 and Lemma 3.2,
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respectively) are special cases of those stated in §3.2 (Theorems 3.5 and 3.7 and
Lemma 3.6). Thus, we need to prove only the latter ones, for a general potential W .

6.1. Proof of Theorem 3.5. Proof of Part (I). It is assumed that |θ| ≤ S. We may
take ε = 1 without any loss of generality. We begin with the case θ ∈ {−S, 0, S}.
Then the constant function u ≡ −θ on R+ is a (global) solution to the initial value
problem (3.1), (3.2), thanks to W ′(θ) = 0.

For θ = 0 this solution is unique by eqs. (2.7) and (2.8). Indeed, given any
(local) solution u : [r0, r0 + δ) → R of the initial value problem (4.1), (4.2) with
u(r0) = u′(r0) = 0, for some r0 ≥ 0 and δ > 0, from eqs. (2.7) and (2.8) we deduce

0 =
1
p′
|v(r0)|p

′
= W (0)− Z(r0) = W (u(r0))− Z(r0)

≥ W (u(r))− Z(r) =
1
p′
|v(r)|p

′
≥ 0 for r ∈ [r0, r0 + δ) ,

provided δ > 0 is small enough. Here, we have used W (u(r)) ≤ W (u(r0)) = W (0)
and Z(r) ≥ Z(r0) = W (0) for r ∈ [r0, r0 + δ). This forces v = |u′|p−2u′ = 0
throughout [r0, r0 + δ), i.e., u ≡ 0 in [r0, r0 + δ).

For θ = ±S the constant function u ≡ −θ on R+ is the unique solution to problem
(3.1), (3.2) by Corollary 4.4. Indeed, any nonconstant solution u : [r0, r0 + δ) → R
would have to satisfy either (4.11) (if r0 = 0) or (4.12) (if r0 > 0). But this is
impossible for α ≥ p.

So assume 0 < |θ| < S. Let u : [0, R) → R be a solution to problem (3.1), (3.2)
defined on a maximal interval of existence. Such a number R with 0 < R ≤ ∞
exists by Proposition 4.1 on local existence. It is an easy consequence of eqs. (2.7)
and (2.8) that |u(r)| < θ (≤ S) holds for all r ∈ (0, R). We combine these facts with
Proposition 4.1 to conclude that R = ∞, i.e., Jmax = R+ is the maximal interval
of existence. The uniqueness follows from Lemma 4.2.

Proof of Part (II). It is assumed that S < |θ| < S + ζ. As above, we may take
ε = 1 without any loss of generality. By the symmetry of W , it suffices to treat
the case S < θ < S + ζ. Then the existence and uniqueness of a (local) solution
u : [0, δ) → R to problem (3.1), (3.2) follow from Proposition 4.1 and Lemma 4.2,
for some δ > 0. If δ > 0 is chosen small enough then we have also u′(r) < 0 for all
r ∈ (0, δ). Now let u be extended to a maximal interval of existence [0, R) for some
R ≥ δ (> 0). Clearly, by Lemma 4.2, Case (i), if u′(r) < 0 holds for all r ∈ (0, R),
then one can take δ = R.

Proof of Part (III). Finally, let 0 < |θ| < S. We start with ε = 1. By the
symmetry of W again, it suffices to treat the case 0 < θ < S. By Part (I), problem
(3.1), (3.2) possesses a unique (global) solution u : R+ → R satisfying |u(r)| < θ

(< S) for all r > 0. Also the restriction p ≥ (1+β)N
N+β being assumed, this solution

has all properties (i), (ii), and (iii) in Proposition 5.1.
The case of ε > 0 arbitrary is now treated by first renaming both, the variable

r ∈ R+ and the function u(r) from the case ε = 1, by r̃ and ũ(r̃), respectively. Then
we use the dilation r = εr̃ in order to obtain the unique solution u(r) = ũ(ε−1r)
of problem (3.1), (3.2). The conclusion of Part (III) now follows immediately from
property (iii) in Proposition 5.1. In particular, given R ∈ (0,∞), we get the (strictly
decreasing) sequence of “nonlinear eigenvalues” for the Neumann boundary value
problem (1.8), (1.9), i.e., the numbers εn ≡ εn(θ, R) > 0 for n ∈ N, from the
relation ε−1

n R = rn for each n ∈ N. This completes the proof of Theorem 3.5.
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6.2. Proof of Lemma 3.6. This lemma is an immediate consequence of Proposi-
tion 4.5.

6.3. Proof of Theorem 3.7. Proof of Part(I). It is assumed that |θ| < S. The
proof of Part (I) in Theorem 3.5 remains valid in this case also for p > α as we do
not use Corollary 4.4 in this part.

Proof of Part (II). Similarly, for S < |θ| < S + ζ, the proof of Part (II) in
Theorem 3.5 applies also to p > α.

Proof of Part (III). Also this proof is identical with the proof of Part (III) in
Theorem 3.5.

Proof of Part (IV). The proof of this part is a direct consequence of the fact that
the constant functions u ≡ ±S in R+ are solutions of the initial value problem (3.1),
(3.2), combined with Proposition 4.5. The nonuniqueness of a solution u(r) occurs
at the point r = r0; it becomes nonconstant right after this point, for r0 < r < R.

If θ = −S and u = U+ then |u(r)| < S must hold for all r ∈ (r0, R), again, by
eqs. (2.7) and (2.8). We combine this fact with Proposition 4.1 to conclude that
R = ∞, i.e., Jmax = R+ is the maximal interval of existence. The uniqueness of
u(r) for r > r0 follows from Lemma 4.2.

We have finished the proof of Theorem 3.7.

7. Appendix

Here we prove the following auxiliary result for weighted averages.

Lemma 7.1. Let f : [a, b] → R be a monotonically increasing, continuous function,
−∞ < a < b < ∞, and let g : [a, b] → R be (once) continuously differentiable, such
that g(a) = g(b) = 0 and g(t) > 0 for every t ∈ (a, b). Then we have∫ b

a

f(t) g′(t) dt = −
∫ b

a

g(t) df(t) ≤ 0 , (7.1)

where the equality holds if and only if f(a) = f(b), in which case f is a constant
function.

In particular, given a = 0, b = 1, and any µ, ν ∈ R with 1 ≤ µ < ν < ∞, we
may take g(t) = tµ − tν for t ∈ [0, 1] to get

µ

∫ 1

0

f(t) tµ−1 dt ≤ ν

∫ 1

0

f(t) tν−1 dt , (7.2)

where the equality holds if and only if f(a) = f(b), in which case f is a constant
function again.

Proof. Formula (7.1) is an easy consequence of the standard formula for integration-
by-parts for the Riemann-Stieltjes integral combined with our boundary conditions
at the endpoints of the interval [a, b]. We refer for details to the textbook by Rudin
[18], Chapt. 6, Exercise 17 on p. 141. �
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