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PRÜFER TRANSFORMATION FOR THE p-LAPLACIAN

JIŘÍ BENEDIKT, PETR GIRG

Abstract. Prüfer transformation is a useful tool for study of second-order
ordinary differential equations. There are many possible extensions of the

original Prüfer transformation. We focus on a transformation suitable for

study of boundary value problems for the p-Laplacian in the resonant case.
The purpose of this paper is to establish its basic properties in deep detail.

1. Introduction

In most of the literature, the Prüfer transformation is viewed as a technique
introducing the polar coordinates (or their modifications) in the phase plane. The
original Prüfer’s paper [9] dealt with the Sturm-Liouville theory for the second-order
linear equation

(k(t)u′)′ + (l(t) + λr(t))u = 0. (1.1)

Prüfer studied nodal properties of the corresponding eigenfunctions via oscillation
theory. His famous transformation originated in the proof of his “Oszillationstheo-
rem”. At the beginning of the proof, he wrote:

For a fixed value of λ, let v and u be solutions of the system,
equivalent to (1.1),

v′ = −(l(t) + λr(t))u,

u′ =
1

k(t)
v.

(1.2)

If one puts u, v into coordinates in a phase plane, the solution u(t),
v(t) appears as a curve, the coordinates of which are continuous
and differentiable functions of t. Similarly, if one introduces polar
coordinates by

v = % cos ϕ, u = % sinϕ, (1.3)

the polar coordinates of the curve are again continuous and differ-
entiable functions of t, as long as % 6= 0, and if unnecessary π-jumps
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in ϕ are omitted. These functions satisfy the equations

%′ =
(

1
k(t)

− l(t)− λr(t)
)

% sinϕ cos ϕ,

ϕ′ =
1

k(t)
cos2 ϕ + (l(t) + λr(t)) sin2 ϕ.

(1.4)

From the system (1.4), one can easily deduce that increasing of l(t) + λr(t) moves
the zeros of the solution u of a Cauchy problem for (1.1) towards the initial point.
Indeed, let us focus on the second equation in (1.4). The points t where ϕ(t) = nπ,
n ∈ Z, are zeros of u. Take a solution ϕ of the corresponding Cauchy problem.
Obviously, if we increase the expression l(t) + λr(t), then ϕ increases right to the
initial point and decreases left to it. This moves the zeros of u towards the initial
point. See [9] for details.

Elbert [6] was interested in Sturm’s comparison theory for the second-order
quasilinear equation

−(Φ(u′))′ − q(t)Φ(u) = 0 (1.5)

where Φ(s) = |s|p−2s, s > 0, Φ(0) = 0 and 1 < p < ∞ is a constant. Choosing
p = 2, (1.5) reduces to the linear equation (1.1). The equation (1.5) is equivalent
to the system

v′ = −q(t)Φ(u),

u′ = Φ−1(v).
(1.6)

To this end, Elbert modified the Prüfer transformation to

v = Φ(% cosp ϕ),
u = % sinp ϕ

(1.7)

where sinp is a solution of (1.5) with q ≡ p − 1, sinp(0) = 0 and sin′p(0) = 1, and
cosp = sin′p. Similarly as above, % > 0 is determined uniquely and ϕ uniquely up
to a multiple of 2πp where

πp =
2π

p sin π
p

is the first positive zero of sinp. In this case, the pair %, ϕ is a solution of the system

%′ =
(

1− q(t)
p− 1

)
%Φ(sinp ϕ) cosp ϕ,

ϕ′ = | cosp ϕ|p +
q(t)
p− 1

| sinp ϕ|p.
(1.8)

Let us illustrate the advantages of the generalized Prüfer transformation (1.7) on
the question of unique solvability of the Cauchy problem for (1.6). Obviously, the
right-hand side of (1.6) is not Lipschitz continuous when p 6= 2 since Φ′(0) = +∞
for 1 < p < 2 and (Φ−1)′(0) = +∞ for p > 2.

The one-to-one correspondence between the solution v, u of (1.6) and the solution
%, ϕ of (1.8) (up to a multiple of 2πp in the case of ϕ) makes the unique solvability of
the corresponding Cauchy problems for (1.6) and (1.8) equivalent. The right-hand
side of (1.8) is not Lipschitz continuous either (the argument in [6] is incorrect).
Indeed, if 1 < p < 2, then Φ(sinp ϕ) has an infinite derivative at ϕ = nπp, n ∈ Z.
If p > 2, then cosp ϕ has an infinite derivative at ϕ = (n + 1/2)πp, n ∈ Z.
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However, existence of a unique solution of the Cauchy problem for (1.8) can
be easily proved since the Lipschitz continuity fails only in the first equation and,
moreover, % does not appear in the second equation. This allows us to solve the
equations separately. Indeed, the second equation has a unique solution ϕ (sat-
isfying an initial condition). Substituting this concrete function for ϕ in the first
equation, we get a linear first-order equation for % that (together with an initial
condition) has a unique solution, too.

The transformation (1.7) is also useful for the study of oscillatory properties of
solutions of second-order quasilinear equation — see [5] and the references therein.

We see that the one-to-one correspondence between the solutions of (1.6) and
(1.8) is important. Nevertheless, it is used in [6] with no proof. Several other
authors used the Prüfer’s transformation to study boundary value problems for
the p-Laplacian — see Bennewitz [2] and Yang [11] and [12], and also for the
radially symmetric p-Laplacian in Rn — see Reichel and Walter [10] and Brown
and Reichel [3] and [4]. To our knowledge, the only authors who prove the one-
to-one correspondence are Reichel and Walter in [10]. Precisely said, they prove
only the “nontrivial” part, i.e., given a pair u, v, there exists a unique % and a
unique ϕ up to a multiple of 2πp satisfying a relation similar to (1.7). However,
their proof contains several minor incorrectnesses. For example, they claim that [10,
Equation (9)] which is similar to the first equation in (1.7) defines ϕ up to a multiple
of 2πp. But cosp is an even function, and so the equation defines ϕ also up to the
sign. It turns out that if we want to determine ϕ up to a multiple of 2πp, we have
to combine both equations in (1.7). Moreover, Reichel and Walter use sin′′p in their
computations (e.g., [10, first equation on page 55]) that does not exist everywhere
when p > 2. Hence they actually prove that % and ϕ satisfy a transformed system
almost everywhere only, not proving that % and ϕ are absolutely continuous. Our
aim is to provide a thorough correct proof of the one-to-one correspondence in this
paper.

The function sinp that, together with its derivative cosp, appears in the trans-
formation (1.7) is the principal eigenfunction of the eigenvalue problem

−(Φ(u′))′ − (p− 1)λΦ(u) = 0 in (0, πp),

u(0) = u(πp) = 0,
(1.9)

corresponding to the principal eigenvalue λ1 = 1. Manásevich and Takáč [7] studied
solvability of a resonant nonhomogeneous problem (1.9), i.e., with a given function
at the right-hand side of the equation, and with λ equal to the k-th eigenvalue of
(1.9) λk = kp, k ∈ N (nonlinear Fredholm alternative). For this purpose, it is more
useful to substitute the corresponding k-th eigenfunction t 7→ 1

k sinp(kt) and its
derivative t 7→ cosp(kt) for sinp and cosp in (1.7) to get the transformation

v = Φ(% cosp(kϕ)),

u = %
1
k

sinp(kϕ).
(1.10)

Notice that it is not just to replace ϕ by kϕ in (1.7) since t 7→ cosp(kt) is not a
derivative of t 7→ sinp(kt)! In fact, using (1.10), (1.6) would be equivalent to a
system essentially different from (1.8).

In this paper, we further generalize (1.10) to a transformation suitable for study
of resonant problems with jumping nonlinearity. We write the transformation in
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the form
v = Φ(%C(ϕ)),

u = %S(ϕ)
(1.11)

where C = S′ and S is the unique solution (see [1, Theorem 2 and Corollary 4]) of

−(Φ(u′))′ − (p− 1)
(
µΦ(u+)− νΦ(u−)

)
= 0 (1.12)

where µ, ν > 0, u+ = max{u, 0} and u− = max{−u, 0}, satisfying S(0) = 0 and
S′(0) = 1. Notice that if µ = ν = λ in (1.12), then it reduces to the equation in
(1.9). It is easily seen that S is a (µ−1/p + ν−1/p)πp-periodic function and

S(t) =

{
µ−1/p sinp(µ1/pt) for t ∈ [0, µ−1/pπp],
ν−1/p sinp(ν1/pt) for t ∈ (−ν−1/pπp, 0).

If we consider a constant % > 0, then the planar curve ϕ 7→ (v, u) given by (1.11),
ϕ ∈ (−ν−1/pπp, µ

−1/pπp], is sketched in Figure 1.

0

v

u

ϕ = 0

ϕ = (µ−1/p/2)πp

ϕ = µ−1/pπp

ϕ = −(ν−1/p/2)πp

Figure 1. Generalized polar coordinates given by (1.11) for p = 4,
µ = 1, ν = 500 and % = 1.

2. Main Results

Given an interval I ⊂ R, let X denote the vector space of all real continuous
functions on I and X+ its subset of positive continuous functions. By X/(aZ) we
denote the quotient space of classes of continuous functions on I which differ by
a multiple of a > 0. If I is compact, then X equipped with the sup-norm is the
Banach space C(I).

Theorem 2.1. Let p > 1 and I ⊂ R be an interval. There exists a bijection

Π = (Π1,Π2) : {(v, u) ∈ X2 : |v|+ |u| > 0 on I} → X+ ×X/(2πpZ)

such that for any v, u, ϕ ∈ X and % ∈ X+, (1.7) holds on I if and only if % =
Π1(v, u) and ϕ ∈ Π2(v, u).

If v, u, ϕ ∈ X and % ∈ X+ are such that (1.7) holds on I, then
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• if v′ and u′ exist at a point t ∈ I, then %′ and ϕ′ exist at t, too, and

%′ =
%2−p

p− 1
cosp ϕv′ + Φ(sinp ϕ)u′,

ϕ′ = − %1−p

p− 1
sinp ϕv′ +

1
%
Φ(cosp ϕ)u′

(2.1)

at t (the derivatives are one-sided when t ∈ ∂I),
• both v and u are continuously differentiable on I if and only if both % and

ϕ are continuously differentiable on I,
• if, moreover, I is compact, then v, u ∈ AC(I) if and only if %, ϕ ∈ AC(I)

(Here and in the sequel, AC(I) stands for the space of absolutely continuous
functions on I).

If I is compact, then the mappings

{(%, ϕ) ∈ (C(I))2 : % > 0 on I} → {(v, u) ∈ (C(I))2 : |v|+ |u| > 0 on I}

and

{(%, ϕ) ∈ (C1(I))2 : % > 0 on I} → {(v, u) ∈ (C1(I))2 : |v|+ |u| > 0 on I}

which map (%, ϕ) on (v, u) if and only if (1.7) holds, are a local C1-diffeomorphism
and a local homeomorphism, respectively, at each (%, ϕ) ∈ (C(I))2 and (%, ϕ) ∈
(C1(I))2, respectively, % > 0.

Example 2.2. Let p > 1 and I ⊂ R be an interval. Let v and u be continuous and
|v|+ |u| > 0 on I. Then Theorem 2.1 yields that there exists a unique continuous
% > 0 a unique (up to a multiple of 2πp) continuous ϕ such that (1.7) holds.
Moreover, v, u is a classical solution of (1.6) on I if and only if %, ϕ is a classical
solution of (1.8) on I (we combine (1.6) and (1.7) with (2.1)). If I is compact, then
the same holds for the Carathéodory solution instead of the classical one.

Theorem 2.3. Let p > 1, µ, ν > 0 and I ⊂ R be an interval. There exists a
bijection

Π = (Π1,Π2) : {(v, u) ∈ X2 : |v|+ |u| > 0 on I} → X+ ×X/((µ−1/p + ν−1/p)πpZ)

such that for any v, u, ϕ ∈ X and % ∈ X+, (1.11) holds on I if and only if % =
Π1(v, u) and ϕ ∈ Π2(v, u).

If v, u, ϕ ∈ X and % ∈ X+ are such that (1.11) holds on I, then
• if v′ and u′ exist at a point t ∈ I, then %′ and ϕ′ exist at t, too, and

%′ =
%2−p

p− 1
C(ϕ)v′ +

(
µΦ(S+(ϕ))− νΦ(S−(ϕ))

)
u′,

ϕ′ = − %1−p

p− 1
S(ϕ)v′ +

1
%
Φ(C(ϕ))u′

(2.2)

at t (the derivatives are one-sided when t ∈ ∂I),
• both v and u are continuously differentiable on I if and only if both % and

ϕ are continuously differentiable on I,
• if, moreover, I is compact, then v, u ∈ AC(I) if and only if %, ϕ ∈ AC(I).

If I is compact, then the mappings

{(%, ϕ) ∈ (C(I))2 : % > 0 on I} → {(v, u) ∈ (C(I))2 : |v|+ |u| > 0 on I}
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and

{(%, ϕ) ∈ (C1(I))2 : % > 0 on I} → {(v, u) ∈ (C1(I))2 : |v|+ |u| > 0 on I}
which map (%, ϕ) on (v, u) if and only if (1.11) holds, are a local C1-diffeomorphism
and a local homeomorphism, respectively, at each (%, ϕ) ∈ (C(I))2 and (%, ϕ) ∈
(C1(I))2, respectively, % > 0.

Remark. Theorem 2.1 is a special case of Theorem 2.3 for µ = ν = 1.

Example 2.4. Let p > 1, µ, ν > 0 and I ⊂ R be an interval. Let us consider the
equation

−(Φ(u′))′ − (p− 1)
(
µΦ(u+)− νΦ(u−)

)
= f (2.3)

which is equivalent to

v′ = −(p− 1)
(
µΦ(u+)− νΦ(u−)

)
− f,

u′ = Φ−1(v).
(2.4)

Let v and u be continuous and |v|+|u| > 0 on I. Then Theorem 2.3 yields that there
exists a unique continuous % > 0 and a unique (up to a multiple of (µ−1/p+ν−1/p)πp)
continuous ϕ such that (1.11) holds. Moreover, v, u is a classical solution of (2.4)
on I if and only if %, ϕ is a classical solution of

%′ = − %2−p

p− 1
C(ϕ)f,

ϕ′ = 1 +
%1−p

p− 1
S(ϕ)f

(2.5)

on I (we combine (2.4) and (1.11) with (2.2)). Again, if I is compact, then the
same holds for the Carathéodory solution instead of the classical one.

If we choose µ = ν = kp in (2.3), we obtain the equation studied by Manásevich
and Takáč in [7]. They used a slightly different transformation, but their coordi-
nates r, Θ (see [7, eqs. (23), (24)]) can be expressed in terms of our %, ϕ as r = %p−1

and Θ = (ϕ − t)%p−1. Differentiating these formulas and using (2.5) we easily get
formulas [7, eqs. (27), (28)]:

dΘ
dx

= f(x)
[

1
k(p− 1)

sinp k

(
x +

Θ
r

)
− Θ

r
cosp k

(
x +

Θ
r

)]
and

dr

dx
= −f(x) cosp k

(
x +

Θ
r

)
.

3. Proof of Theorem 2.1

The reason why we prove Theorem 2.1 in spite of the fact that it is a special
case of Theorem 2.3 is that we want to give a very clear and thorough proof in
the simpler case avoiding unnecessary technical difficulties. In the next section we
prove Theorem 2.3, focusing mainly on the differences between the proofs.

First we show that Π−1 is well defined by (1.7). Let % ∈ X+ and ϕ̃ ∈ X/(2πpZ).
Choose an arbitrary ϕ ∈ ϕ̃. Since both sinp and cosp are 2πp-periodic functions, v
and u defined by (1.7) are independent of the choice of ϕ. Let us view (1.7) as a
transformation in R2, i.e., we define a mapping

F : (0,∞)× R → R2 \ {(0, 0)} : F (%, ϕ) = (v, u), such that (1.7) holds.
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Continuity of F implies v, u ∈ X. Since % > 0 and sinp and cosp have no common
zeros, we have also |v(t)|+ |u(t)| > 0 for all t ∈ I.

To show that Π is well defined, too, we start by inverting F . Notice that F is not
injective (it is 2πp-periodic in the second variable), and so F−1 is understood to be
a multi-valued function. Let (v, u) ∈ R2 \ {(0, 0)}. Using the well-known identity

| cosp x|p + | sinp x|p = 1 ∀x ∈ R,

we infer from (1.7)

|Φ−1(v)|p + |u|p = |%|p(| cosp ϕ|p + | sinp ϕ|p) = |%|p.
At this point, we could choose the sign of % (as it was admitted in the Prüfer’s
paper [9]). But we define F only for % > 0, and so if (%, ϕ) = F−1(v, u), then

% =
(
|v|p/(p−1) + |u|p

)1/p
> 0. (3.1)

To obtain ϕ, we deduce from (1.7) that if v 6= 0, then

tanp ϕ =
u

Φ−1(v)
where tanp x

def=
sinp x

cosp x
, x 6= (n + 1/2)πp, n ∈ Z,

and if u 6= 0, then

cotanp ϕ =
Φ−1(v)

u
where cotanp x

def=
cosp x

sinp x
, x 6= nπp, n ∈ Z.

Consequently,

v > 0 =⇒ ϕ = arctanp
u

Φ−1(v)
+ 2nπp, n ∈ Z,

v < 0 =⇒ ϕ = arctanp
u

Φ−1(v)
+ (2n + 1)πp, n ∈ Z,

u > 0 =⇒ ϕ = arccotanp
Φ−1(v)

u
+ 2nπp, n ∈ Z,

u < 0 =⇒ ϕ = arccotanp
Φ−1(v)

u
+ (2n + 1)πp, n ∈ Z,

(3.2)

where arctanp is the inverse function to tanp |(−πp/2,πp/2) and arccotanp is the in-
verse function to cotanp |(0,πp). Obviously, if uv 6= 0, then we are free to choose be-
tween two formulas, one using arctanp and one using arccotanp. Otherwise, only one
of the above four formulas is applicable (we remind that we assume (v, u) 6= (0, 0)).
Geometrical interpretation of ϕ in the v, u-plane is found in [6, Figure 2, page 159].

Now that we have formulas (3.1) and (3.2) defining F−1, let v and u be continuous
on I, |v(t)|+ |u(t)| > 0 for all t ∈ I. The function % is given by (3.1). Clearly, % is
continuous and positive on I.

Although ϕ is given by (3.2), n and the choice of the appropriate formula depend
on t ∈ I. Let us choose a t0 ∈ I. Assume v(t0) 6= 0 (for u(t0) 6= 0 we proceed
similarly). We determine ϕ(t0) from the first (if v(t0) > 0) or the second (if
v(t0) < 0) formula in (3.2), choosing an arbitrary n ∈ Z. Now we extend ϕ to
a continuous function on I+

def= I ∩ [t0,∞) in the following way. If v 6= 0 on I+,
we use the same formula in (3.2) as in t0, and also the same n (otherwise ϕ would
not be continuous). Otherwise, let t1 be the first point in I+ where v(t1) = 0. We
determine ϕ(t1) from the third or the fourth formula in (3.2), depending on the
sign of u(t1). It is easy to check that there is a unique n ∈ Z that we have to use in
the respective formula to guarantee left-continuity of ϕ in t1. We proceed further
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in a similar fashion. We extend ϕ using the same formula and the same n either to
the rest of I+, or up to the first t2 where u(t2) = 0, and so on.

We have to prove that this procedure covers the whole I+. Assume the contrary,
i.e., that ti → T < sup I as i →∞. But v(t2i−1) = 0 and u(t2i) = 0, i ∈ N, and so
the continuity of v and u would imply v(T ) = u(T ) = 0, a contradiction. Extension
of ϕ to I ∩ (−∞, t0) is done analogously. Since the choice of n at t0 determines a
unique continuous ϕ, we obtain a unique class from X/(2πpZ) and the proof that
Π is a well-defined mapping is complete.

To prove (2.1) we use the chain rule, so we need to differentiate both (3.1) and
(3.2) with respect to both v and u. From (3.1) we infer

∂%

∂v
=

1
p

(
|v|p/(p−1) + |u|p

)(1−p)/p p

p− 1
Φ−1(v) =

1
p− 1

%1−p% cosp ϕ =
%2−p

p− 1
cosp ϕ

(3.3)
and, similarly,

∂%

∂u
=

1
p

(
|v|p/(p−1) + |u|p

)(1−p)/p
pΦ(u) = %1−pΦ(% sinp ϕ) = Φ(sinp ϕ). (3.4)

This proves the first equality in (2.1). To differentiate ϕ defined by (3.2), we first
notice that each of the four formulas is valid on an open set, so if one of them holds
at a t ∈ I, then it holds in a neighborhood of t. Hence it suffices to differentiate all
the four formulas separately. The reader is invited to verify

arctan′p x =
1

1 + |x|p
, x ∈ R.

Hence the first two formulas in (3.2) yield that if v 6= 0, then
∂ϕ

∂v
=

1

1 + |u|p
|v|p/(p−1)

u
−1

p− 1
|v|−1/(p−1)−1 = − 1

p− 1
u

|v|p/(p−1) + |u|p

= − 1
p− 1

% sinp ϕ

%p
= − %1−p

p− 1
sinp ϕ

and
∂ϕ

∂u
=

1

1 + |u|p
|v|p/(p−1)

1
Φ−1(v)

=
v

|v|p/(p−1) + |u|p
=

Φ(% cosp ϕ)
%p

=
1
%
Φ(cosp ϕ).

If v = 0, then u 6= 0 and we differentiate the last two formulas in (3.2). But we
cannot use the chain rule directly unless p = 2 since

arccotan′p x = − |x|p−2

1 + |x|p
, x 6= 0, arccotan′p 0 =


−∞ for 1 < p < 2,

−1 for p = 2,

0 for p > 2

and (Φ−1)′(0) = ∞ for p > 2. We rewrite the last two formulas in (3.2) in the form

ϕ = arccotanp Φ−1

(
v

Φ(u)

)
+ mπp, m ∈ Z, (3.5)

and we derive the derivative of the composite function x 7→ arccotanp Φ−1(x),
x ∈ R, directly from the derivative of its inverse. The reader is invited to check
that

d
dx

arccotanp Φ−1(x) = − 1
(p− 1)(1 + |x|p/(p−1))

, x ∈ R. (3.6)
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Combining (3.5) and (3.6) we get that if u 6= 0, then

∂ϕ

∂v
= − 1

(p− 1)
(
1 + |v|p/(p−1)

|u|p

) 1
Φ(u)

= − u

(p− 1)(|u|p + |v|p/(p−1))
= − %1−p

p− 1
sinp ϕ

and
∂ϕ

∂u
= − 1

(p− 1)
(
1 + |v|p/(p−1)

|u|p

)v(1− p)|u|−p =
v

|u|p + |v|p/(p−1)
=

1
%
Φ(cosp ϕ).

This completes the proof of (2.1).
From (2.1) we easily infer that if v′ and u′ are continuous on I, then %′ and

ϕ′ are continuous there, too. Indeed, all the derivatives ∂%
∂v , ∂%

∂u , ∂ϕ
∂v and ∂ϕ

∂u are
continuous functions of t on I. Conversely, if %′ and ϕ′ are continuous on I, then
the continuity of v′ and u′ follows from (1.7), precisely said, from the continuity of

∂v

∂%
= (p− 1)%p−2Φ(cosp ϕ),

∂v

∂ϕ
= −%p−1(p− 1)Φ(sinp ϕ),

∂u

∂%
= sinp ϕ,

∂u

∂ϕ
= % cosp ϕ

(3.7)

on I. Notice that we used the identity
d
dx

Φ(cosp x) = −(p− 1)Φ(sinp x) ∀x ∈ R (3.8)

which follows from the fact that sinp is defined as a solution of (1.5) with q ≡ p−1.
Further, we prove that v, u ∈ AC(I) if and only if %, ϕ ∈ AC(I) provided I is

compact. Compactness of I guarantees that % attains a positive minimum there.
Hence all the derivatives ∂%

∂v , ∂%
∂u , ∂ϕ

∂v , ∂ϕ
∂u , ∂v

∂% , ∂v
∂ϕ , ∂u

∂% and ∂u
∂ϕ are bounded on I.

Consequently, % and ϕ are composite functions of v and u and a Lipschitz continuous
function, and vice versa. Since the composition of an absolutely continuous function
and a Lipschitz continuous function is absolutely continuous (see [8]), the assertion
follows.

The reader is invited to check by definition that the last assertion of Theorem 2.1
follows from the fact that for a compact I, all four derivatives (3.7) are uniformly
continuous on{

(%, ϕ) ∈ R2 : % ∈
(1

2
inf
t∈I

%(t), sup
t∈I

%(t) +
1
2

inf
t∈I

%(t)
)
, ϕ ∈ R

}
.

This completes the proof of Theorem 2.1.

4. Proof of Theorem 2.3

Theorem 2.3 is a generalization of Theorem 2.1. It can be proved using the same
ideas, but with additional technical complications. We give just an outline of the
main differences so the interested reader can follow the proof of Theorem 2.1.

First of all, we use S and C instead of sinp and cosp. Hence (1.7) becomes (1.11).
The dependence of % on v and u takes the form

% =
(
|v|p/(p−1) + µ(u+)p + ν(u−)p

)1/p

instead of (3.1) by virtue of the identity

|C(x)|p + µ(S+(x))p + ν(S−(x))p = 1 ∀x ∈ R.
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Finally, (3.2) is replaced by

v > 0 =⇒ ϕ = µ−1/p arctanp

(
µ1/p u+

Φ−1(v)

)
− ν−1/p arctanp

(
ν1/p u−

Φ−1(v)

)
+ (µ−1/p + ν−1/p)nπp, n ∈ Z,

v > 0 =⇒ ϕ = µ−1/p arctanp

(
µ1/p u+

Φ−1(v)

)
− ν−1/p arctanp

(
ν1/p u−

Φ−1(v)

)
+

(
(µ−1/p + ν−1/p)n + µ−1/p

)
πp, n ∈ Z,

u > 0 =⇒ ϕ = µ−1/p arccotanp

(
µ−1/p Φ−1(v)

u

)
+ (µ−1/p + ν−1/p)nπp, n ∈ Z,

u < 0 =⇒ ϕ = ν−1/p arccotanp

(
ν−1/p Φ−1(v)

u

)
+

(
(µ−1/p + ν−1/p)n + µ−1/p

)
πp, n ∈ Z

(cf. Figure 1). The reader is invited to differentiate % and ϕ to prove (2.2). Since it
leads to technically complicated calculations, we present an alternative approach,
which is less transparent, but more suitable for this case. The function F that
maps (%, ϕ) to (v, u) such that (1.11) holds, is a local diffeomorphism at each point
of (0,∞)× R. Indeed, its Jacobi matrix is

JF =
(

∂v/∂% ∂v/∂ϕ
∂u/∂% ∂u/∂ϕ

)
=

(
(p− 1)%p−2Φ(C(ϕ)) −%p−1(p− 1)

(
µΦ(S+(ϕ))− νΦ(S−(ϕ))

)
S(ϕ) %C(ϕ)

)
and detJF = (p − 1)%p−1 > 0. Similarly as in the proof of Theorem 2.1, we used
the identity

d
dx

Φ(C(x)) = −(p− 1)
(
µΦ(S+(x))− νΦ(S−(x))

)
∀x ∈ R

which follows directly from the definition of S as a solution of (1.12). Consequently,
the Jacobi matrix JF−1 of the locally inverse function is

(
∂%/∂v ∂%/∂u
∂ϕ/∂v ∂ϕ/∂u

)
= (JF )−1 =


%2−p

p− 1
C(ϕ) µΦ(S+(ϕ))− νΦ(S−(ϕ))

− %1−p

p− 1
S(ϕ)

1
%
Φ(C(ϕ))

 .

This proves (2.2). The rest of the proof of Theorem 2.3 is very similar to the proof
of Theorem 2.1, and so we omit it.

5. Counterexamples for noncompact interval

Theorem 2.1 states that if v, u, ϕ ∈ X and % ∈ X+ satisfy (1.7) and I is a
compact interval, then

v, u ∈ AC(I) ⇐⇒ %, ϕ ∈ AC(I). (5.1)

The aim of this section is to show on several counterexamples that the equivalence
(5.1) is not true unless I is compact. We will not discuss unbounded I since it is not
clear how to define absolute continuity on an unbounded interval. For example, the
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standard ε-δ definition does not guarantee Lebesgue integrability of the derivative
of the function as it is true on a bounded interval (a simple example of such a
function is the identity function t 7→ t, t ∈ R). Absolute continuity is defined
variously in the literature, depending on the concrete purpose.

On the other hand, there can be no confusion with definition of absolute con-
tinuity on a bounded open interval since if a function satisfies the standard ε-δ
definition on an interval (a, b), then it can be easily extended to an absolutely con-
tinuous function on [a, b] defining its value at the end-points by the one-sided limits.
However, the assumption % ∈ X+ guarantees positivity of % (and |v| + |u|) at the
interior points only. If the limits of % at the end-points are positive, too, then (5.1)
still holds. If at least one of the limits is zero, then (5.1) can fail, as we show on
the following three counterexamples.

Example 5.1. Let p = 3/2, I = (0, 1),

%(t) = t2
(
1 + sin2 1

t

)
> 0, ϕ(t) = 0, t ∈ (0, 1).

Figure 2 shows a part of the graph of %. We have %, ϕ ∈ AC(I). Indeed,

%′(t) = 2t
(
1 + sin2 1

t

)
− sin

2
t
, t ∈ (0, 1),

is bounded on I. Hence % is Lipschitz continuous and, consequently, absolutely
continuous on I. But (1.7) yields

v(t) = t

√
1 + sin2 1

t
=⇒ v′(t) =

√
1 + sin2 1

t
−

1
t sin 2

t

2
√

1 + sin2 1
t

, t ∈ (0, 1).

Since 1 ≤
√

1 + sin2 1
t ≤

√
2 on I, Lebesgue integrability of v′ on I is equivalent

to that of 1
t sin 2

t . It is readily seen that∫ 1

0

(1
t

sin
2
t

)+dt = ∞ and
∫ 1

0

(1
t

sin
2
t

)−dt = −∞.

Consequently, v′ 6∈ L1(0, 1) and v cannot be absolutely continuous on (0, 1).

Example 5.2. Let p = 3, I = (0, 1),

v(t) = t2
(
1 + sin2 1

t

)
> 0, u(t) = 0, t ∈ (0, 1).

From (3.1) we deduce

%(t) = t

√
1 + sin2 1

t
, t ∈ (0, 1).

Hence, similarly as in the previous example, v, u ∈ AC(I), but % 6∈ AC(I).

Example 5.3. Let p > 1, I = (0, 1),

v(t) = t2(p−1), u(t) = t2 sin
1
t
, t ∈ (0, 1).

Clearly, v, u ∈ AC(I). Since v > 0 on I, we can determine ϕ from the first formula
in (3.2), where we choose n = 0. Then

ϕ = arctanp sin
1
t
, t ∈ (0, 1).
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0 t

%(t)

Figure 2. Graph of % from Example 5.1 on (0, 2/5).

Obviously,

ϕ
( 1

mπ

)
= 0 and ϕ

( 1
(2m + 1/2)π

)
= arctanp 1 > 0, m ∈ N.

Consequently, ϕ 6∈ AC(I) since it is not even uniformly continuous there.

We summarize the validity of (5.1) (precisely said, all the four implications %, ϕ ∈
AC(I) ⇒ v ∈ AC(I), %, ϕ ∈ AC(I) ⇒ u ∈ AC(I), v, u ∈ AC(I) ⇒ % ∈ AC(I)
and v, u ∈ AC(I) ⇒ ϕ ∈ AC(I) separately) for a bounded I in the below table,
distinguishing among 1 < p < 2, p = 2, and p > 2.

%, ϕ ∈ AC(I) ⇒ v, u ∈ AC(I) ⇒
v ∈ AC(I) u ∈ AC(I) % ∈ AC(I) ϕ ∈ AC(I)

1 < p < 2
NO

(Example 5.1) YES YES NO
(Example 5.3)p = 2 YES YES YES

p > 2 YES YES
NO

(Example 5.2)

It is easy to justify all the fields with “YES”. First we prove %, ϕ ∈ AC(I) ⇒
v ∈ AC(I) for p ≥ 2. So let us assume %, ϕ ∈ AC(I) and p ≥ 2. Since an abso-
lutely continuous function % on a bounded interval is bounded and Φ is Lipschitz
continuous on any bounded interval for p ≥ 2, the function % 7→ Φ(%) is bounded
and Lipschitz continuous on [inft∈I %(t), supt∈I %(t)]. Moreover, ϕ 7→ Φ(cosp ϕ) is a
periodic C1-function on R — see (3.8). Consequently, (%, ϕ) 7→ Φ(% cosp ϕ) is a Lip-
schitz continuous function on [inft∈I %(t), supt∈I %(t)]×R and we deduce from (1.7)
that v is a composition of absolute continuous % and ϕ and a Lipschitz continuous
function. So v ∈ AC(I) by [8].

Second, %, ϕ ∈ AC(I) ⇒ u ∈ AC(I) is proved even more easily since (%, ϕ) 7→
% sinp ϕ is Lipschitz continuous on R2 for any p > 1.

Finally, assume v, u ∈ AC(I) and 1 < p ≤ 2. Hence both v and u are bounded
and, by (3.1), % is bounded on I, too. To prove % ∈ AC(I), notice that (3.1),
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[8] and % ∈ X+ imply that it suffices to prove Lipschitz continuity of (v, u) 7→
(|v|p/(p−1) + |u|p)1/p on the bounded set{

(v, u) ∈ R2 : 0 < (|v|p/(p−1) + |u|p)1/p ≤ sup
t∈I

%(t)
}

that does not contain the origin. This follows from the fact that, due to 2− p ≥ 0,
both its partial derivatives (3.3) and (3.4) are bounded on this set. The proof is
complete.
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[9] Prüfer, H., Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktio-
nen. (German) Math. Ann. 95 (1926), no. 1, 499–518.

[10] Reichel, W., Walter, W., Sturm-Liouville type problems for the p-Laplacian under asymptotic

non-resonance conditions. J. Differential Equations 156 (1999), no. 1, 50–70.
[11] Yang, X., Nonlinear resonance in asymmetric oscillations. Appl. Math. Comput. 142 (2003),

no. 2–3, 255–270.

[12] Yang, X., The Fredholm alternative for the one-dimensional p-Laplacian. J. Math. Anal.
Appl. 299 (2004), no. 2, 494–507.

Jiř́ı Benedikt
Department of mathematics, Faculty of Applied Sciences, University of West Bohemia,
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